1
|
Zhong W, Wang Q, Li M, Deng X, Shen X. Co-assembled whey protein and proanthocyanidins as a promising biocarrier for hydrophobic pterostilbene: Fabrication, characterization, and cellular antioxidant potential. J Dairy Sci 2024; 107:2690-2705. [PMID: 37949399 DOI: 10.3168/jds.2023-23925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The usage of food-derived polyphenols with different polarities has been limited by their instability and incompatibility. Therefore, a biocarrier was developed by co-assembly of whey protein isolate (WPI) and hydrophilic proanthocyanidin (PC) for loading hydrophobic pterostilbene (PTE). Such biocarrier has superior affinity for PTE than WPI alone, as determined by encapsulation efficiency and loading capacity assay, fluorescence quenching analysis, and molecular docking, whereas the assembly process was characterized by particle size and zeta potential, 3-dimensional fluorescence, and scanning electron microscopy. Circular dichroism and Fourier transform infrared spectroscopy spectra confirmed the α-helix to β-sheet and random coil transition of proteins during the formation of nanocomplexes. Whey protein isolate acted as a mediator through altering the binding mode of PC and PTE, allowing them to perform significant synergistic effects in enhancing 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing H2O2-induced cell damage. This research may serve to develop new protein/polyphenol co-loading systems and offer a reliable nutritional fortification.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Qi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Min Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Dobhal P, Agnihotri S, Ashfaqullah S, Tamta S. Effect of salicylic acid elicitor on antioxidant potential and chemical composition of in vitro raised plants of Berberis asiatica Roxb. ex DC. Nat Prod Res 2023; 37:3114-3121. [PMID: 36326011 DOI: 10.1080/14786419.2022.2141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The present study for the first time investigated the effects of Salicylic acid (SA) (50, 100 and 200 mg/L) on in vitro growth and antioxidant capacity of Berberis asiatica. SA significantly enhanced in vitro shoot multiplication at 100 mg/L concentration. The result showed highest significant increase in antioxidant activity by 50 mg/L SA elicited plantlets in terms of DPPH (2,2-Di-phenyl-1-picryl-hydrazyl) free radical scavenging activity (IC50 32.42 ± 0.51), Ferric Reducing Antioxidant Activity (292.73 ± 2.09 mg AAE/g dw) and Metal Chelating Activity (IC50 13.18 ± 0.52). The Gas Chromatography-Mass Spectrometry (GC-MS) profiling revealed presence of 46, 38, 34 and 29 phytochemicals in control, SA1, SA2 and SA3 methanolic extracts respectively. Among the identified compounds, eight compounds, 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl; 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid; 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (and Phytol); hexadecanoic acid, methyl ester; 9,12-Octadecadienoic acid (Z,Z)-,methyl ester; di-n-octyl phthalate; stigmast-5-en-3-ol,(3.beta.)- or ß- sitosterol; and squalene were previously known for antioxidant potential.
Collapse
Affiliation(s)
- Preeti Dobhal
- Plant Tissue Culture Laboratory, D.S.B. Campus, Kumaun University, Nainital, India
| | - Saumya Agnihotri
- Plant Tissue Culture Laboratory, D.S.B. Campus, Kumaun University, Nainital, India
| | - Sayyed Ashfaqullah
- Plant Tissue Culture Laboratory, D.S.B. Campus, Kumaun University, Nainital, India
| | - Sushma Tamta
- Plant Tissue Culture Laboratory, D.S.B. Campus, Kumaun University, Nainital, India
| |
Collapse
|
3
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
4
|
Lin X, Zhao J, Ge S, Lu H, Xiong Q, Guo X, Li L, He S, Wang J, Peng F, Fan Y, Zuo X, Tian C, Ying C. Dietary Polyphenol Intake and Risk of Hypertension: An 18-y Nationwide Cohort Study in China. Am J Clin Nutr 2023; 118:264-272. [PMID: 37146758 PMCID: PMC10447504 DOI: 10.1016/j.ajcnut.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Although increasing evidence suggests that polyphenol helps regulate blood pressure (BP), evidence from large-scale and long-term population-based studies is still lacking. OBJECTIVES This study aimed to investigate the association between dietary polyphenol and hypertension risk in the China Health and Nutrition Survey (N = 11,056). METHODS Food intake was assessed using 3-d, 24-h dietary recalls and household weighing method; polyphenol intake was calculated by multiplying consumption of each food and its polyphenol content. Hypertension was defined as BP ≥ 140/90 mmHg, physicians' diagnosis, or taking antihypertension medications. HR and 95% CI were estimated using mixed-effects Cox models. RESULTS During 91,561 person-years of follow-up, a total of 3866 participants developed hypertension (35%). The lowest multivariable-adjusted HR (95% CI) of hypertension risk occurred in the third quartile intake, which was 0.63 (0.57, 0.70) for total polyphenol, 0.61 (0.55, 0.68) for flavonoid, 0.62 (0.56, 0.69) for phenolic acid, 0.46 (0.42, 0.51) for lignan, and 0.58 (0.52, 0.64) for stilbene, compared with the lowest quartile. The polyphenol-hypertension associations were nonlinear (all Pnonlinearity < 0.001), and different patterns were observed. U-shaped relations with hypertension were observed for total polyphenol, flavonoid, and phenolic acid, whereas L-shaped associations were observed for lignan and stilbene. Moreover, higher fiber intake strengthened the polyphenol-hypertension association, especially for lignan (P-interaction = 0.002) and stilbene (P-interaction = 0.004). Polyphenol-containing food, particularly vegetables and fruits rich in lignan and stilbene, were significantly associated with lower hypertension risk. CONCLUSIONS This study demonstrated an inverse and nonlinear association between dietary polyphenol, especially lignan and stilbene, and hypertension risk. The findings provide implications for hypertension prevention.
Collapse
Affiliation(s)
- Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Ge
- Department of Natural Sciences, University of Houston-Downtown, Houston, TX, United States
| | - Haidong Lu
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, United States; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Qianqian Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqing He
- Department of Nutrition, Hunan Chest Hospital, Hunan Institute For Tuberculosis Control, Changsha, China
| | - Jinxue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Fan
- Shenzhen Longhua District Chronic Disease Control Center, Shenzhen, China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Tian
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhang X, Tang Y, Lu G, Gu J. Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients 2023; 15:2231. [PMID: 37432408 DOI: 10.3390/nu15092231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Quercetin is a natural flavonoid widely found in natural fruits and vegetables. Recent studies have shown that quercetin mediates multiple beneficial effects in a variety of organ damage and diseases, and is considered a healthcare supplement with health-promoting potential. Male infertility is a major health concern, and testicular damage from multiple causes is an important etiology. Previous studies have shown that quercetin has a protective effect on reproductive function. This may be related to the antioxidant, anti-inflammatory, and anti-apoptotic biological activities of quercetin. Therefore, this paper reviews the mechanisms by which quercetin exerts its pharmacological activity and its role in testicular damage induced by various etiologies. In addition, this paper compiles the application of quercetin in clinical trials, demonstrating its practical effects in regulating blood pressure and inhibiting cellular senescence in human patients. However, more in-depth experimental studies and clinical trials are needed to confirm the true value of quercetin for the prevention and protection against testicular injury.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Wang Z, Mei X, Chen X, Rao S, Ju T, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Shao F, Ma X, Wei P, Cao J, He Y, Feng A, Dong X, Zhou D, Li C. The effects of polyphenols on fresh quality and the mechanism of partial freezing of tilapia fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6014-6023. [PMID: 35460082 DOI: 10.1002/jsfa.11954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fish is one of the most popular foods for consumers because of its abundant nutrition, tenderness and delicious taste. With increasing demand for tilapia fillets, practical preservation is widely used to maintain quality and safety during long-distance transportation and storage. Thus the effects of polyphenols (2 g L-1 ) on color, flavor quality and mechanism of tilapia fillets were studied during 49 days of partial freezing (-4 °C). RESULTS Treatment with carnosic acid (CA), procyanidin (PA), quercetin (QE) and resveratrol (RSV) inhibited water migration, myoglobin oxidation and psychrophilic bacteria stability during partial freezing storage. Aeromonas and Acinetobacter were the dominant bacteria of tilapia fillets during -4 °C storage. The relative abundance of aromatic substances (T70/2) in the polyphenol groups (>20%) was richer than in the control (CON) group (17%). Partial least squares discriminant analysis results showed that the different odors of the control and polyphenol groups were completely separated. Moreover, 35 fatty acids were identified by gas chromatographic analysis. On 49 days, the ratios of unsaturated fatty acids in the PA group (58.64%), QE group (57.70%) and RSV group (57.25%) were higher than in the control group (57.19%), and the PA group was the highest. CONCLUSION Polyphenol treatment effectively maintained freshness and improved the quality of tilapia fillets during partial freezing. The polyphenol treatment comprehensively sustained the color and flavor quality of tilapia fillets found in the proposed mechanism. In particular, PA treatment was considered a potential method for preserving the freshness of fillets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fanghui Shao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoye Ma
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Aiguo Feng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiuping Dong
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Zhou Z, Qiao Y, Zhao Y, Chen X, Li J, Zhang H, Lan Q, Yang B. Natural products: potential drugs for the treatment of renal fibrosis. Chin Med 2022; 17:98. [PMID: 35978370 PMCID: PMC9386947 DOI: 10.1186/s13020-022-00646-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing prevalence and mortality, chronic kidney disease (CKD) has become a world public health problem. As the primary pathological manifestation in CKD, renal fibrosis is often used as a critical target for the treatment of CKD and inhibits the progression of CKD to end-stage renal disease (ESRD). As a potential drug, natural products have been confirmed to have the potential as a routine or supplementary therapy for chronic kidney disease, which may target renal fibrosis and act through various pharmacological activities such as anti-inflammatory and anti-oxidation of natural products. This article briefly introduces the pathological mechanism of renal fibrosis and systematically summarizes the latest research on the treatment of renal fibrosis with natural products of Chinese herbal medicines.
Collapse
Affiliation(s)
- Zijun Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiumei Lan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Rudrapal M, Maji S, Prajapati SK, Kesharwani P, Deb PK, Khan J, Mohamed Ismail R, Kankate RS, Sahoo RK, Khairnar SJ, Bendale AR. Protective Effects of Diets Rich in Polyphenols in Cigarette Smoke (CS)-Induced Oxidative Damages and Associated Health Implications. Antioxidants (Basel) 2022; 11:1217. [PMID: 35883708 PMCID: PMC9311530 DOI: 10.3390/antiox11071217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cigarette smoking has been responsible for causing many life-threatening diseases such as pulmonary and cardiovascular diseases as well as lung cancer. One of the prominent health implications of cigarette smoking is the oxidative damage of cellular constituents, including proteins, lipids, and DNA. The oxidative damage is caused by reactive oxygen species (ROS, oxidants) present in the aqueous extract of cigarette smoke (CS). In recent years, there has been considerable interest in the potential health benefits of dietary polyphenols as natural antioxidant molecules. Epidemiological studies strongly suggest that long-term consumption of diets (fruits, vegetables, tea, and coffee) rich in polyphenols offer protective effects against the development of cancer, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases. For instance, green tea has chemopreventive effects against CI-induced lung cancer. Tea might prevent CS-induced oxidative damages in diseases because tea polyphenols, such as catechin, EGCG, etc., have strong antioxidant properties. Moreover, apple polyphenols, including catechin and quercetin, provide protection against CS-induced acute lung injury such as chronic obstructive pulmonary disease (COPD). In CS-induced health problems, the antioxidant action is often accompanied by the anti-inflammatory effect of polyphenols. In this narrative review, the CS-induced oxidative damages and the associated health implications/pathological conditions (or diseases) and the role of diets rich in polyphenols and/or dietary polyphenolic compounds against various serious/chronic conditions of human health have been delineated.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune 411019, Maharashtra, India
| | - Siddhartha Maji
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Shiv Kumar Prajapati
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Payal Kesharwani
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences (CAMS), Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Randa Mohamed Ismail
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences (CAMS), Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.)
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Center (NRC), Giza 12622, Egypt
| | - Rani S. Kankate
- Department of Pharmaceutical Chemistry, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, Maharashtra, India;
| | - Ranjan Kumar Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India;
| | - Shubham J. Khairnar
- Department of Pharmacology, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, Maharashtra, India;
| | - Atul R. Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik 422213, Maharashtra, India;
| |
Collapse
|
10
|
Qi M, Luo Z, Wu B, Wang L, Yang M, Zhang X, Lin X, Xu Y, Li X, Li L. Spatial distribution and time-course of polyphenol accumulation in grape berry (Vitis labruscana cv. ‘Kyoho’). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS. Molecules 2021; 26:molecules26226951. [PMID: 34834042 PMCID: PMC8625519 DOI: 10.3390/molecules26226951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
Ammodaucus leucotrichus is a spontaneous plant endemic of the North African region. An efficient selective pressurized liquid extraction (PLE) method was optimized to concentrate neuroprotective extracts from A. leucotrichus fruits. Green solvents were tested, namely ethanol and water, within a range of temperatures between 40 to 180 °C. Total carbohydrates and total phenolics were measured in extracts, as well as in vitro antioxidant capacity (DPPH radical scavenging), anticholinesterase (AChE) and anti-inflammatory (LOX) activities. Metabolite profiling was carried out by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-q-TOF-MS/MS), identifying 94 compounds. Multivariate analysis was performed to correlate composition with bioactivity. A remarkable effect of the temperature using water was observed: the higher temperature, the higher extraction yield, the higher total phenolic content, as well as the higher total carbohydrates content. The water extract obtained at 180 °C, 10.34 MPa and 10 min showed meaningful anti-inflammatory (IC50LOX = 39.4 µg/mL) and neuroprotective activities (IC50AChE = 55.6 µg/mL). The Principal Components Analysis (PCA) and the cluster analysis correlated these activities with the presence of carbohydrates and phenolic compounds.
Collapse
|
12
|
Cho YS, Kim S, Kim YK, Jin SG, Park JH. Resveratrol-β-Lactoglobulin Composite Nanocoating by Layer-by-Layer Assembly with Fe(III)-Tannic Acid Complex. Chem Asian J 2021; 16:3636-3639. [PMID: 34581017 DOI: 10.1002/asia.202100923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is beneficial to human health due to its diverse biological activities including its anti-inflammatory and anti-oxidative effects as confirmed by pharmacokinetic tests. Despite these clinical merits, resveratrol's limited hydrosolubility and chemical vulnerability remain challenging with regard to developing a controlled delivery system with enhanced bioavailability. In this work, we report a resveratrol-β-lactoglobulin (R-BLG) composite nanocoating through a layer-by-layer assembly with Fe(III)-tannic acid nanofilms. The R-BLG composite nanocoating can be formed in planar and particulate substrates, showing excellent film stability under a broad range of pH values and against enzymatic digestion during a weeklong incubation. We envision that the proteinaceous nanocoating herein could be combined with existing pharmaceutical carrier materials (e. g., microcapsules and nanoparticles) to realize advanced drug delivery systems with an expanded repertoire of hydrophobic drugs.
Collapse
Affiliation(s)
- Yeon Seo Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan
| | - Seulbi Kim
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University-Seoul, 30 Pildong-ro, Jung-gu, Seoul
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul
| |
Collapse
|
13
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
14
|
Lopes M, Sanches-Silva A, Castilho M, Cavaleiro C, Ramos F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit Rev Food Sci Nutr 2021; 63:1078-1101. [PMID: 34338575 DOI: 10.1080/10408398.2021.1959295] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Halophytes are salt-tolerant plants that inhabit environments in which they are exposed to extreme stress, wherefore they exhibit conserved and divergent metabolic responses different from those of conventional plants. Thus, the synthesis and accumulation of metabolites, especially of those oxidative stress-related such as phenolic compounds, should be investigated. The potential of halophytes as a source of phenolics and their prospective industrial applications are evaluated based on a comprehensive review of the scientific literature on the phenolic compounds of more than forty halophytes and their biological activities. Additionally, an overview of the analytical methodologies adopted for phenolics determination in halophytes is provided. Finally, the prospective uses and beneficial effects of the phenolic preparations from these plants are discussed. Halophytes are complex matrices, exhibiting a wide variety of phenolics in their composition, wherefore the results can be greatly affected depending on the organ plant under analysis and the extraction methodology, especially the extraction solvent used. High-performance liquid chromatography, coupled with diode array detection (HPLC-DAD) or mass spectrometry (HPLC-MS), are the most used technique. Halophytes biosynthesize phenolics in concentrations that justify the remarkable antioxidant and antimicrobial activities shown, making them ideal sources of bioactive molecules to be employed in a multitude of sectors.
Collapse
Affiliation(s)
- Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vila do Conde, Portugal.,Centre for Study in Animal Science (CECA)-ICETA, University of Porto, Porto, Portugal
| | - Maria Castilho
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Abdullah HSTSH, Chia PW, Omar D, Chuah TS. Herbicidal properties of antihypertensive drugs: calcium channel blockers. Sci Rep 2021; 11:14227. [PMID: 34244589 PMCID: PMC8270911 DOI: 10.1038/s41598-021-93662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Herbicide resistance is a worldwide problem in weed control. This prompts researchers to look for new modes of action to slow down the evolution of herbicide-resistant weeds. This research aims to determine the herbicidal action of thiazolo[3,2-a]pyrimidines derivatives, which are well known as antihypertensive drugs. The phytotoxic effects of ten compounds were investigated using leaf disc discoloration test and seed germination bioassay. At concentrations of 125 to 250 mg/L, the 5-(3-Fluoro-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (c) was highly active against Oldenlandia verticillata and Eleusine indica. At application rates of 1.25 to 2.5 kg ai/ha, formulated c demonstrated selective post-emergence and pre-emergence herbicidal activity against O. verticillata, E. indica and Cyperus iria. In the crop tolerance test, formulated c outperformed the commercial herbicide diuron, with aerobic Oryza sativa being the most tolerant, followed by Zea mays, and Brassica rapa. The addition of calcium chloride partially nullified compound c's inhibitory effects on weed shoot growth, indicating that it has potential as a calcium channel blocker. Compound c acted by triggering electrolyte leakage without affecting photosystem II. These findings imply that c could be explored further as a template for developing new herbicides with novel modes of action.
Collapse
Affiliation(s)
| | - Poh Wai Chia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Dzolkhifli Omar
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tse Seng Chuah
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Arau, Perlis, Malaysia.
| |
Collapse
|
16
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|