1
|
Liu Z, Yin X, Xiao N, Wan X, Hu J, Hua Y, Liu G, Zhao J. Organic acids released by submerged macrophytes with damaged leaves alter the denitrification microbial community in rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174059. [PMID: 38906286 DOI: 10.1016/j.scitotenv.2024.174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Submerged macrophytes have important impacts on the denitrification and anaerobic ammonia-oxidizing (anammox) processes. Leaf damage in these plants probably changes the rhizosphere environment, affecting organic acid release and denitrifying bacteria. However, there is a lack of comprehensive understanding of the specific changes. This study investigated these changes in the rhizosphere of Potamogeton crispus with four degrees of leaf excision. When 0 %, 30 %, 50 % and 70 % of leaves were excised, the concentrations of total organic acid were 31.45, 32.67, 38.26, and 35.16 mg/L, respectively. The abundances of nirS-type denitrifying bacteria were 2.10 × 1010, 1.59 × 1010, 2.54 × 1010, and 4.67 × 1010 copies/g dry sediment, respectively. The abundances of anammox bacteria were 7.58 × 109, 4.59 × 109, 3.81 × 109, and 3.90 × 109 copies/g dry sediment, respectively. The concentration of total organic acids and the abundance of two denitrification microorganisms in the rhizosphere zone were higher than those in the root zone and non-rhizosphere zone. With increasing leaf damage, the number of OTUs in the Pseudomonas genus of nirS-type denitrifying bacteria first increased and then decreased, while that of the Thauera genus was relatively stable. The overall increase in the OTU number of anammox bacteria indicated that leaf damage promotes root exudates release, thereby leading to an increase in their diversity. The co-occurrence network revealed that the two denitrification microorganisms had about 60.52 % positive connections in rhizosphere while 64.73 % negative connections in non-rhizosphere. The abundance and community composition of both denitrification microorganisms were positively correlated with the concentrations of various substances such as oxalic acid, succinic acid, total organic acids and NO2--N. These findings demonstrate that submerged plant damage has significantly impacts on the structure of denitrification microbial community in the rhizosphere, which may alter the nitrogen cycling process in the deposit sediment. SYNOPSIS: This study reveals leaf damage of macrophyte changed the rhizosphere denitrification microbial community, which is helpful to further understand the process of nitrogen cycle in water.
Collapse
Affiliation(s)
- Ziqi Liu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingjia Yin
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Naidong Xiao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlong Hu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhao Q, Zhang L, Li J, Jia T, Deng L, Liu Q, Sui J, Zhang Q, Peng Y. Carbon-Restricted Anoxic Zone as an Overlooked Anammox Hotspot in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21767-21778. [PMID: 38096549 DOI: 10.1021/acs.est.3c07017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The anoxic zone serves as the core functional unit in municipal wastewater treatment plants (MWWTPs). Unfortunately, in most cases, the downstream range of the anoxic zone is severely lacking in available organic carbon and thus contributes little to the removal of nutrients. This undesirable range is termed the "carbon-restricted anoxic zone", representing an insurmountable drawback for traditional MWWTPs. This study uncovers a previously overlooked role for the carbon-restricted anoxic zone: a hotspot for anaerobic ammonium oxidation (anammox). In a continuous-flow pilot-scale plant treating municipal wastewater (55 m3/d), virgin biocarriers were introduced into the carbon-restricted anoxic zone (downstream 25% of the anoxic zone with BOD5 of 5.9 ± 2.3 mg/L). During the 517-day monitoring, anammox bacteria highly self-enriched within the biofilms, with absolute and relative abundance reaching up to (9.4 ± 0.1) × 109 copies/g-VSS and 6.17% (Candidatus Brocadia), respectively. 15N isotopic tracing confirmed that anammox overwhelmingly dominated nitrogen metabolism, responsible for 92.5% of nitrogen removal. Following this upgrade, the contribution ratio of the carbon-restricted anoxic zone to total nitrogen removal increased from 9.2 ± 4.1% to 19.2 ± 4.2% (P < 0.001), while its N2O emission flux decreased by 84.5% (P < 0.001). These findings challenge stereotypes about the carbon-restricted anoxic zone and highlight the multiple environmental implications of this newfound anammox hotspot.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
3
|
Lai X, Li X, Song J, Yuan H, Duan L, Li N, Wang Y. Nitrogen loss from the coastal shelf of the East China Sea: Implications of the organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158805. [PMID: 36113798 DOI: 10.1016/j.scitotenv.2022.158805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Organic matter is a critical factor which regulates nitrogen loss pathways of denitrification and anammox for microbes in marine ecosystems. However, only a little attention has been paid to contrasting studies on denitrification and anammox in sandy and muddy sediments, especially in the coastal continental shelf dominated by sandy sediments. This study determined the bulk properties and associated microbial nitrogen transformation processes of surface sediments in the East China Sea coastal shelf, with the aim of gaining insight into the interaction of nitrogen loss with organic matter at the molecular level. The results illustrate that nitrogen loss dominates in organic-rich muddy sediments, and its denitrification rate (14.39 nmol N g-1 h-1) and anammox rate (2.73 nmol N g-1 h-1) are greater than those of sandy sediments (denitrification rate = 5.55 nmol N g-1 h-1, anammox rate = 1.57 nmol N g-1 h-1). Furthermore, determination of the mean summed ladderanes shows higher anammox generated in the muddy sediments with a value of 167.78 ng g-1dw. Quantitative analysis demonstrated that organic-rich muddy sediments enhanced the copy number of the denitrifying functional gene nosZ and anammox functional gene hzsB. We inferred that the greater rate of nitrogen loss in muddy sediments was due to the coupling relationship between anammox and denitrification. Overall, the community distribution and abundance of denitrifying bacteria and anammox bacteria changed intricately under the influence of organic matter. Moreover, this study further improves the understanding of nitrogen loss pathways and mechanistic factors from sediments.
Collapse
Affiliation(s)
- Xiaoshuang Lai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuegang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Huamao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liqin Duan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ning Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yingxia Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Wang Z, Feng K, Wei Z, Wu Y, Isobe K, Senoo K, Peng X, Wang D, He Q, Du X, Li S, Li Y, Deng Y. Evaluation and redesign of the primers for detecting nitrogen cycling genes in environments. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- College of Tropical Crops Hainan University Haikou China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
| | - Ziyan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences Peking University Beijing China
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Shuzhen Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology Dalian University of Technology Dalian China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Wang Q, He J. Partnering of anammox and denitrifying bacteria benefits anammox's recovery from starvation and complete nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152696. [PMID: 34974008 DOI: 10.1016/j.scitotenv.2021.152696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The cooperative metabolic activity of anammox and denitrifying bacteria could speed up anammox's recovery and reduce nitrate generated from the anammox reaction. In this study, a laboratory-scale model system containing a defined anammox culture AMX and a simultaneous nitrification and denitrification (SND) bacterium - Thauera sp. strain SND5 was established and investigated. Several lines of evidence revealed that strain SND5 consumed soluble microbial products (SMPs) generated by culture AMX (as high as 1.5 mg/L), stimulating anammox activity after long-term starvation. At low C/N ratios with an optimal C/N of 1, SND5 completely consumed organic carbon first at anoxic condition, storing carbon intracellularly as poly-β-hydroxybutyrate (PHB) (as high as 0.6 mg/L biomass), thereby creating a favorable environment for the growth of anammox bacteria. The anammox reaction and nitrate reduction supported by PHB catabolism could then proceed simultaneously, resulting in enhanced nitrogen removal. Cooperative interactions between anammox and denitrifying bacteria involving SMPs consumption and PHB synthesis may play a significant role in nitrogen cycling at nitrite- and carbon-limited environments.
Collapse
Affiliation(s)
- Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Mai Y, Liang Y, Cheng M, He Z, Yu G. Coupling oxidation of acid volatile sulfide, ferrous iron, and ammonia nitrogen from black-odorous sediment via autotrophic denitrification-anammox by nitrate addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147972. [PMID: 34082326 DOI: 10.1016/j.scitotenv.2021.147972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The coupling removal of acid volatile sulfide (AVS), ferrous iron, and ammonia nitrogen has been applied for black-odorous sediment remediation. In this study, calcium nitrate with different N/(S + Fe) ratios (0.45, 0.90, 1.20 and 1.80) was added into black-odorous sediment in four systems named R1, R2, R3, and R4. Results showed that the removal rate of AVS was 76.40% in the R1, which was lower compared with rates in R2-R4 around 96.70%. The ferrous oxidation rate was approximately 87.00% in R2-R4, which was considerably higher than that in the R1 (24.62%). And the ammonia was reduced by 81.02%, 88.00%, 100%, and 57.18% in R1, R2, R3 and R4, respectively. During the reaction, nitrite accumulation was observed, indicating partial denitrification. Moreover, microbes related to autotrophic denitrification (e.g., genus Thiobacillus, Dok59, GOUTA19, Gallionella, with the highest abundance of 15.40%, 13.21%, 8.79%, 9.44%, respectively) were detected in all systems. Furthermore, the anammox bacteria Candidatus_Brocadia with the highest abundance of 3.44% and 4.00% in R2 and R3, respectively was also found. These findings confirmed that AVS, ferrous iron, and ammonia nitrogen could be simultaneously removed via autotrophic denitrification coupled with anammox in black-odorous sediment by nitrate addition.
Collapse
Affiliation(s)
- Yingwen Mai
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuhai Liang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Mingshuang Cheng
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zihao He
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guangwei Yu
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Tao Y, Zhang L, Su Z, Dai T, Zhang Y, Huang B, Wen D. Nitrogen-cycling gene pool shrunk by species interactions among denser bacterial and archaeal community stimulated by excess organic matter and total nitrogen in a eutrophic bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105397. [PMID: 34157564 DOI: 10.1016/j.marenvres.2021.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial densities, functional genes, and their responses to environment factors have been studied for years, but still a lot remains unknown about their interactions with each other. In this study, the abundances of 7 nitrogen cycling genes in the sediments from Hangzhou Bay were analyzed along with bacterial and archaeal 16S rRNA abundances as the biomarkers of their densities. The amount of organic matter (OM) and total nitrogen (TN) strongly positively correlated with each other and microbial densities, while total phosphate (TP) and ammonia-nitrogen (NH3-N) did not. Most studied genes were density suppressed, while nirS was density stable, and nosZ and hzo were density irrelevant. This suggests eutrophication could limit inorganic nitrogen cycle pathways and the removal of nitrogen in the sediment and emit more greenhouse gases. This study provides a new insight of microbial community structures, functions and their interactions in the sediments of eutrophic bays.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Institute of Environmental Engineering, ETH Zurich, Zurich, 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Liyue Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Jia W, Sun X, Gao Y, Yang Y, Yang L. Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139534. [PMID: 32563003 DOI: 10.1016/j.scitotenv.2020.139534] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
To improve the nitrogen removal capability of constructed wetlands, the biochar, produced from bamboo, activated with HCl and coated with Fe (FeCl3·6H2O), and then was added as a substrate into the systems. Three horizontal subsurface flow constructed wetlands (HSCWs) was established to treat the low C/N tailwater from the wastewater treatment plant: C-HSCW (quartz sand + soil), B-HSCW (quartz sand + soil + unmodified biochar), and FeB-HSCW (quartz sand + soil + Fe-modified biochar). Under different combinations of hydraulic retention time and nitrogen loading, the FeB-HSCW revealed extremely effective nitrogen removal, compared to the C-HSCW and B-HSCW. The highest removal efficiencies of NO3--N (95.30%), TN (86.68%), NH4+-N (86.33%), NO2--N (79.35%) and COD (63.36%) were obtained in FeB-HSCW with the hydraulic retention time of 96 h. and low influent nitrogen loading (C/N of 2.5). Nitrogen mass balance analysis showed that microbial processes played the most important role of nitrogen removal in HSCWs and the Fe-modified biochar significantly enhanced the microbial nitrogen removal. A total of 128.40 g nitrogen was removed by microorganisms in FeB-HSCW (average removal rate of 2.52 g N/(m3·d1)), much higher than that in other two HSCWs. The contributions of microorganisms, substrate storage and plant uptake on the total amount of nitrogen removal in the FeB-HSCW was 92.69%, 2.97% and 4.34%, respectively. Moreover, FeB significantly increased the abundances of genes involved in nitrogen removal. The copy numbers of bacterial 16S rRNA and amx, as well as of genes nirS, nirK, nosZ-I, nosZ-II, and hzsA were 1.3- to 27.8-fold higher in the FeB-HSCW than that in the other two HSCWs. Thus, Fe-modified biochar provides a feasible and effective amendment for constructed wetlands to improve the nitrogen removal, particularly nitrate-N, for low C/N wastewaters by enhancing the microbial nitrogen removal capacity (mainly of the denitrification).
Collapse
Affiliation(s)
- Wen Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu Sun
- School of Environmental Engineering, Nanjing Engineering College, Nanjing 210000, China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yicheng Yang
- Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhang M, Dai P, Lin X, Lin L, Hetharua B, Zhang Y, Tian Y. Nitrogen loss by anaerobic ammonium oxidation in a mangrove wetland of the Zhangjiang Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134291. [PMID: 31783447 DOI: 10.1016/j.scitotenv.2019.134291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 05/05/2023]
Abstract
Anaerobic ammonium oxidation (anammox), a microbial process in which NH4+ is oxidized to N2 gas, is considered a significant nitrogen cycle process, but its significance in mangrove wetland sediments, particularly its depth- and genus-specific distribution and activity have remained uncertain. Here we report the vertical distribution, abundance, activity and role of anammox bacteria in mangrove sediments of Zhangjiang Estuary, China. We used stable isotope-tracer techniques, 16S rRNA and anammox bacterial functional gene (Hydrazine synthase B: hzsB) clone libraries and quantitative polymerase chain reaction (qPCR) assays, along with an assessment of nutrient profiles of sediment core samples. We observed a widespread occurrence of anammox bacteria at different depths of mangrove sediments. The abundance of anammox bacterial 16S rRNA and hzsB genes ranged from 0.41×107 to 9.74×107 and from 0.42×106 to 6.44×106 copies per gram of dry soil and peaked in the upper layer of mangrove sediments. We also verified the co-occurrence of different genera of anammox microorganisms in mangrove sediments, with Candidatus Scalindua and Candidatus Kuenenia being the dominant genera. Potential anammox rates ranged from 4.83 to 277.36 nmolN2·g-1·d-1 at different depths of sediment cores, and the highest rates were found in the deeper layer (70-100cm) of mangrove sediments. Scaling our findings up to the entire mangrove system, we estimated that anammox hotspots accounted for a loss of 751 gN·m-2·y-1, and contributed to over 12% of the nitrogen lost from the deeper layer of mangrove sediments in this region.
Collapse
Affiliation(s)
- Manping Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peiliang Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li'an Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Buce Hetharua
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yangmei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Chen L, Liu S, Chen Q, Zhu G, Wu X, Wang J, Li X, Hou L, Ni J. Anammox response to natural and anthropogenic impacts over the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:171-180. [PMID: 30772546 DOI: 10.1016/j.scitotenv.2019.02.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Increasing attention has been paid to anaerobic ammonium oxidation (anammox) in river ecosystems due to their special role in the global nitrogen cycle from land to the ocean. This study have revealed the spatial patterns of anammox bacterial response to geographic characteristics and dam operation along the Yangtze River, using 15N tracers and molecular analyses of microbial communities in sediment samples over a 4300 km continuum. Here we found a significant temperature-related increase in anammox bacterial abundance and alpha diversity from mountainous area in the upper, fluvial plain area in the middle and lower reach, to the river mouth. In contrast, an opposite trend in anammox contribution to N2 production (ra) was observed down the Yangtze River due to enhanced denitrification induced by spatial heterogeneity of total organic carbon. Interestingly, the Three Gorges Dam resulted in an intensive erosion and thus a change from muddy to sandy sediments within 400 km downstream the dam, which readjusted the anammox community characterized with a decreased bacterial diversity and enhanced anammox contribution to nitrogen loss. Our study highlights the importance of natural and anthropogenic impacts on anammox bacterial community and function in a complex large river ecosystem.
Collapse
Affiliation(s)
- Liming Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sitong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Qian Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
| | - Guibing Zhu
- State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiawen Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Li
- East China Normal University, State Key Lab Estuarine & Coastal Research, Shanghai 200062, China
| | - Lijun Hou
- East China Normal University, State Key Lab Estuarine & Coastal Research, Shanghai 200062, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Shen L, Ouyang L, Zhu Y, Trimmer M. Spatial separation of anaerobic ammonium oxidation and nitrite‐dependent anaerobic methane oxidation in permeable riverbeds. Environ Microbiol 2019; 21:1185-1195. [DOI: 10.1111/1462-2920.14554] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Lidong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural MeteorologyDepartment of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology Nanjing 210044 China
- School of Biological & Chemical Sciences, Queen Mary University of London E1 4NS, London UK
| | - Liao Ouyang
- School of Biological & Chemical Sciences, Queen Mary University of London E1 4NS, London UK
| | - Yizhu Zhu
- School of Biological & Chemical Sciences, Queen Mary University of London E1 4NS, London UK
| | - Mark Trimmer
- School of Biological & Chemical Sciences, Queen Mary University of London E1 4NS, London UK
| |
Collapse
|
13
|
Wu J, Hong Y, Chang X, Jiao L, Li Y, Liu X, Xie H, Gu JD. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea. FEMS Microbiol Ecol 2019; 95:5298864. [DOI: 10.1093/femsec/fiz013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/21/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiapeng Wu
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiguo Hong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiangyang Chang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Lijing Jiao
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiben Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaohan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Haitao Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| |
Collapse
|
14
|
Shen LD, Liu X, Wu HS. Importance of anaerobic ammonium oxidation as a nitrogen removal pathway in freshwater marsh sediments. J Appl Microbiol 2018; 125:1423-1434. [DOI: 10.1111/jam.14042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- L.-D. Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - X. Liu
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - H.-S. Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| |
Collapse
|
15
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
16
|
Hou J, Wang X, Wang J, Xia L, Zhang Y, Li D, Ma X. Pathway governing nitrogen removal in artificially aerated constructed wetlands: Impact of aeration mode and influent chemical oxygen demand to nitrogen ratios. BIORESOURCE TECHNOLOGY 2018; 257:137-146. [PMID: 29499495 DOI: 10.1016/j.biortech.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH4+-N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yiqing Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
17
|
Zhou Z, Wei Q, Yang Y, Li M, Gu JD. Practical applications of PCR primers in detection of anammox bacteria effectively from different types of samples. Appl Microbiol Biotechnol 2018; 102:5859-5871. [PMID: 29802476 DOI: 10.1007/s00253-018-9078-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
Abstract
Research on anammox (anaerobic ammonium oxidizing) bacteria is important due to their biogeochemical and industrial application significance since the first discovery made over two decades ago. By coupling NH4+ and NO2- biochemically to form N2 gas, anammox bacteria contribute significantly to global marine and terrestrial nitrogen balance (responsible for 50, 9~40, and 4~37% of the nitrogen loss for marine, lakes, and paddy soil) and are also useful in energy-conserving nitrogen removal in wastewater treatment. PCR-based detection and quantification of anammox bacteria are an easy, essential, and widely accessible technique used ubiquitously for studying them in many environmental niches. In this article, we make a summary on practical applications of 16S rRNA and functional gene PCR primers, including hydrazine dehydrogenase (Hzo), nitrite reductase (NirS), hydrazine synthase (Hzs), and cytochrome c biogenesis proteins (Ccs) in detection of them. PCR primer performances in both practical applications and tests in silico are also presented for comparison. For detecting general and specific anammox bacterial groups, selection of appropriate PCR primers for different environmental samples and practical application guidance on choice of appropriate primer pairs for different purposes are also offered. This article provides practical information on selection and application of PCR technique in detection of anammox bacteria from the diverse environments to further promote convenient applications of this technique in research and other purposes.
Collapse
Affiliation(s)
- Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Qiaoyan Wei
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
18
|
Zhao S, Zhuang L, Wang C, Li Y, Wang S, Zhu G. High-throughput analysis of anammox bacteria in wetland and dryland soils along the altitudinal gradient in Qinghai-Tibet Plateau. Microbiologyopen 2017; 7:e00556. [PMID: 29285891 PMCID: PMC5911990 DOI: 10.1002/mbo3.556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
This study investigated the diversity, community composition, and abundance of anaerobic ammonium oxidation (anammox) bacteria along the altitudinal gradient in Qinghai–Tibet Plateau. Two types of soil samples (wetland and dryland soils, n = 123) were collected from 641 m to 5,033 m altitudes. Polymerase chain reaction (PCR) screening showed that anammox were not widespread, and were only detected in 9 sampling sites of the 50 sites tested by amplifying the 16S rRNA genes. Then, only samples collected from Linzhi (2,715 m), Rikaze (4,030 m), and Naqu (5,011 m), which were positive for the presence of anammox, were further processed to explore the biogeography of anammox bacteria in Qinghai–Tibet Plateau. Results of high‐throughput sequencing targeting the hydrazine synthesis β‐subunit (hzsB) gene revealed the presence of three known anammox genera (Candidatus Brocadia, Candidatus Jettenia, and Candidatus Kuenenia) in both soil types. Their diversity, community composition, and abundance did not show significant variation with altitude at large scale. However, it was the small‐scale environmental heterogeneities between wetland and dryland soils that determined their biogeographical distribution. Specifically, the dryland soils had higher diversity of anammox bacteria than the wetland soils, but their abundance patterns varied. The community composition of anammox bacteria were found to be influenced by soil nitrate content.
Collapse
Affiliation(s)
- Siyan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linjie Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland. Appl Environ Microbiol 2017; 83:AEM.00782-17. [PMID: 28526796 DOI: 10.1128/aem.00782-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/14/2017] [Indexed: 02/01/2023] Open
Abstract
Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater with unexpected contributions from anammox processes. In exploring mechanistic drivers of anammox, 16S rRNA gene sequencing profiles of the biomat revealed significant microbial community shifts along the flow path and with depth. Notably, there was an increasing abundance of sulfate reducers (Desulfococcus and other Deltaproteobacteria) and anammox microorganisms (Brocadiaceae) with depth. Pore water profiles demonstrated that nitrate and sulfate concentrations exhibited a commensurate decrease with biomat depth accompanied by the accumulation of ammonium. Quantitative PCR targeting the anammox hydrazine synthase gene, hzsA, revealed a 3-fold increase in abundance with biomat depth as well as a 2-fold increase in the sulfate reductase gene, dsrA These microbial and geochemical trends were most pronounced in proximity to the influent region of the wetland where the biomat was thickest and influent nitrate concentrations were highest. While direct genetic queries for dissimilatory nitrate reduction to ammonium (DNRA) microorganisms proved unsuccessful, an increasing depth-dependent dominance of Gammaproteobacteria and diatoms that have previously been functionally linked to DNRA was observed. To further explore this potential, a series of microcosms containing field-derived biomat material confirmed the ability of the community to produce sulfide and reduce nitrate; however, significant ammonium production was observed only in the presence of hydrogen sulfide. Collectively, these results suggest that biogenic sulfide induces DNRA, which in turn can explain the requisite coproduction of ammonium and nitrite from nitrified effluent necessary to sustain the anammox community.IMPORTANCE This study aims to increase understanding of why and how anammox is occurring in an engineered wetland with limited exogenous contributions of ammonium and nitrite. In doing so, the study has implications for how geochemical parameters could potentially be leveraged to impact nutrient cycling and attenuation during the operation of treatment wetlands. The work also contributes to ongoing discussions about biogeochemical signatures surrounding anammox processes and enhances our understanding of the contributions of anammox processes in freshwater environments.
Collapse
|
20
|
Shen LD, Cheng HX, Liu X, Li JH, Liu Y. Potential role of anammox in nitrogen removal in a freshwater reservoir, Jiulonghu Reservoir (China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3890-3899. [PMID: 27905043 DOI: 10.1007/s11356-016-8126-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Currently, the nitrogen removal potential of anaerobic ammonium oxidation (anammox) and its regulating factors in reservoir systems remain uncertain. Here, we provided the molecular and isotopic evidence for anammox in the freshwater sediment of Jiulonghu Reservoir that is located in Quzhou, Zhejiang Province, China. Diverse 16S rRNA gene sequences related to Candidatus Kuenenia and Candidatus Brocadia were detected by using high-throughput (Illumina MiSeq) sequencing of total bacterial 16S rRNA genes, and the Candidatus Brocadia was the most frequently detected anammox bacterial genus. The anammox bacterial abundance was determined based on quantitative PCR on hzsA (the alpha subunit of the hydrazine synthase) genes and varied from 3.1 × 105 to 1.1 × 106 copies g-1 dry sediment. Homogenized sediments were further incubated with 15NO3- amendments to measure the potential anammox rates and determine the contribution of this process to dinitrogen gas (N2) production. The potential rates of anammox ranged between 8.1 and 30.8 nmol N2 g-1 dry sediment day-1, and anammox accounted for 7.7-20.5% of total N2 production in sediment. Higher levels of anammox bacterial diversity, abundance, and activity were observed in the downstream with greater human disturbance than those in the upstream with less human disturbance. Correlation analyses suggested that the inorganic nitrogen level in sediment could be a key factor for the anammox bacterial abundance and activity. The results showed that the nitrogen removal via anammox may not be negligible in the examined reservoir and indicated that human activities could influence the anammox process in reservoir systems.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hai-Xiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China.
| | - Xu Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jian-Hui Li
- Quzhou Academy of Agricultural Sciences, Quzhou, 324000, China
| | - Yan Liu
- Wuxijiang National Wetland Park Service, Quzhou, 324000, China
| |
Collapse
|
21
|
Lipsewers YA, Hopmans EC, Meysman FJR, Sinninghe Damsté JS, Villanueva L. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen. Front Microbiol 2016; 7:1661. [PMID: 27812355 PMCID: PMC5071380 DOI: 10.3389/fmicb.2016.01661] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments.
Collapse
Affiliation(s)
- Yvonne A Lipsewers
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University Den Burg, Netherlands
| | - Ellen C Hopmans
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University Den Burg, Netherlands
| | - Filip J R Meysman
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Utrecht University Den Burg, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht UniversityDen Burg, Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University Den Burg, Netherlands
| |
Collapse
|
22
|
Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol 2016; 18:2784-96. [DOI: 10.1111/1462-2920.13134] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering National Institute of Technology Nagaoka College 888 Nishikatakaimachi Nagaoka Niigata 940‐0834 Japan
| | - Hisashi Satoh
- Division of Environmental Engineering Faculty of Engineering Hokkaido University North 13, West‐8 Sapporo Hokkaido 060‐8628 Japan
| | - Satoshi Okabe
- Division of Environmental Engineering Faculty of Engineering Hokkaido University North 13, West‐8 Sapporo Hokkaido 060‐8628 Japan
| |
Collapse
|
23
|
Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 2015; 100:3291-300. [DOI: 10.1007/s00253-015-7191-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/27/2022]
|
24
|
Guo Q, Xing BS, Li P, Xu JL, Yang CC, Jin RC. Anaerobic ammonium oxidation (anammox) under realistic seasonal temperature variations: Characteristics of biogranules and process performance. BIORESOURCE TECHNOLOGY 2015; 192:765-773. [PMID: 26111630 DOI: 10.1016/j.biortech.2015.06.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
In this study, the effects of realistic seasonal temperatures on the nitrogen removal performance of anaerobic ammonium oxidation (anammox) and the properties of the anammox granules were comparatively investigated for 330 days. The results demonstrated that the nitrogen removal efficiency (NRE), nitrogen loading rate (NLR) and nitrogen removal rate (NRR) were decreased dramatically, as the temperature decreased from 31.2 to 2.5 °C. However, the nitrogen removal performance recovered andante as the temperature increased gradually. After low temperature exposure, the settleability tended to worsen, and granules appeared to be more irregular with a smaller average granule diameter, and the extracellular polymeric substances (EPS) content increased slightly, while the specific anammox activity (SAA) decreased obviously. This realistic seasonal temperatures based research was an illation of the actual operation, and could be potentially implemented to maintain stability for the application of anammox technology.
Collapse
Affiliation(s)
- Qiong Guo
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bao-Shan Xing
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Peng Li
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Li Xu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Chen-Chen Yang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
25
|
Fan H, Bolhuis H, Stal LJ. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments. Front Microbiol 2015; 6:738. [PMID: 26257718 PMCID: PMC4508842 DOI: 10.3389/fmicb.2015.00738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/06/2015] [Indexed: 12/05/2022] Open
Abstract
The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L−1 d−1 and from undetectable to 8.2 nmol N g−1 d−1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 μmol m−2 d−1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen concentration.
Collapse
Affiliation(s)
- Haoxin Fan
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands
| | - Lucas J Stal
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands ; Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
26
|
Coban O, Kuschk P, Kappelmeyer U, Spott O, Martienssen M, Jetten MSM, Knoeller K. Nitrogen transforming community in a horizontal subsurface-flow constructed wetland. WATER RESEARCH 2015; 74:203-212. [PMID: 25744184 DOI: 10.1016/j.watres.2015.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Constructed wetlands are important ecosystems with respect to nitrogen cycling. Here we studied the activity and abundance of nitrogen transforming bacteria as well as the spatial distribution of nitrification, anaerobic ammonium oxidation (anammox), and denitrification processes in a horizontal subsurface-flow constructed wetland. The functional genes of the nitrogen cycle were evenly distributed in a linear way along the flow path with prevalence at the superficial points. The same trend was observed for the nitrification and denitrification turnover rates using isotope labeling techniques. It was also shown that only short-term incubations should be used to measure denitrification turnover rates. Significant nitrate consumption under aerobic conditions diminishes nitrification rates and should therefore be taken into account when estimating nitrification turnover rates. This nitrate consumption was due to aerobic denitrification, the rate of which was comparable to that for anaerobic denitrification. Consequently, denitrification should not be considered as an exclusively anaerobic process. Phylogenetic analysis of hydrazine synthase (hzsA) gene clones indicated the presence of Brocadia and Kuenenia anammox species in the constructed wetland. Although anammox bacteria were detected by molecular methods, anammox activity could not be measured and hence this process appears to be of low importance in nitrogen transformations in these freshwater ecosystems.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Catchment Hydrology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany.
| | - Peter Kuschk
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Spott
- Department of Soil Physics, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Marion Martienssen
- Department of Biotechnology for Water Treatment, BTU-Cottbus-Senftenberg, Cottbus, Germany
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Kay Knoeller
- Department of Catchment Hydrology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
27
|
Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils. Appl Microbiol Biotechnol 2015; 99:5709-18. [PMID: 25690313 DOI: 10.1007/s00253-015-6454-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 12/27/2022]
Abstract
The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.
Collapse
|
28
|
Lipsewers YA, Bale NJ, Hopmans EC, Schouten S, Sinninghe Damsté JS, Villanueva L. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea). Front Microbiol 2014; 5:472. [PMID: 25250020 PMCID: PMC4155873 DOI: 10.3389/fmicb.2014.00472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/20/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox) are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB) and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA) gene of AOA and AOB, and the hydrazine synthase (hzsA) gene of anammox bacteria. AOA, AOB, and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB, and anammox bacteria.
Collapse
Affiliation(s)
- Yvonne A Lipsewers
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Nicole J Bale
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Ellen C Hopmans
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Stefan Schouten
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| |
Collapse
|