1
|
Li D, Zhang Y, Yu F, Wang J, Zhang X, Feng L, Lang T, Yang F. Vadose-zone characteristic pollutants distribution, microbial community structure and functionality changes in response to long-term leachate pollution of an informal landfill site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174596. [PMID: 38997023 DOI: 10.1016/j.scitotenv.2024.174596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO₃--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Furong Yu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jili Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Tao Lang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Fengtian Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front Microbiol 2021; 12:674160. [PMID: 34025630 PMCID: PMC8137989 DOI: 10.3389/fmicb.2021.674160] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roger Köchli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alexander Dharmarajah
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Yan L, Hui N, Simpanen S, Tudeer L, Romantschuk M. Simulation of Microbial Response to Accidental Diesel Spills in Basins Containing Brackish Sea Water and Sediment. Front Microbiol 2020; 11:593232. [PMID: 33424796 PMCID: PMC7785775 DOI: 10.3389/fmicb.2020.593232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
The brackish Baltic Sea is under diesel oil pollution risk due to heavy ship traffic. The situation is exasperated by densely distributed marinas and a vigorous although seasonal recreational boating. The seasonality and physical environmental variations hamper the monitoring of microbial communities in response to diesel oil spills. Hence, an 8-week simulation experiment was established in metal basins (containing 265 L sea water and 18 kg quartz sand or natural shore sand as the littoral sediment) to study the effect of accidental diesel oil spills on microbial communities. Our results demonstrated that microbial communities in the surface water responded to diesel oil contamination, whereas those in the littoral sediment did not, indicating that diesel oil degradation mainly happened in the water. Diesel oil decreased the abundance of bacteria and fungi, but increased bacterial diversity in the water. Time was the predominant driver of microbial succession, attributable to the adaption strategies of microbes. Bacteria were more sensitive to diesel oil contamination than fungi and archaea. Diesel oil increased relative abundances of bacterial phyla, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Flavobacteriia and Cytophagia, and fungal phylum Ascomycota in the surface water. Overall, this study improves the understanding of the immediate ecological impact of accidental diesel oil contamination, providing insights into risk management at the coastal area.
Collapse
Affiliation(s)
- Lijuan Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Laura Tudeer
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
4
|
Groundwater Depth Overrides Tree-Species Effects on the Structure of Soil Microbial Communities Involved in Nitrogen Cycling in Plantation Forests. FORESTS 2020. [DOI: 10.3390/f11030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities found in soil ecosystems play important roles in decomposing organic materials and recycling nutrients. A clear understanding on how biotic and abiotic factors influence the microbial community and its functional role in ecosystems is fundamental to terrestrial biogeochemistry and plant production. The purpose of this study was to investigate microbial communities and functional genes involved in nitrogen cycling as a function of groundwater depth (deep and shallow), tree species (pine and eucalypt), and season (spring and fall). Soil fungal, bacterial, and archaeal communities were determined by length heterogeneity polymerase chain reaction (LH-PCR). Soil ammonia oxidation archaeal (AOA) amoA gene, ammonia oxidation bacterial (AOB) amoA gene, nitrite oxidoreductase nrxA gene, and denitrifying bacterial narG, nirK, nirS, and nosZ genes were further studied using PCR and denaturing gradient gel electrophoresis (DGGE). Soil fungal and bacterial communities remained similar between tree species and groundwater depths, respectively, regardless of season. Soil archaeal communities remained similar between tree species but differed between groundwater depths in the spring only. Archaeal amoA for nitrification and bacterial nirK and nosZ genes for denitrification were detected in DGGE, whereas bacterial amoA and nrxA for nitrification and bacterial narG and nirS genes for denitrification were undetectable. The detected nitrification and denitrification communities varied significantly with groundwater depth. There was no significant difference of nitrifying archaeal amoA or denitrifying nirK communities between different tree species regardless of season. The seasonal difference in microbial communities and functional genes involved in nitrogen cycling suggests microorganisms exhibit seasonal dynamics that likely impact relative rates of nitrification and denitrification.
Collapse
|
5
|
Centler F, Günnigmann S, Fetzer I, Wendeberg A. Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining. Microorganisms 2020; 8:microorganisms8020190. [PMID: 32019172 PMCID: PMC7074749 DOI: 10.3390/microorganisms8020190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Natural microbial communities in soils are highly diverse, allowing for rich networks of microbial interactions to unfold. Identifying key players in these networks is difficult as the distribution of microbial diversity at the local scale is typically non-uniform, and is the outcome of both abiotic environmental factors and microbial interactions. Here, using spatially resolved microbial presence-absence data along an aquifer transect contaminated with hydrocarbons, we combined co-occurrence analysis with association rule mining to identify potential keystone species along the hydrocarbon degradation process. Derived co-occurrence networks were found to be of a modular structure, with modules being associated with specific spatial locations and metabolic activity along the contamination plume. Association rules identify species that never occur without another, hence identifying potential one-sided cross-feeding relationships. We find that hub nodes in the rule network appearing in many rules as targets qualify as potential keystone species that catalyze critical transformation steps and are able to interact with varying partners. By contrasting analysis based on data derived from bulk samples and individual soil particles, we highlight the importance of spatial sample resolution. While individual inferred interactions are hypothetical in nature, requiring experimental verification, the observed global network patterns provide a unique first glimpse at the complex interaction networks at work in the microbial world.
Collapse
Affiliation(s)
- Florian Centler
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
- Correspondence: ; Tel.: +49-341-235-1336
| | - Sarah Günnigmann
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
| | - Ingo Fetzer
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 11419 Stockholm, Sweden
| | - Annelie Wendeberg
- Department of Environmental Microbiology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany (A.W.)
| |
Collapse
|
6
|
Kujala K, Mikkonen A, Saravesi K, Ronkanen AK, Tiirola M. Microbial diversity along a gradient in peatlands treating mining-affected waters. FEMS Microbiol Ecol 2019; 94:5066165. [PMID: 30137344 DOI: 10.1093/femsec/fiy145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/02/2018] [Indexed: 01/27/2023] Open
Abstract
Peatlands are used for the purification of mining-affected waters in Northern Finland. In Northern climate, microorganisms in treatment peatlands (TPs) are affected by long and cold winters, but studies about those microorganisms are scarce. Thus, the bacterial, archaeal and fungal communities along gradients of mine water influence in two TPs were investigated. The TPs receive waters rich in contaminants, including arsenic (As), sulfate (SO42-) and nitrate (NO3-). Microbial diversity was high in both TPs, and microbial community composition differed between the studied TPs. Bacterial communities were dominated by Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria, archaeal communities were dominated by Methanomicrobia and the Candidate phylum Bathyarchaeota, and fungal communities were dominated by Ascomycota (Leotiomycetes, Dothideomycetes, Sordariomycetes). The functional potential of the bacterial and archaeal communities in TPs was predicted using PICRUSt. Sampling points affected by high concentrations of As showed higher relative abundance of predicted functions related to As resistance. Functions potentially involved in nitrogen and SO42- turnover in TPs were predicted for both TPs. The results obtained in this study indicate that (i) diverse microbial communities exist in Northern TPs, (ii) the functional potential of the peatland microorganisms is beneficial for contaminant removal in TPs and (iii) microorganisms in TPs are likely well-adapted to high contaminant concentrations as well as to the Northern climate.
Collapse
Affiliation(s)
- Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Anu Mikkonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| | - Karita Saravesi
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Anna-Kaisa Ronkanen
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
7
|
Soil Depth Determines the Composition and Diversity of Bacterial and Archaeal Communities in a Poplar Plantation. FORESTS 2019. [DOI: 10.3390/f10070550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.
Collapse
|
8
|
Li H, Su JQ, Yang XR, Zhu YG. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:422-430. [PMID: 30176455 DOI: 10.1016/j.scitotenv.2018.08.373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 05/11/2023]
Abstract
Rhizosphere microbes are critical for plant health and biogeochemical cycles. Understanding the diversity of active microorganisms in the rhizosphere is key to enhancing plant growth and productivity. We examined rhizosphere bacterial communities of rice by comparison of the 16S ribosomal subunit amplicons generated from both the total (DNA-based, 16S rRNA gene) and the active (RNA-based, 16S rRNA) soil microbiota. Analysis based on the 16S rRNA gene showed a higher microbial diversity, but with little change in bacterial populations across the growth stages of the plant. Analysis of 16S rRNA recovered much less diversity, demonstrating that much of the 16S signal was derived from free DNA, dead or inactive cells. The rRNA analysis showed a stable microbial population present in the rhizosphere, and this was distinct from that in the bulk soil, which was also stable across the growth period. Root exudates (e.g., acetate, lactate, oxalate and succinate), which are major components contributing to the rhizosphere effect, appeared to shape the bacterial community, with some taxa (e.g., Oxobacter, Lachnospiraceae, Coprococcus and α-Proteobacteria) being enhanced in the rhizosphere. Soil compartments (rhizosphere vs. bulk) had a greater effect on the bacterial communities than did the plant phenological stages, especially at the rRNA level. These results suggest that the rhizosphere effect plays a key role in structuring the bacterial communities in rhizosphere soils with a distinct effect on active and total bacterial communities.
Collapse
Affiliation(s)
- Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Catania V, Cappello S, Di Giorgi V, Santisi S, Di Maria R, Mazzola A, Vizzini S, Quatrini P. Microbial communities of polluted sub-surface marine sediments. MARINE POLLUTION BULLETIN 2018; 131:396-406. [PMID: 29886964 DOI: 10.1016/j.marpolbul.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities of coastal marine sediment play a key role in degradation of petroleum contaminants. Here the bacterial and archaeal communities of sub-surface sediments (5-10 cm) of the chronically polluted Priolo Bay (eastern coast of Sicily, Italy), contaminated mainly by n-alkanes and biodegraded/weathered oils, were characterized by cultural and molecular approaches. 16S-PCR-DGGE analysis at six stations, revealed that bacterial communities are highly divergent and display lower phylogenetic diversity than the surface sediment; sub-surface communities respond to oil supplementation in microcosms with a significant reduction in biodiversity and a shift in composition; they retain high biodegradation capacities and host hydrocarbon (HC) degraders that were isolated and identified. HC-degrading Alfa, Gamma and Epsilon proteobacteria together with Clostridia and Archaea are a common feature of sub-surface communities. These assemblages show similarities with that of subsurface petroleum reservoirs also characterized by the presence of biodegraded and weathered oils where anaerobic or microaerophilic syntrophic HC metabolism has been proposed.
Collapse
Affiliation(s)
- Valentina Catania
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Vincenzo Di Giorgi
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Santina Santisi
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Roberta Di Maria
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Mazzola
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Salvatrice Vizzini
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Paola Quatrini
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
11
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
12
|
Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Appl Environ Microbiol 2017; 83:AEM.00287-17. [PMID: 28576763 DOI: 10.1128/aem.00287-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants.IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered.
Collapse
|
13
|
Bai R, Wang JT, Deng Y, He JZ, Feng K, Zhang LM. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Front Microbiol 2017; 8:945. [PMID: 28611747 PMCID: PMC5447084 DOI: 10.3389/fmicb.2017.00945] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Collapse
Affiliation(s)
- Ren Bai
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China.,College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of SciencesBeijing, China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, MelbourneVIC, Australia
| | - Kai Feng
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of SciencesBeijing, China.,College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of SciencesBeijing, China.,College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
14
|
Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25024-25038. [PMID: 27677992 PMCID: PMC5124059 DOI: 10.1007/s11356-016-7606-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 05/04/2023]
Abstract
The use of in situ techniques in soil remediation is still rare in Finland and most other European countries due to the uncertainty of the effectiveness of the techniques especially in cold regions and also due to their potential side effects on the environment. In this study, we compared the biostimulation, chemical oxidation, and natural attenuation treatments in natural conditions and pilot scale during a 16-month experiment. A real fuel spill accident was used as a model for experiment setup and soil contamination. We found that biostimulation significantly decreased the contaminant leachate into the water, including also the non-aqueous phase liquid (NAPL). The total NAPL leachate was 19 % lower in the biostimulation treatment that in the untreated soil and 34 % lower in the biostimulation than oxidation treatment. Soil bacterial growth and community changes were first observed due to the increased carbon content via oil amendment and later due to the enhanced nutrient content via biostimulation. Overall, the most effective treatment for fresh contaminated soil was biostimulation, which enhanced the biodegradation of easily available oil in the mobile phase and consequently reduced contaminant leakage through the soil. The chemical oxidation did not enhance soil cleanup and resulted in the mobilization of contaminants. Our results suggest that biostimulation can decrease or even prevent oil migration in recently contaminated areas and can thus be considered as a potentially safe in situ treatment also in groundwater areas.
Collapse
Affiliation(s)
- Suvi Simpanen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Mari Dahl
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Magdalena Gerlach
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Anu Mikkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40014, Jyväskylä, Finland
| | - Vuokko Malk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Mikkeli University of Applied Sciences, Patteristonkatu 3, 50100, Mikkeli, Finland
| | - Juha Mikola
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
15
|
Klein AM, Bohannan BJM, Jaffe DA, Levin DA, Green JL. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front Microbiol 2016; 7:772. [PMID: 27252689 PMCID: PMC4878314 DOI: 10.3389/fmicb.2016.00772] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023] Open
Abstract
Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Ann M Klein
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Daniel A Jaffe
- Department of Atmospheric Sciences, University of Washington Bothell, Bothell, WA USA
| | - David A Levin
- Department of Mathematics, University of Oregon, Eugene, OR USA
| | - Jessica L Green
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, ORUSA; Santa Fe Institute, Santa Fe, NMUSA
| |
Collapse
|
16
|
Slade EM, Roslin T, Santalahti M, Bell T. Disentangling the ‘brown world’ faecal-detritus interaction web: dung beetle effects on soil microbial properties. OIKOS 2015. [DOI: 10.1111/oik.02640] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Eleanor M. Slade
- Dept of Applied Biology, PO Box 27, Latokartanonkaari 5, FI-00014; University of Helsinki; Finland
- Dept of Zoology; Univ. of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Tomas Roslin
- Dept of Applied Biology, PO Box 27, Latokartanonkaari 5, FI-00014; University of Helsinki; Finland
- Dept of Ecology, PO Box 7044; Swedish Univ. of Agricultural Sciences; SE-750 07 Uppsala Sweden
| | - Minna Santalahti
- Dept of Food and Environmental Sciences, PO Box 56, Viikinkaari 9, FI-00014; University of Helsinki; Finland
| | - Thomas Bell
- Dept of Life Sciences; Imperial College London, Silwood Park Campus; Ascot SL5 7PY UK
| |
Collapse
|
17
|
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil. MICROBIOLOGY-SGM 2015; 161:2110-26. [PMID: 26341342 DOI: 10.1099/mic.0.000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.
Collapse
Affiliation(s)
- Artemio Mendoza-Mendoza
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Johanna Steyaert
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | | | - Andrew Holyoake
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Mark Braithwaite
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Alison Stewart
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand 2 Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, USA
| |
Collapse
|