1
|
Jia K, Wang J, Jiang D, Ding X, Zhao Q, Shen D, Qiu Z, Zhang X, Lu C, Qian H, Xia D. Bombyx mori PAT4 gene inhibits BmNPV infection and replication through autophagy. J Invertebr Pathol 2025; 208:108235. [PMID: 39580048 DOI: 10.1016/j.jip.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Proton-assisted amino acid transporter 4 (PAT4) is a member of the solute carrier (SLC) 36 family, which mediates the transmembrane transport of amino acids and their derivatives. However, the function of PAT4 in Bombyx mori is not clear. In this study, BmPAT4 was cloned and identified using PCR technology. Its open reading frame (ORF) includes 1,395 bp, encoding 464 amino acid (Aa). Moreover, the sequence of BmPAT4 has the highest similarity with wild Bombyx.mandarina, Spodoptera frugiperda and Spodoptera litura, and it has ten transmembrane domains. BmPAT4 was localized in the cell membrane and expressed in all tissues of the silkworm. After Bombyx mori nuclear polyhedrosis virus (BmNPV) infection, the expression of BmPAT4 in midgut, hemolymph and fat body was significantly up-regulated. In addition, overexpression of BmPAT4 in BmN cells could significantly inhibit the proliferation of BmNPV, and the expression of several genes in autophagy pathway decreased significantly. On the contrary, down-regulation of BmPAT4 expression by RNA interference can promote BmNPV replication and proliferation, and the expression of key genes in autophagy pathway is significantly increased. This is the first time to report that BmPAT4 has an antiviral effect in silkworm. Moreover, the silkworm activates BmTORC1 via BmPAT4, which inhibits autophagy in silkworm cells, resulting in a lack of energy and raw materials for BmNPV infection and replication in cells.
Collapse
Affiliation(s)
- Kaifang Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiangrui Ding
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Cheng Lu
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Li S, Lao J, Sun Y, Hua X, Lin P, Wang F, Shen G, Zhao P, Xia Q. CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms ( Bombyx mori). Int J Mol Sci 2024; 25:1907. [PMID: 38339188 PMCID: PMC10856159 DOI: 10.3390/ijms25031907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.
Collapse
Affiliation(s)
- Shimin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Yue Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Xiaoting Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Li WJ, Zhang X, Shen M, Liu HL, Ding LR. Sulforaphane alleviates the meiosis defects induced by 3-nitropropionic acid in mouse oocytes. Food Chem Toxicol 2023; 181:114083. [PMID: 37783421 DOI: 10.1016/j.fct.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
3-Nitropropionic acid (3-NP) is a mycotoxin commonly found in plants and fungi that has been linked to mammalian intoxication. Previously, we found 3-NP treatment exhibited reproductive toxicity by inducing oxidative stress in mouse ovary; however, the toxic effects of 3-NP on mouse oocyte maturation have not been investigated. Sulforaphane (SFN) is a naturally bioactive phytocompound derived from cruciferous vegetables that has been shown to possess cytoprotective properties. The present study was designed to investigate the cytotoxicity of 3-NP during mouse oocyte maturation and the protective effects of SFN on oocytes challenged with 3-NP. The results showed 3-NP had a dose-dependent inhibitory effect on oocyte maturation, and SFN significantly alleviated the defects caused by 3-NP, including failed first polar body extrusion and abnormal spindle assembly. Furthermore, 3-NP caused abnormal mitochondrial distribution in oocytes and disrupted mitochondrial functions, including mitochondrial depolarization, decreased ATP levels, and increased mitochondrial-derived ROS. Finally, 3-NP induced oxidative stress in oocytes, leading to increased apoptosis and autophagy, while SFN supplementation had significant cytoprotective effects on these damages. Collectively, our results provide insight on the mechanism of 3-NP toxicity in mouse oocytes and suggest the application of SFN may be a viable intervention strategy to mitigate 3-NP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Ren Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
5
|
Sun C, Wei D, Pan Y, Xiao X, Wang F. BmCaspase-8-like regulates autophagy by suppressing BmDREDD-mediated cleavage of BmATG6. INSECT SCIENCE 2023; 30:365-374. [PMID: 36044542 DOI: 10.1111/1744-7917.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Autophagy plays an important role in tissue remodeling during insect development. The interplay between autophagy-related (ATG) proteins and caspases regulates the autophagic activity of ATGs, thereby modulating the process of autophagy. Our previous study characterized BmCaspase-8-like (BmCasp8L) as a caspase suppressor that inhibits apoptosis and immune signaling by suppressing the activation of death-related ced-3/Nedd2-like caspase (DREDD), a caspase-8 homolog in silkworm. In this study, we explored the regulatory role of BmCasp8L in autophagy. We found that the expression of Bmcasp8l increased from the late spinning stage to the pupa stage in the posterior silk gland (PSG), correlating with the expression patterns of Bmatg8 and Bmatg6. RNA interference-mediated downregulation of BmCasp8L expression significantly decreased starvation-induced autophagic influx as determined by the levels of BmATG8-phosphatidylethanolamine and the percentage of cells displaying punctate enhanced green fluorescent protein-BmATG8. Conversely, the overexpression of BmCasp8L significantly increased autophagic influx. We also found that BmCasp8L underwent autophagic degradation induced by starvation and that it was colocalized with BmATG8. Lastly, we demonstrated that BmDREDD attenuated autophagy and BmCasp8L suppressed BmDREDD-mediated cleavage of BmATG6. Taken together, our results demonstrated that BmCasp8L is a novel proautophagic molecule which suppresses BmDREDD-mediated cleavage of BmATG6 and is a target for autophagy.
Collapse
Affiliation(s)
- Chang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Dongmei Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumeng Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoyi Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
The role of autophagy on eye migration during the metamorphosis of Paralichthys olivaceus. Cells Dev 2021; 169:203751. [PMID: 34624556 DOI: 10.1016/j.cdev.2021.203751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
The metamorphosis of flatfish is unique, especially its eye migration. Autophagy has been found to be involved in a variety of organisms' metamorphosis. In order to explore the relationship between autophagy and flatfish metamorphosis, we investigated the expression of autophagy marker gene lc3b during the metamorphosis using real-time quantitative polymerase chain reaction and in situ RNA hybridization. Besides, we inhibited cell division, which was reported as the force source of eye migration, and autophagy around the mobile eye by microinjecting the inhibitors to explore the effects on autophagy expression and eye migration. We found that autophagy taking place during the metamorphosis, particularly in the areas around the eyes. In addition, the eye migration could be blocked by inhibiting the autophagy in the supraorbital area of the blind side, and after we blocked the eye migration by inhibiting cell proliferation in the infraorbital area of the blind side, the autophagy around the eye was partially inhibited. These findings indicate that the autophagy around the eyes caused by eye migration. Moreover, the cell death caused by autophagy loosen the orbital tissue to create space for the eye migration.
Collapse
|
7
|
Yu H, Li ZQ, Ou-Yang YY, Huang GH. Identification of four caspase genes from Spodoptera exigua (Lepidoptera: Noctuidae) and their regulations toward different apoptotic stimulations. INSECT SCIENCE 2020; 27:1158-1172. [PMID: 31793737 DOI: 10.1111/1744-7917.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis plays critical roles in multiple biological processes in multicellular organisms. Caspases are known as important participators and regulators of apoptosis. Here, four novel caspase genes of Spodoptera exigua were cloned and characterized, which were designated as SeCasp-1, SeCasp-6, SeCasp-7 and SeCasp-8. Analysis of the putative encoded protein sequences of these SeCasps indicated that SeCasp-1 and SeCasp-7 were possible homologs of executor caspases; SeCasp-8 was a possible homolog of initiator caspases; and SeCasp-6 was a unique caspase of S. exigua that shares low similarity with all the identified insect caspases. Based on baculovirus expression system analyses, SeCasp-1 exhibited similar caspase activity to human caspase-1, -3, -4, -6, -8 and -9; SeCasp-6 presented similar caspase activity to human caspase-2, -3, -4, -6, -8 and -9; SeCasp-7 exhibited similar caspase activity to human caspase-2, -3 and -6; and SeCasp-8 presented similar caspase activity only to human caspase-8. Induction with different chemicals revealed that SeCasp-1 showed extreme upregulation after 24 h in the treated fat body cell line (IOZCAS-Spex-II) of S. exigua. Developmental expression analysis revealed that SeCasp-1 was highly transcribed in the larval stages, while SeCasp-6, SeCasp-7, SeCasp-8 were down-regulated. The in vivo detection of the relative expression levels of SeCasps in S. eixgua larvae inoculated with different pathogens suggested that SeCasp-1 was sensitive to Bacillus thuringiensis infection and that SeCasp-6 was sensitive to baculovirus infection. SeCasp-7 and SeCasp-8 showed slight changes under either in vitro chemical apoptosis induction or in vivo pathogen infection.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
The Effect of Heat Stress on Autophagy and Apoptosis of Rumen, Abomasum, Duodenum, Liver and Kidney Cells in Calves. Animals (Basel) 2019; 9:ani9100854. [PMID: 31652592 PMCID: PMC6826413 DOI: 10.3390/ani9100854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to assess the effect of heat stress on the autophagy and apoptosis of the rumen, abomasum, duodenum, liver and kidney in calves. Two groups of Holstein male calves were selected with similar birth weights and health conditions. Heat stress (HT): Six calves (birth weight 42.2 ± 2.3) were raised from July 15 to August 19. Cooling (CL): Six calves (birth weight 41.5 ± 3.1 kg) were raised from April 10 to May 15. All the calves were euthanized following captive bolt gun stunning at 35 d of age. The expression of protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and caspase3 in the rumen, abomasum, duodenum, liver and kidney were determined by western blotting. In addition, other possible relevant serum biochemical parameters were evaluated. Significant differences were observed in alkaline phosphatase (ALP), albumin (ALB) and glucose (Glu). The results showed that heat stress could increase the autophagy and apoptosis of the kidney, duodenum and abomasum. However, heat stress had no effect on the autophagy and apoptosis of the liver. Additionally, the expression of caspase-3 in the rumen in HT was significantly lower than that in CL. In conclusion, the effects of heat stress on autophagy and apoptosis are organ-specific. The results provide knowledge regarding autophagy and autophagy in calf heat stress management.
Collapse
|
9
|
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190065. [PMID: 31438818 DOI: 10.1098/rstb.2019.0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In insects that undergo complete metamorphosis, cell death is essential for reshaping or removing larval tissues and organs, thus contributing to formation of the adult's body structure. In the last few decades, the study of metamorphosis in Lepidoptera and Diptera has provided broad information on the tissue remodelling processes that occur during larva-pupa-adult transition and made it possible to unravel the underlying regulatory pathways. This review summarizes recent knowledge on cell death mechanisms in Lepidoptera and other holometabolous insects, highlighting similarities and differences with Drosophila melanogaster, and discusses the role of apoptosis and autophagy in this developmental setting. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| |
Collapse
|
10
|
Dong X, Zhai R, Liu Z, Lin X, Wang Z, Hu Z. The Effect of Intravenous Infusions of Glutamine on Duodenal Cell Autophagy and Apoptosis in Early-Weaned Calves. Animals (Basel) 2019; 9:ani9070404. [PMID: 31266182 PMCID: PMC6680711 DOI: 10.3390/ani9070404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The objective of this study was to determine the effects of intravenous infusions of L-glutamine (Gln) on the autophagy and apoptosis of duodenum cells in weaned calves. The results showed that the autophagy level of duodenal cells was increased with an increasing Gln infusion dose (0 to 20 g/d) and dropped when Gln was further increased to 40 g/d. We also found that the level of apoptosis was decreased with an increasing Gln infusion dose from 0 to 20 g/d, and then rose as the dose increased to 40 g/d. This knowledge will provide a reference for weaned calf health management. Abstract The objectives of this study were to determine the effects of intravenous infusions of L-glutamine (Gln) on the autophagy and apoptosis of duodenum cells in early-weaned calves. Holstein male calves were weaned at day 35 (20 male calves, birth weight 43 ± 1.8 kg; 35 ± 3 d of age) and randomly allocated to four treatments (5 calves/treatment). The treatments were: (1) infusion of NaCl, representing the control group (C); (2) infusion of 10 g/d of Gln solution (L); (3) infusion of 20 g/d of Gln solution (M); and (4) infusion of 40 g/d of Gln solution (H). The solutions were infused for 2 h daily for 3 consecutive days after weaning. All calves were killed on the third day post-weaning. The results showed that the autophagy level of the duodenal cells was increased as the Gln infusions increased from 0 to 20 g/d and dropped with a further increase in dose (40 g/d). We also found that the level of apoptosis was decreased with Gln infusion from 0 to 20 g/d and rose as the dose increased to 40 g/d. This knowledge provides a reference for weaned calf health management.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhaolin Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|