1
|
Villa S, Magoga G, Montagna M, Pierce S. Elevational shifts in reproductive ecology indicate the climate response of a model chasmophyte, Rainer's bellflower (Campanula raineri). ANNALS OF BOTANY 2024:mcae164. [PMID: 39349404 DOI: 10.1093/aob/mcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND AND AIMS Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation. METHODS We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification. KEY RESULTS Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported). CONCLUSIONS Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.
Collapse
Affiliation(s)
- Sara Villa
- Institute for Sustainable Plant Protection, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| | - Giulia Magoga
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
- BAT Center ‑ Interuniversity Center for Studies on Bioinspired Agro‑Environmental Technology, University of Napoli 'Federico II', via Università 100, 80055, Portici, Italy
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
2
|
Wang G, Xu S, Chen L, Zhan T, Zhang X, Liang H, Chen B, Peng Y. Gut Microbial Diversity Reveals Differences in Pathogenicity between Metarhizium rileyi and Beauveria bassiana during the Early Stage of Infection in Spodoptera litura Larvae. Microorganisms 2024; 12:1129. [PMID: 38930511 PMCID: PMC11206097 DOI: 10.3390/microorganisms12061129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Beauveria bassiana and Metarhizium rileyi are extensively utilized to investigate fungal pathogenic mechanisms and to develop biological control agents. Notwithstanding, notable distinctions exist in their pathogenicity against the same host insect. This study aimed to elucidate the pathogenic differences between M. rileyi and B. bassiana by examining the impact of various ratios of B. bassiana strain AJS91881 and M. rileyi strain SXBN200920 on fifth instar larvae of Spodoptera litura, focusing on early infection stages and intestinal microbial community structure. The lethal time 50 (LT50) for B. bassiana was significantly lower than that for M. rileyi, indicating greater efficacy. Survival analyses in mixed groups (ratios of 1:9, 1:1, and 9:1 M. rileyi to B. bassiana) consistently demonstrated higher virulence of B. bassiana. Intestinal microbial diversity analysis revealed a significant increase in Achromobacter and Pseudomonas in larvae infected with M. rileyi, whereas Weissella was notably higher in those infected with B. bassiana. Additionally, significant shifts in microbial genera abundances were observed across all mixed infection groups. KEGG pathway enrichment analysis indicated that M. rileyi and B. bassiana employ distinct pathogenic strategies during early infection stages. In vitro tests confirmed the superior growth and stress resistance of B. bassiana compared to M. rileyi, but the antifungal ability of M. rileyi was better than that of B. bassiana. In conclusion, our findings provide preliminary insights into the differential pathogenic behaviors of M. rileyi and B. bassiana during the early infection stages in S. litura larvae, enhancing our understanding of their mechanisms and informing biological pest control strategies in agriculture and forestry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (G.W.); (S.X.); (L.C.); (T.Z.); (X.Z.); (H.L.)
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (G.W.); (S.X.); (L.C.); (T.Z.); (X.Z.); (H.L.)
| |
Collapse
|
3
|
Zhu X, Li J, He A, Gurr GM, You M, You S. Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. INSECTS 2024; 15:132. [PMID: 38392551 PMCID: PMC10888865 DOI: 10.3390/insects15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
5
|
Rose C, Lund MB, Schramm A, Bilde T, Bechsgaard J. Does ecological drift explain variation in microbiome composition among groups in a social host species? J Evol Biol 2023; 36:1684-1694. [PMID: 37776090 DOI: 10.1111/jeb.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023]
Abstract
Within a given species, considerable inter-individual, spatial, and temporal variation in the composition of the host microbiome exists. In group-living animals, social interactions homogenize microbiome composition among group members, nevertheless divergence in microbiome composition among related groups arise. Such variation can result from deterministic and stochastic processes. Stochastic changes, or ecological drift, can occur among symbionts with potential for colonizing a host and within individual hosts, and drive divergence in microbiome composition among hosts or host groups. We tested whether ecological drift associated with dispersal and foundation of new groups cause divergence in microbiome composition between natal and newly formed groups in the social spider Stegodyphus dumicola. We simulated the initiation of new groups by splitting field-collected nests into groups of 1, 3, and 10 individuals respectively, and compared variation in microbiome composition among and within groups after 6 weeks using 16S rRNA gene sequencing. Theory predicts that ecological drift increases with decreasing group size. We found that microbiome composition among single founders was more dissimilar than among individuals kept in groups, supporting this prediction. Divergence in microbiome composition from the natal nest was mainly driven by a higher number of non-core symbionts. This suggests that stochastic divergence in host microbiomes can arise during the process of group formation by individual founders, which could explain the existence of among-group variation in microbiome composition in the wild. Individual founders appear to harbour higher relative abundances of non-core symbionts compared with founders in small groups, some of which are possible pathogens. These symbionts vary in occurrence with group size, indicating that group dynamics influence various core and non-core symbionts differently.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Co-diet supplementation of low density polyethylene and honeybee wax did not influence the core gut bacteria and associated enzymes of Galleria mellonella larvae (Lepidoptera: Pyralidae). Int Microbiol 2022; 26:397-409. [PMID: 36484909 DOI: 10.1007/s10123-022-00303-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.
Collapse
|
7
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
8
|
Malacrinò A. Host species identity shapes the diversity and structure of insect microbiota. Mol Ecol 2021; 31:723-735. [PMID: 34837439 DOI: 10.1111/mec.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
As for most of the life that inhabits our planet, microorganisms play an essential role in insect nutrition, reproduction, defence, and support their host in many other functions. More recently, we assisted to an exponential growth of studies describing the taxonomical composition of bacterial communities across insects' phylogeny. However, there is still an outstanding question that needs to be answered: Which factors contribute most to shape insects' microbiomes? This study tries to find an answer to this question by taking advantage of publicly available sequencing data and reanalysing over 4000 samples of insect-associated bacterial communities under a common framework. Results suggest that insect taxonomy has a wider impact on the structure and diversity of their associated microbial communities than the other factors considered (diet, sex, life stage, sample origin and treatment). However, when specifically testing for signatures of codiversification of insect species and their microbiota, analyses found weak support for this, suggesting that while insect species strongly drive the structure and diversity of insect microbiota, the diversification of those microbial communities did not follow their host's phylogeny. Furthermore, a parallel survey of the literature highlights several methodological limitations that need to be considered in the future research endeavours.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
9
|
Mori E, Magoga G, Panella M, Montagna M, Winsor L, Justine JL, Menchetti M, Schifani E, Melone B, Mazza G. Discovering the Pandora’s box: the invasion of alien flatworms in Italy. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02638-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang N, He J, Shen X, Sun C, Muhammad A, Shao Y. Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Comput Struct Biotechnol J 2021; 19:4658-4668. [PMID: 34504661 PMCID: PMC8390955 DOI: 10.1016/j.csbj.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microbes that live inside insects play various roles in host biology, ranging from nutrient supplementation to host defense. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa and important in natural ecosystems, their microbiotas are little-studied, and to understand their structure and function, it is necessary to identify potential factors that affect microbiome analysis. Using a model organism, the silkworm Bombyx mori, we investigated the effects of different sample types (whole gut, gut content, gut tissue, starvation, or frass) and metagenomic DNA extraction methodologies (small-scale versus large-scale) on the composition and diversity of the caterpillar gut microbial communities. High-throughput 16S rRNA gene sequencing and computational analysis of the resulting data unraveled that DNA extraction has a large effect on the outcome of metagenomic analysis: significant biases were observed in estimates of community diversity and in the ratio between Gram-positive and Gram-negative bacteria. Furthermore, bacterial communities differed significantly among sample types. The gut content and whole gut samples differed least, both had a higher percentage of Enterococcus and Acinetobacter species; whereas the frass and starvation samples differed substantially from the whole gut and were poor representatives of the gut microbiome. Thus, we recommend a small-scale DNA extraction methodology for sampling the whole gut under normal insect rearing conditions whenever possible, as this approach provides the most accurate assessment of the gut microbiome. Our study highlights that evaluation of the optimal sample-processing approach should be the first step taken to confidently assess the contributions of microbiota to Lepidoptera.
Collapse
Affiliation(s)
- Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China
| |
Collapse
|
11
|
Gong Q, Cao LJ, Sun LN, Chen JC, Gong YJ, Pu DQ, Huang Q, Hoffmann AA, Wei SJ. Similar Gut Bacterial Microbiota in Two Fruit-Feeding Moth Pests Collected from Different Host Species and Locations. INSECTS 2020; 11:insects11120840. [PMID: 33260684 PMCID: PMC7759971 DOI: 10.3390/insects11120840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary The peach fruit moth, Carposina sasakii, and the oriental fruit moth, Grapholita molesta are two co-occurring pests in orchards. Larvae of both species bore into fruits and cause damage to fruit production. Understanding the gut microbes, as well as the influencing factors between these co-occurring pests, may provide insight into their occurrence and control. In this study, we found that the two pests shared many bacteria in their gut from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. The composition of the gut microbiota is similar between the two species collected from the same host plant and orchard; however, the gut microbiota of individuals collected from different orchards of the same host plant can be different within pest species. These results show that the two fruit moth pests have similar gut bacteria and varied environment in orchards can influence their gut microbiota. Abstract Numerous gut microbes are associated with insects, but their composition remains largely unknown for many insect groups, along with factors influencing their composition. Here, we compared gut bacterial microbiota of two co-occurring agricultural pests, the peach fruit moth (PFM), Carposina sasakii, and the oriental fruit moth (OFM), Grapholita molesta, collected from different orchards and host plant species. Gut microbiota of both species was mainly composed of bacteria from Proteobacteria, followed by Firmicutes. The two species shared bacteria from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. When we compared two pairs of PFM and OFM populations collected from the same host species and the same orchard, there is no difference in alpha and beta diversity in gut microbiota. When we compared gut microbiota of the same species and host plant from different orchards, alpha and beta diversity was different in populations of PFM collected from two pear orchards but not in other comparisons. Our study suggests that the two pests share many features of gut microbiota and environment in orchards is a main factor influencing their gut microbiota.
Collapse
Affiliation(s)
- Qiang Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Li-Na Sun
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Department of Forestry Protection, Beijing Forestry University, Beijing 100083, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - De-Qiang Pu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qiong Huang
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Ary Anthony Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia;
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Correspondence: ; Tel.: +86-1051503439
| |
Collapse
|
12
|
Wang Y, Zhu J, Fang J, Shen L, Ma S, Zhao Z, Yu W, Jiang W. Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae). Life (Basel) 2020; 10:E254. [PMID: 33113860 PMCID: PMC7692319 DOI: 10.3390/life10110254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Jianqing Zhu
- Shanghai Zoological Park, 2381 Hongqiao Rd., Shanghai 200335, China;
| | - Jie Fang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Li Shen
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Shuojia Ma
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Zimiao Zhao
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Weidong Yu
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| | - Weibin Jiang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China; (Y.W.); (J.F.); (L.S.); (S.M.); (Z.Z.); (W.Y.)
| |
Collapse
|
13
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
14
|
González-Serrano F, Pérez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A. The Gut Microbiota Composition of the Moth Brithys crini Reflects Insect Metamorphosis. MICROBIAL ECOLOGY 2020; 79:960-970. [PMID: 31796995 DOI: 10.1007/s00248-019-01460-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Lepidoptera is a highly diverse insect order with major importance in agriculture as many species are considered pests. The role of the gut microbiota in insect physiology is still poorly understood, despite the research undertaken in recent years. Furthermore, Lepidoptera are holometabolous insects and few studies have addressed the influence of the changes taking place on the gut microbiome composition and diversity during metamorphosis, especially in monophagous species. The V3-V4 region of the 16S rRNA gene was sequenced to investigate the microbiota composition and diversity of the monophagous moth Brithys crini during three different life stages: egg, larvae (midgut and hindgut), and adult (gut). Our results showed that the microbiota composition of B. crini was stage specific, indicating that the developmental stage is a main factor affecting the gut microbiome in composition and potential functions. Moreover, the diversity of the gut microbiome reflected the developmental process, since a drop in diversity occurred between the larval and the adult phase, when the intestine is completely renewed. In spite of the changes in the gut microbiota during metamorphosis, 29 genera were conserved throughout the three developmental stages, mainly belonging to the Proteobacteria phylum, which define the core microbiome of B. crini. These genera seem to contribute to host physiology by participating in food digestion, nutrition, and detoxification mechanisms.
Collapse
Affiliation(s)
- Francisco González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Institute for Integrative Systems Biology, University of València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Ana Elena Pérez-Cobas
- Institut Pasteur and Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, 75724, Paris, France
| | - Tania Rosas
- Institute for Integrative Systems Biology, University of València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Joaquín Baixeras
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of València, València, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology, University of València and Consejo Superior de Investigaciones Científicas, València, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad València, (FISABIO), València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology, University of València and Consejo Superior de Investigaciones Científicas, València, Spain.
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad València, (FISABIO), València, Spain.
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain.
- Integrative Systems Biology Institute (I2Sysbio) University of València and Spanish Research Council (CSIC). c/ Catedrático Agustín Escardino Benlloch 9, 46980, Paterna, València, Spain.
| |
Collapse
|
15
|
Chen B, Xie S, Zhang X, Zhang N, Feng H, Sun C, Lu X, Shao Y. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. PEST MANAGEMENT SCIENCE 2020; 76:1313-1323. [PMID: 31603616 DOI: 10.1002/ps.5642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Many insect pests rely on microbial symbionts to obtain nutrients or for defence, thereby allowing them to exploit novel food sources and degrade environmental xenobiotics, including pesticides. Although Lepidoptera is one of the most diverse insect taxa and includes important agricultural pests, lepidopteran microbiotas, particularly functional traits, have not been studied widely. Here, we provide a comprehensive characterization of the gut microbiota across multiple mulberry-feeding lepidopteran species, resolving both community structure and metabolic potential. RESULTS Our results indicate abundant bacteria inside the gut of larval Lepidoptera. However, even though they were fed the same diet, the structures of the bacterial communities differed in four major mulberry pest species, suggesting host-specific effects on microbial associations. Community-level metabolic reconstructions further showed that although taxonomic composition varied greatly, carbohydrate and amino acid metabolism and membrane transporter were key functional capabilities of the gut bacteria in all samples, which may play basic roles in the larval gut. In addition, principal coordinate analysis (PCoA) of gut bacterial-predicted gene ontologies revealed specialized features of the microbiota associated with these mulberry pests, which were divided into two distinct clusters (macrolepidopterans and microlepidopterans). This pattern became even more prominent when further Lepidoptera species were involved. CONCLUSIONS A suite of gut microbiota metabolic functions significantly correlated with larval size; the metabolism of terpenoids and polyketides, xenobiotics biodegradation and metabolism were specifically enriched in large species, while small larvae had enhanced nucleotide metabolism. Our report paves the way for uncovering the correlation between host phenotype and microbial symbiosis in this notorious insect pest group. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Sen Xie
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiancui Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huihui Feng
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
16
|
Affiliation(s)
- Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yipeng Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G, Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi PF, Marianelli L, Montagna M. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environ Microbiol 2019; 21:4343-4359. [PMID: 31502415 DOI: 10.1111/1462-2920.14797] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.
Collapse
Affiliation(s)
- Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Nizar Goda
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Giuseppe Mazza
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Sumer Alali
- Dipartimento di Scienze e politiche ambientali (DESP), Università degli Studi di Milano, 20133, Milan, Italy
| | - Fiorella Florian
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Fabrizia Gionechetti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Francesco Paoli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Pio Federico Roversi
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Leonardo Marianelli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
18
|
Wang M, Chen G, Chen D, Ye H, Sun Y, Zeng X, Liu Z. Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. Int J Biol Macromol 2019; 140:858-870. [PMID: 31446105 DOI: 10.1016/j.ijbiomac.2019.08.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
One purified fraction from crude Fuzhuan brick tea polysaccharides (FBTPS), FBTPS-3, was obtained through column chromatography of DEAE Sepharose Fast Flow. The chemical properties and probiotic effects of FBTPS-3 were evaluated by fermentation in vitro. Moreover, the effects of FBTPS-3 on the function and metabolic pathway of gut microbiota were investigated by metagenomic sequencing. The results showed that FBTPS-3 was an heteropolysaccharide with molecular weight of 741 kDa, which was mainly composed of Man, Rha, GalA, Gal and Ara in molar ratio of 8.7:15.5:42.2:19.7:13.9. The contents of carbohydrates and uronic acid in FBTPS-3 were 44.78 ± 2.85% and 40.4 ± 2.11%, respectively. After fermentation, the molecular weight of FBTPS-3 and content of carbohydrates were significantly decreased, indicating that FBTPS-3 could be utilized by gut microbiota. Furthermore, the relative abundances of Bacteroides, Megasphaera and Prevotella were significantly increased by FBTPS-3. FBTPS-3 also significantly promoted the production of acetic, propionic and n-butyric acids. Based on the metagenomic sequencing, it was found that FBTPS-3 significantly enriched the metabolic pathway of starch and sucrose. All the results suggest that FBTPS-3 is expected to be developed as functional ingredients or foods to improve the host health through regulating the gut microbiota and physiological metabolic functions.
Collapse
Affiliation(s)
- Mingjia Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
19
|
Chen B, Yu T, Xie S, Du K, Liang X, Lan Y, Sun C, Lu X, Shao Y. Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci Data 2018; 5:180285. [PMID: 30532085 PMCID: PMC6289112 DOI: 10.1038/sdata.2018.285] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022] Open
Abstract
Lepidoptera (butterflies and moths) is a major insect order including important pollinators and agricultural pests, however their microbiomes are little studied. Here, using next-generation sequencing (NGS)-based shotgun metagenomics, we characterize both the biodiversity and functional potential of gut microbiota of a lepidopteran model insect, the silkworm Bombyx mori. Two metagenomes, including the standard inbred strain Dazao (P50) and an improved hybrid strain Qiufeng × Baiyu (QB) widely used in commercial silk production, were generated, containing 45,505,084 and 69,127,002 raw reads, respectively. Taxonomic analysis revealed that a total of 663 bacterial species were identified in P50 silkworms, while 322 unique species in QB silkworms. Notably, Enterobacter, Acinetobacter and Enterococcus were dominated in both strains. The further functional annotation was performed by both BlastP and MG-RAST against various databases including Nr, COG, KEGG, CAZy and SignalP, which revealed >5 × 106 protein-coding genes. These datasets not only provide first insights into all bacterial genes in silkworm guts, but also help to generate hypotheses for subsequently testing functional traits of gut microbiota in an important insect group.
Collapse
Affiliation(s)
- Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Sen Xie
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqian Du
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yahua Lan
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Centre of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Kaczmarczyk A, Kucharczyk H, Kucharczyk M, Kapusta P, Sell J, Zielińska S. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep 2018; 8:14376. [PMID: 30258200 PMCID: PMC6158184 DOI: 10.1038/s41598-018-32747-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Insects' exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verification of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy-based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with different proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Halina Kucharczyk
- Department of Zoology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics - OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034, Kraków, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
21
|
Osimani A, Milanović V, Garofalo C, Cardinali F, Roncolini A, Sabbatini R, De Filippis F, Ercolini D, Gabucci C, Petruzzelli A, Tonucci F, Clementi F, Aquilanti L. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int J Food Microbiol 2018; 276:54-62. [DOI: 10.1016/j.ijfoodmicro.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
22
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|