1
|
Lubawy J, Chowański SP, Colinet H, Słocińska M. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. J Exp Biol 2023; 226:jeb246287. [PMID: 37589559 DOI: 10.1242/jeb.246287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Szymon P Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes 35042, France
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Lebenzon JE, Overgaard J, Jørgensen LB. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. CURRENT OPINION IN INSECT SCIENCE 2023:101076. [PMID: 37331596 DOI: 10.1016/j.cois.2023.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Physiological adaptations to tackle cold exposure are crucial for insects living in temperate and arctic environments and here we review how cold adaptation is manifested in terms of mitochondrial function. Cold challenges are diverse, and different insect species have evolved metabolic and mitochondrial adaptations to: i) energize homeostatic regulation at low temperature, ii) stretch energy reserves during prolonged cold exposure, and iii) preserve structural organization of organelles following extracellular freezing. While the literature is still sparse, our review suggests that cold-adapted insects preserve ATP production at low temperatures by maintaining preferred mitochondrial substrate oxidation, which is otherwise challenged in cold-sensitive species. Chronic cold exposure and metabolic depression during dormancy is linked to reduced mitochondrial metabolism and may involve mitochondrial degradation. Finally, adaptation to extracellular freezing could be associated with superior structural integrity of the mitochondrial inner membrane following freezing which is linked to cellular and organismal survival.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
3
|
Zhu W, Yang C, Chen X, Liu Q, Li Q, Peng M, Wang H, Chen X, Yang Q, Liao Z, Li M, Pan C, Feng P, Zeng D, Zhao Y. Single-Cell Ribonucleic Acid Sequencing Clarifies Cold Tolerance Mechanisms in the Pacific White Shrimp ( Litopenaeus Vannamei). Front Genet 2022; 12:792172. [PMID: 35096009 PMCID: PMC8790290 DOI: 10.3389/fgene.2021.792172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
To characterize the cold tolerance mechanism of the Pacific white shrimp (Litopenaeus vannamei), we performed single-cell RNA sequencing (scRNA-seq) of ∼5185 hepatopancreas cells from cold-tolerant (Lv-T) and common (Lv-C) L. vannamei at preferred and low temperatures (28°C and 10°C, respectively). The cells fell into 10 clusters and 4 cell types: embryonic, resorptive, blister-like, and fibrillar. We identified differentially expressed genes between Lv-T and Lv-C, which were mainly associated with the terms “immune system,” “cytoskeleton,” “antioxidant system,” “digestive enzyme,” and “detoxification,” as well as the pathways “metabolic pathways of oxidative phosphorylation,” “metabolism of xenobiotics by cytochrome P450,” “chemical carcinogenesis,” “drug metabolism-cytochrome P450,” and “fatty acid metabolism.” Reconstruction of fibrillar cell trajectories showed that, under low temperature stress, hepatopancreas cells had two distinct fates, cell fate 1 and cell fate 2. Cell fate 1 was mainly involved in signal transduction and sensory organ development. Cell fate 2 was mainly involved in metabolic processes. This study preliminarily clarifies the molecular mechanisms underlying cold tolerance in L. vannamei, which will be useful for the breeding of shrimp with greater cold tolerance.
Collapse
Affiliation(s)
- Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Guangxi Shrimp and Crab Breeding Engineering Technology Research Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Guangxi Shrimp and Crab Breeding Engineering Technology Research Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agriculture University, Wuhan, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiong Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Zhenping Liao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chuanyan Pan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Guangxi Shrimp and Crab Breeding Engineering Technology Research Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
4
|
Cobb T, Damschroder D, Wessells R. Sestrin regulates acute chill coma recovery in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103548. [PMID: 33549817 PMCID: PMC8180487 DOI: 10.1016/j.ibmb.2021.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/09/2021] [Accepted: 01/31/2021] [Indexed: 05/10/2023]
Abstract
When chill-susceptible insects are exposed to low temperatures they enter a temporary state of paralysis referred to as a chill coma. The most well-studied physiological mechanism of chill coma onset and recovery involves regulation of ion homeostasis. Previous studies show that changes in metabolism may also underlie the ability to recovery quickly, but the roles of genes that regulate metabolic homeostasis in chill coma recovery time (CCRT) are not well understood. Here, we investigate the roles of Sestrin and Spargel (Drosophila homolog of PGC-1α), which are involved in metabolic homeostasis and substrate oxidation, on CCRT in Drosophila melanogaster. We find that sestrin and spargel mutants have impaired CCRT. sestrin is required in the muscle and nervous system tissue for normal CCRT and spargel is required in muscle and adipose. On the basis that exercise induces sestrin and spargel, we also test the interaction of cold and exercise. We find that pre-treatment with one of these stressors does not consistently confer acute protection against the other. We conclude that Sestrin and Spargel are important in the chill coma response, independent of their role in exercise.
Collapse
Affiliation(s)
- Tyler Cobb
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA
| | - Deena Damschroder
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA
| | - Robert Wessells
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA.
| |
Collapse
|