1
|
Bormon CC, Akib G, Rifat A, Hossain M, Uddin N, Hossain FMA, Azzam MM, Farouk MH, Das R, Mahfuz SU. Effects of oyster mushroom (Pleurotus ostreatus) stem residue supplementation on growth performance, meat quality and health status of broilers. Poult Sci 2024; 103:104054. [PMID: 39067124 PMCID: PMC11337655 DOI: 10.1016/j.psj.2024.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Oyster mushroom stem residue, a by-product with medicinal and nutritive values, might be a prospective feed supplement in poultry nutrition. The study focused on evaluating the impact of oyster mushroom (Pleurotus ostreatus) stem residue (OMSR) powder supplementation on growth performance, carcass traits, meat quality, blood characteristics, and the cecal bacterial count in Arbor Acres broilers raised 35 d. A total of 144 day-old chicks, with an average weight of 40.27± 2.45 g, were divided into 3 groups: control (received a standard basal diet), antibiotic (basal diet + 75 mg/kg chlortetracycline), and OMSR (fed a basal diet with 300 mg/kg OMSR), where each group comprises 8 replications of 6 chicks. Supplementation of 300 mg/kg of OMSR powder in the broiler diet significantly (P < 0.05) enhanced the average daily gain (ADG) and final body weight as opposed to the control and antibiotic treatments, though the average daily feed intake was not influenced by OMSR supplementation during the whole experimental period. However, in comparison to the control and antibiotic groups, OMSR significantly reduced the postmortem breast meat drip loss percentage (P < 0.05) at 24 hours and on the seventh d. Furthermore, the OMSR group reported significantly elevated levels of Hb and RBC counts (P < 0.05), and decreased levels of serum triglyceride (TG) and total cholesterol (TC) concentrations (P < 0.05) on d 35 in comparison to broilers in the control and antibiotic groups. Additionally, the OMSR group exhibited an improved Heterophil/Lymphocytes (H/L) ratio (P < 0.05) relative to the broilers of the control and antibiotic groups. In contrast, the inclusion of OMSR in the broiler diet did not significantly (P > 0.05) influence other serum biochemical and hematological values tested. Broilers in OMSR group had reduced number (P < 0.05) of E. coli and Salmonella spp., but higher presence of Lactobacillus spp. (P < 0.05) in contrast to the control broilers. To summarize, the study's findings revealed that 300 mg of OMSR powder supplementation per kg of basal diet could be act as a natural growth promoter, and confer favorable effects on health and meat quality of broilers.
Collapse
Affiliation(s)
- C C Bormon
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - G Akib
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - A Rifat
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - M Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - N Uddin
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - F M A Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - M M Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M H Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - R Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - S U Mahfuz
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
2
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
3
|
Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Rubio-Moraga Á. Food and human health applications of edible mushroom by-products. N Biotechnol 2024; 81:43-56. [PMID: 38521182 DOI: 10.1016/j.nbt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Mushroom waste can account for up to 50% of the total mushroom mass. Spent mushroom substrate, misshapen mushrooms, and mushroom stems are examples of mushroom byproducts. In ancient cultures, fungi were prized for their medicinal properties. Aqueous extracts containing high levels of β-glucans as functional components capable of providing prebiotic polysaccharides and improved texture to foods have been widely used and new methods have been tested to improve extraction yields. Similarly, the addition of insoluble polysaccharides controls the glycemic index, counteracting the effects of increasingly high-calorie diets. Numerous studies support these benefits in vitro, but evidence in vivo is scarce. Nonetheless, many authors have created a variety of functional foods, ranging from yogurt to noodles. In this review, we focus on the pharmacological properties of edible mushroom by-products, and the possible risks derived from its consumption. By incorporating these by-products into human or animal feed formulations, mushroom producers will be able to fully optimize crop use and pave the way for the industry to move toward a zero-waste paradigm.
Collapse
Affiliation(s)
- Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| |
Collapse
|
4
|
Sirohi R, Negi T, Rawat N, Sagar NA, Sindhu R, Tarafdar A. Emerging technologies for the extraction of bioactives from mushroom waste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1069-1082. [PMID: 38562595 PMCID: PMC10981648 DOI: 10.1007/s13197-023-05855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 04/04/2024]
Abstract
Extraction of bioactive compounds for application in nutraceuticals is gaining popularity. For this, there is a search for low-cost substrates that would make the end product and the process more economical. Mushroom waste (stalk, cap, stem etc.) is one such high valued substrate that has received much attention recently due to its rich reserves of terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, antioxidative vitamins, anthocyanidins, glycoproteins and polysaccharides, among others. However, there is a need to identify green and hybrid technologies that could make the bioactive extraction process from these substrates safe, efficient and sustainable. To this effect, many emerging technologies (supercritical fluid, ultrasound-, enzyme- and microwave-assisted extraction) have been explored in the last decade which have shown potential for scale-up with high productivity. This review systematically discusses such technologies highlighting the current challenges faced during waste processing and the research directives needed for further advancements in the field.
Collapse
Affiliation(s)
- Ranjna Sirohi
- College of Horticulture, Rajasthan Agricultural Research Institute, Jaipur, Rajasthan 302 018 India
- Sri Karan Narendra Agriculture University, Jobner, Rajasthan 303329 India
| | - Taru Negi
- Department of Food Science and Technology,, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145 India
| | - Neha Rawat
- Department of Food Science and Technology,, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145 India
| | - Narashans Alok Sagar
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala 691505 India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| |
Collapse
|
5
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Tajima A, Kubo Y, Horiguchi S, Shoji K, Kawabata T. Relationship between Serum Homocysteine Concentration and Dietary Factors in Young Japanese Women. Nutrients 2023; 15:4740. [PMID: 38004134 PMCID: PMC10675237 DOI: 10.3390/nu15224740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Homocysteine is a methionine metabolism intermediate and its increased blood levels are associated with a higher risk of noncommunicable diseases. Reportedly, blood homocysteine levels increase with inadequate folate, vitamin B6, and vitamin B12 intake; however, its relationship with dietary factors other than these three vitamins remains unknown. Thus, we investigated the relationship of homocysteine with other nutrient intake. We performed a dietary survey on 227 young women using a food record with approximate amounts for 7 consecutive days in conjunction with digital imaging. We collected early morning fasting blood samples the day after the dietary survey was completed and analyzed the serum homocysteine levels. We observed that the serum homocysteine concentrations were significantly negatively associated with soluble, insoluble, and total fiber intake. In addition, participants with high fruit and mushroom intake displayed lower serum homocysteine concentrations, suggesting dietary fiber involvement from these foods. However, we observed no serum homocysteine concentration-related association with cereals and vegetables (well-documented dietary fiber sources) or with fruits and mushrooms. In conclusion, fiber quality-related differences could thus be caused by different sources, including antioxidant components such as fruit polyphenols and mushroom antioxidant and anti-inflammatory factors.
Collapse
Affiliation(s)
- Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (S.H.); (K.S.); (T.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Shiga, Japan;
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (S.H.); (K.S.); (T.K.)
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (S.H.); (K.S.); (T.K.)
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (S.H.); (K.S.); (T.K.)
| |
Collapse
|
7
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Zhu H, Chen Z, Li G, Yao X, Hu Y, Zhao W. Physicochemical, sensory, and antioxidant characteristics of stirred-type yogurt enriched with Lentinula edodes stipe powder. Food Sci Nutr 2023; 11:6231-6240. [PMID: 37823167 PMCID: PMC10563725 DOI: 10.1002/fsn3.3563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 10/13/2023] Open
Abstract
The Lentinula edodes stipe (LES), a by-product of L. edodes fruiting body processing, is rich in dietary fiber, protein, and polysaccharides, which can be served as the functional ingredient in dairy products. In this study, stirred yogurts fortified with 1%, 2%, and 3% LES were prepared, and the effects of LES on the changes in color, pH, titratable acidity (TA), viable lactic acid bacteria (LAB) cells, syneresis, viscosity, texture, and antioxidant activity of the flavored yogurt were monitored at the beginning and the end of storage. The LES decreased the lightness, increased the red-green color values and yellow-blue color values, decreased the pH values, and increased the contents of TA, the viable LAB cells, and the antioxidant activity of yogurt samples in a dose-dependent manner. The addition of LES showed double-edged effects on the texture of yogurt, which significantly reduced firmness and viscosity but decreased the syneresis. Compared with plain yogurt, the 2% LES-fortified yogurt exhibited similar index values of texture parameters and higher scores of the appearance, fermented odor, taste quality, and overall acceptance, suggesting that this might be the optimal dose for industrial production. After cold storage for 28 days, pH values of all yogurt samples further decreased with increasing of TA. Interestingly, syneresis of LES-fortified yogurt decreased and the viable LAB cells and antioxidant activity of 3% LES-fortified yogurt slightly decreased. Therefore, LES is beneficial to improve physicochemical, sensory, and antioxidant properties of yogurt, which has the potential to be used in functional dairy products.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Life ScienceHengyang Normal UniversityHengyangChina
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous RegionHengyang Normal UniversityHengyangChina
| | - Zheng Chen
- College of Life ScienceHengyang Normal UniversityHengyangChina
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous RegionHengyang Normal UniversityHengyangChina
| | - Geqing Li
- College of Life ScienceHengyang Normal UniversityHengyangChina
| | - Xiaoqian Yao
- College of Life ScienceHengyang Normal UniversityHengyangChina
| | - Yujing Hu
- College of NanyueHengyang Normal UniversityHengyangChina
| | - Wenxia Zhao
- Xinjiang Seed Industry Development Center of ChinaChina
| |
Collapse
|
9
|
Dávila G LR, Villanueva B PX, Vaquiro HA, Suárez M H, Murillo A W, Méndez A JJ. Probiotic growth-stimulating capacity and antimicrobial activities of aqueous extracts of Lentinus crinitus (L.) Fr (polyporales, basidiomycota). Heliyon 2023; 9:e18738. [PMID: 37560687 PMCID: PMC10407214 DOI: 10.1016/j.heliyon.2023.e18738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Lentinus crinitus (L.) Fr is a wild macrofungus that is popular as antimicrobial and various biological activities. This study aims to determine the capacity growth stimulation of Lactobacillus paracasei and antimicrobial activity of aqueous extracts of L. crinitus obtained from wild basidiomata, mycelial biomass by liquid fermentation and spent mushroom substrate obtained by solid-state fermentation. The antimicrobial activity was investigated against bacterial and fungal pathogens and growth stimulation L. paracasei probiotic bacterium. The total carbohydrate and β-glucan contents of the extracts were determined using colorimetric analysis. The aqueous extracts obtained showed inhibition against Fusarium oxysporum., Penicillium sp., Rhizopus oryzae, Aspergillus niger, Escherichia coli and Salmonella typhimurium. The aqueous extract obtained from wild basidiomata, and mycelial biomass showed the highest percentage of stimulation of L. paracasei growth in 48 h. The extracts obtained from L. crinitus have antimicrobial potential and stimulating capacity of the probiotic Lactobacillus paracasei. Additionally, different biotechnological techniques such as liquid and solid-state fermentation can be used to obtain aqueous extracts.
Collapse
Affiliation(s)
- Lina R. Dávila G
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad Del Tolima, Ibagué, 730006, Colombia
- Laboratorio Socio-jurídico en Creación e Innovación – IusLab, Departamento de Ciencias Sociales y Jurídicas, Universidad Del Tolima, Ibagué, Colombia
| | - Paula X. Villanueva B
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad Del Tolima, Ibagué, 730006, Colombia
| | - Henry A. Vaquiro
- Centro de Desarrollo Agroindustrial Del Tolima, CEDAGRITOL, Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad Del Tolima, Ibagué, 730006, Colombia
| | - Héctor Suárez M
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Walter Murillo A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad Del Tolima, Ibagué, 730006, Colombia
| | - Jonh J. Méndez A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad Del Tolima, Ibagué, 730006, Colombia
| |
Collapse
|
10
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Fernandes A, Nair A, Kulkarni N, Todewale N, Jobby R. Exploring Mushroom Polysaccharides for the Development of Novel Prebiotics: A Review. Int J Med Mushrooms 2023; 25:1-10. [PMID: 36749052 DOI: 10.1615/intjmedmushrooms.2022046837] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prebiotics have gained much attention in recent years as functional food ingredients. This has encouraged researchers to look for sustainable alternative sources of prebiotics. Prebiotics help in the modulation of the human intestinal microbiota and thereby improve host health. Chicory, asparagus, and Jerusalem artichoke are some conventional prebiotics that have been extensively studied. Mushrooms are rich sources of medicinal foods as well as bioactive polysaccharides and essential amino acids. They contain large amounts of chitin, mannans, galactans, xylans, glucans, krestin, lentinan, and hemicellulose, thus making it a potential candidate for prebiotics. They are also rich sources of fibers, proteins, and antioxidants. Several mushroom species like Ganoderma lucidum, Pleurotus ostreatus, Hericium erinaceus, Agaricus bisporus, and Lentinula edodes are rich in medicinal properties that have an array of applications. These medicinal mushrooms can be repurposed to regulate gut microbiota. In this review, we discuss the prebiotic effects of different mushroom species on probiotic organisms. We also reviewed the potential of mushroom waste as novel, cheap, and alternative sources of prebiotics.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Akhil Nair
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Nikhil Kulkarni
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Nishad Todewale
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| |
Collapse
|
12
|
Luo H, Li Y. Downstream Processing of Medicinal Mushroom Products. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:187-218. [PMID: 35192002 DOI: 10.1007/10_2021_187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Medicinal mushrooms are higher fungi that consist of ascomycetes, basidiomycetes, and imperfect fungi. They have been long used as tonic and traditional medicine in East Asia, Europe, and Africa. Contemporary pharmacological researches have revealed that they possess a wide spectrum of bioactivity due to their production of a variety of bioactive compounds. Some of them have entered into the market; some are ready for industrial trials and further commercialization, while others are in various stages of development. According to the purpose of usage, a variety of medicinal mushroom-based products have been developed, which could be roughly divided into three general categories, i.e., nutraceuticals/functional foods, nutriceuticals/dietary supplements, and pharmaceuticals. Accordingly, the downstream processing of medicinal mushroom products varies greatly. Indeed, a major characteristic of medicinal mushroom is the wide variety of secondary metabolites, due to which a broad spectrum of separation techniques must be employed. In this chapter we will present an overview of the achievements in downstream processing technology for medicinal mushroom products. Examples of separation of products such as bioactive high-molecular-weight products like polysaccharides and low-molecular-weight products like triterpenoids are given. The application of some special separation strategy, e.g., chemical reaction-assisted separation for tackling some analogs with similar physicochemical properties from medicinal mushroom, is also described.
Collapse
Affiliation(s)
- Haiyan Luo
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yingbo Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Yang J, Sun J, Yan J, Zhang X, Ma Y, Liu C, Du P, Li A. Impact of Potentilla anserine polysaccharide on storage properties of probiotic yak yoghurt. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes (Basel) 2022. [DOI: 10.3390/pr10030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Raw mushroom waste has been an enormous solid waste, not only causing a huge cut on profit margin of mushroom industries but also leading to environmental pollution. Unfortunately, the current utilization methods, such as pharmaceutical extractions, are unable to keep up with the waste generation rate due to the large-scale mushroom production. Yet, the utilization of raw mushroom waste to produce biomass pellets for energetic purposes and the role of an electric composter on shortening the processing time remain unexplored. This is important because conventional composting, which takes a relatively long period (e.g., weeks to months), is less practical when it comes to commercial use of the biomass pellets. To explore this issue, an industrial composter with initial compost was utilized to process the raw mushroom waste, followed by pelletization. Extraction of the material inside the composter at different timing was carried out to determine the optimal processing time for optimal texture to form pellets. It was found that prolonged composting hour affected the pelletization process since moisture, which acts as a natural binder, reduced when the composting hour increased. The gross calorific value increased from 14.07 MJ/kg to 18.76 MJ/kg for raw mushroom waste and compost pellets at the fifth hour, respectively. This study revealed that the raw mushroom waste compost could serve as a valuable renewable energy source and that the production of energy-rich biomass compost fuel pellets without using any binder within a short composting duration is achievable with the aid of an in-vessel composter.
Collapse
|
17
|
Omak G, Yilmaz-Ersan L. Effect of Cordyceps militaris on formation of short-chain fatty acids as postbiotic metabolites. Prep Biochem Biotechnol 2022; 52:1142-1150. [PMID: 35192422 DOI: 10.1080/10826068.2022.2033992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the current study was to determine the growth-promoting-effect of Cordyceps militaris, known as a medicinal mushroom, on Lactobacillus casei and Lactobacillus acidophilus. To evaluate the best growth-promoting activity of the test substrates including glucose, inulin, and at different concentrations of C. militaris (0.5%, 1%, and 2%), the cell counts, optical density (OD), prebiotic activity scores, and postbiotics (lactic, acetic, butyric, and propionic acids) were determined. The highest cell count was found for L. casei in media containing 0.5% C. militaris and for L. acidophilus in media containing 1% C. militaris. In the case of both strains, the OD values of the medium with C. militaris (1%) and (2%) increased similar to those of glucose. The prebiotic activity scores for both strains were positive. The concentration of lactic acid ranged from 0.56 to 8.07 g L-1 for L. casei and 0.82 to 5.38 g L-1 for L. acidophilus. Moreover, propionic acid was the highest among short-chain fatty acids (SCFAs) produced by both strains. According to the results of the present study, the tested Lactobacillus species can utilize C. militaris as carbon source and is able to form postbiotics in the media.
Collapse
Affiliation(s)
- Gizem Omak
- Institute of Natural Sciences, Bursa Uludag University, Bursa, Turkey
| | - Lutfiye Yilmaz-Ersan
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
18
|
Prabawati E, Hu SY, Chiu ST, Balantyne R, Risjani Y, Liu CH. A synbiotic containing prebiotic prepared from a by-product of king oyster mushroom, Pleurotus eryngii and probiotic, Lactobacillus plantarum incorporated in diet to improve the growth performance and health status of white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:155-165. [PMID: 34822996 DOI: 10.1016/j.fsi.2021.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the effects of a synbiotic composite an extract from a by-product of king oyster mushroom, Pleurotus eryngii (KOME), and probiotic Lactobacillus plantarum 7-40 on the growth performance and health status of white shrimp, Litopenaeus vannamei. The KOME was able to stimulate the growth of probiotic, but not the growth of Vibrio pathogens, including V. alginolyticus, V. parahaemolyticus, and V. harveyi. Four diets were formulated, including a control diet supplemented without prebiotic and probiotic, a basal diet supplemented with KOME (5 g kg-1) (ME), a basal diet supplemented with probiotic (1 × 108 CFU kg-1) (LP), and a basal diet supplemented with KOME (5 g kg-1) and probiotic (1 × 108 CFU kg-1) (SYN). Shrimp fed the ME, LP, and SYN diets had significantly higher survival than that of shrimp fed with the control diet for 8 weeks. Shrimp in the SYN group also had a significantly higher weight gain and total final weight in comparison with the control and other treatments. In the intestinal tract, lactic acid bacteria count was significantly higher in the SYN group, whereas the Vibrio-like bacteria count was significantly higher in the ME group than in the control group. For the health status assessment, the disease resistance of shrimp against V. alginolyticus was improved in all treatments compared to the shrimp in control. Shrimps in the SYN group had significantly lower cumulative mortality due to the significant increase in immune responses, including phenoloxidase, respiratory burst, and lysozyme activity, and the gene expression of pexn and pen4 in the haemocytes, and lgbp, sp, propoii, pexn, pen3a, pen4, and gpx in the haepatopancreas of shrimp as compared to the control. Therefore, it is suggested that a combination of KOME and probiotics can be used as a synbiotic to improve the growth performance and reduce the risk of infectious diseases caused by Vibrio and at the same time significantly contribute to the circular economy.
Collapse
Affiliation(s)
- Estuningdyah Prabawati
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan; Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, 65145, Indonesia
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Rolissa Balantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yenny Risjani
- Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, 65145, Indonesia
| | - Chun-Hung Liu
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
19
|
Song X, Fu H, Chen W. Effects of Flammulina velutipes polysaccharides on quality improvement of fermented milk and antihyperlipidemic on streptozotocin-induced mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
20
|
Healthy function and high valued utilization of edible fungi. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ruthes AC, Cantu-Jungles TM, Cordeiro LMC, Iacomini M. Prebiotic potential of mushroom d-glucans: implications of physicochemical properties and structural features. Carbohydr Polym 2021; 262:117940. [PMID: 33838817 DOI: 10.1016/j.carbpol.2021.117940] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Mushroom d-glucans are recognized as dietary fibers and as biologically active natural polysaccharides, with the advantages of being quite inexpensive for production, tolerable, and having a range of possible structures and physicochemical properties. The prebiotic potential of mushroom d-glucans has been explored in recent years, but the relationship between their various structural features and activity is poorly understood. This review focuses on comprehensively evaluating the prebiotic potential of mushroom d-glucans in face of their structural variations. Overall, mushroom d-glucans provide a unique set of different structures and physicochemical properties with prebiotic potential, where linkage type and solubility degree seem to be associated with prebiotic activity outcomes. The understanding of the effects of distinct structures and physicochemical properties in mushroom d-glucans on the gut microbiota contributes to the design and selection of new prebiotics in a more predictable way.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Thaísa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
22
|
Das AK, Nanda PK, Dandapat P, Bandyopadhyay S, Gullón P, Sivaraman GK, McClements DJ, Gullón B, Lorenzo JM. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021; 26:molecules26092463. [PMID: 33922630 PMCID: PMC8122938 DOI: 10.3390/molecules26092463] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
- Correspondence: (A.K.D.); (J.M.L.)
| | - Pramod K. Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain;
| | | | | | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, Campus Ourense, University of Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (A.K.D.); (J.M.L.)
| |
Collapse
|
23
|
Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Han H, Song KB. Effects of ultraviolet‐C irradiation on the physicochemical properties of polysaccharide films prepared from the stalk base of oyster mushrooms (
Pleurotus ostreatus
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hee‐Seon Han
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| |
Collapse
|
25
|
Wan-Mohtar WAAQI, Halim-Lim SA, Kamarudin NZ, Rukayadi Y, Abd Rahim MH, Jamaludin AA, Ilham Z. Fruiting-body-base flour from an Oyster mushroom waste in the development of antioxidative chicken patty. J Food Sci 2020; 85:3124-3133. [PMID: 32860235 DOI: 10.1111/1750-3841.15402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022]
Abstract
In a commercial oyster mushroom farm, from 300 g of the total harvest, only the cap and stem of the fruiting body parts are harvested (200 g) while the unused lower section called fruiting-body-base (FBB) is discarded (50 g). A new antioxidative FBB flour (FBBF) conversion to mixed-ratio chicken patty was recently developed which converts 16.67% of FBB into an edible flour. At the initial stage, pretreatments of FBBF were optimized at particle size (106 µm) and citric acid concentration (0.5 g/100 mL) to improve flour antioxidant responses. Such pretreatments boosted total phenolic content (2.31 ± 0.53 mg GAE/g) and DPPH (51.53 ± 1.51%) of pretreated FBBF. Mixed-ratio chicken patty containing FBBF (10%, 20%, 30%) significantly (P < 0.05) influenced the hardness, cohesiveness, springiness, and chewiness of the patties. However, only the hardness and chewiness increased proportionally with the increase FBBF in concentration. Notably, 60 panellists considered that 10% FBBF-chicken patty sensory attributes, including lightness, redness, and yellowness, is acceptable to consumers. This information could be used to market any type of commercial mushroom farm waste as alternative food products. PRACTICAL APPLICATION: This study shows that unused harvested mushroom waste from a local farm can be used to make an antioxidative chicken patty that is acceptable to consumer panellists. The converted mushroom waste into flour suggests that smaller particles and citric acid pretreatment can increase its nutritional value. This information can be used for waste conversion into new product development from any type of mushroom farm.
Collapse
Affiliation(s)
- Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Science, University of Malaya, Serdang, 50603, Malaysia
| | - Sarina Abdul Halim-Lim
- Department of Food Technology, Faculty Food Science and Technology, University Putra Malaysia, Serdang, 43400, Malaysia
| | - Nurul Zahidah Kamarudin
- Department of Food Technology, Faculty Food Science and Technology, University Putra Malaysia, Serdang, 43400, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Kuala Lumpur, 43400, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Kuala Lumpur, 43400, Malaysia
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zul Ilham
- Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Science, University of Malaya, Serdang, 50603, Malaysia.,Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
26
|
Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, Liu N, Zhao Y, Wang J, Chen X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494:108037. [DOI: 10.1016/j.carres.2020.108037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
27
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
28
|
Harada-Padermo SDS, Dias-Faceto LS, Selani MM, Alvim ID, Floh EIS, Macedo AF, Bogusz S, Dias CTDS, Conti-Silva AC, Vieira TMFDS. Umami Ingredient: Flavor enhancer from shiitake (Lentinula edodes) byproducts. Food Res Int 2020; 137:109540. [PMID: 33233168 DOI: 10.1016/j.foodres.2020.109540] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
An alternative use of shiitake stipes, usually treated as waste, was proposed for the production of a powder ingredient, rich in umami compounds, aiming its application in food. The extraction of umami compounds was optimized through the Response Surface Methodology (RSM), in order to obtain an extract with high umami taste intensity. From the optimized condition, a comparative analysis of shiitake stipes dehydration method was performed. Stipes were dehydrated by hot air drying (HD) and freeze drying (FD), submitted to extraction and the umami compounds in the extracts were compared. The comparative analysis showed that the 5' - nucleotides are more sensitive to prolonged heating, while the release of free amino acids (FAA) was favored by hot air drying. The HD samples extract showed higher Equivalent Umami Concentration (EUC). The spray drying of the HD samples extract allowed the production of a newly powder ingredient rich in umami compounds (Umami Ingredient) that can be applied in diverse food matrices. Due to the presence of umami compounds, Umami Ingredient can be a potential alternative to help in the process of sodium reduction by enhancing food flavor.
Collapse
Affiliation(s)
- Samara Dos Santos Harada-Padermo
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Department of Agri-Food Industry, Food and Nutrition. Avenida Pádua Dias 11, CEP 13418-900 Piracicaba, São Paulo, Brazil.
| | - Liara Silva Dias-Faceto
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Department of Food Engineering and Technology. Rua Cristóvão Colombo, 2265, CEP 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Miriam Mabel Selani
- Federal University of São Carlos, Lagoa do Sino Campus, Center of Natural Sciences, Rod. Lauri Simões de Barros, km 12, SP-189, CEP 18290-000 Buri, São Paulo, Brazil.
| | - Izabela Dutra Alvim
- Institute of Food Technology (ITAL), Cereal and Chocolate Technology Center (CEREAL CHOCOTEC), Av. Brasil n. 2880, Jardim Chapadão, CEP 13070-178 Campinas, São Paulo, Brazil.
| | - Eny Iochevet Segal Floh
- University of São Paulo, Institute of Biosciences, Department of Botany. Rua do Matão, 277 - Sala 107 - Butantã, CEP 05508-090 São Paulo, São Paulo, Brazil.
| | - Amanda Ferreira Macedo
- University of São Paulo, Institute of Biosciences, Department of Botany. Rua do Matão, 277 - Sala 107 - Butantã, CEP 05508-090 São Paulo, São Paulo, Brazil.
| | - Stanislau Bogusz
- University of São Paulo, São Carlos Institute of Chemistry. Av. Trabalhador Sancarlense, 400, Parque Arnold Schimidt, CEP 13566590 São Carlos, São Paulo, Brazil.
| | - Carlos Tadeu Dos Santos Dias
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Department of Agri-Food Industry, Food and Nutrition. Avenida Pádua Dias 11, CEP 13418-900 Piracicaba, São Paulo, Brazil.
| | - Ana Carolina Conti-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Department of Food Engineering and Technology. Rua Cristóvão Colombo, 2265, CEP 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Thais Maria Ferreira de Souza Vieira
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Department of Agri-Food Industry, Food and Nutrition. Avenida Pádua Dias 11, CEP 13418-900 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
29
|
Hassan RA, Shafi ME, Attia KM, Assar MH. Influence of Oyster Mushroom Waste on Growth Performance, Immunity and Intestinal Morphology Compared With Antibiotics in Broiler Chickens. Front Vet Sci 2020; 7:333. [PMID: 32596274 PMCID: PMC7300226 DOI: 10.3389/fvets.2020.00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Oyster mushroom waste (OMW) is a by-product of the agriculture industry with valuable antimicrobial, antioxidant, antifungal, and prebiotic properties. This by-product might be a useful alternative to antibiotic growth stimulators in poultry nutrition. The purpose of this research was to test the impact of OMW on the immune responses and on the morphology of intestine of broiler chickens. Four dietary therapies with five replicas of 15 birds in each, totalling 300 day- Ross 308 broiler chickens, were utilized in this study. Control chickens were fed a mixed diet that included a maize-soybean meal complemented by 1 and 2% OMW in addition to the basal diet. Furthermore, Enramycin (125 g/kg) was added to the control diet as an antibiotic. Throughout this experiment, performance was studied as well as the immune response to the Newcastle Disease Virus (NDV) and intestinal morphological traits. A substantial surge was noted in body weight gain (BWG) and feed intake (FI) of chickens after the addition of 1% OMW (p ≤ 0.05). In contrast, feed supplementation with 2% OMW, compared with the control diet, produced no noteworthy increase in BWG or the feed conversion rate (FCR). Antibiotic addition, on the other hand, increased serum cholesterol (p ≤ 0.05). After 42 days, neither OMW nor antibiotic addition affected organ mass. In contrast, antibiotic addition reduced the small intestine percentage, crypt depth and villus height (p ≤ 0.05). The Newcastle disease vaccine (NDV) antibody titer improved after feed supplementation with 1% OMW comparing with the control and antibiotic diet group. Furthermore, OMW supplementation decreased the heterophil-to-lymphocyte H/L ratio (p ≤ 0.05). The use of OMW led to a reduction in the malondialdehyde (MDA) content of the breast and liver and an increase in glutathione peroxidase. It helped to reduce glutathione, glutathione reductase, and glutathione S-transferase. In conclusion, the impact of OMW were dose-dependent, and the use of 1% OMW in broiler diets enhanced their growth and immunity. Nonetheless, supplementation with 2% OMW produced conflicting results.
Collapse
Affiliation(s)
- Reda A Hassan
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Giza, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil M Attia
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Giza, Egypt
| | - Mohamed H Assar
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Giza, Egypt
| |
Collapse
|
30
|
HUO W, QI P, CUI L, ZHANG L, DAI L, LIU Y, HU S, FENG Z, QIAO T, LI J. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:219-226. [PMID: 33117620 PMCID: PMC7573107 DOI: 10.12938/bmfh.2020-018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023]
Abstract
Polysaccharides from morels possess many characteristics beneficial to health, such as anti-tumor and immunomodulatory activities. The gut microbiota plays a critical role in the modulation of immune function. However, the impact of morel polysaccharides on the gut microbiota has not yet been explored. In this study, a high-throughput pyrosequencing technique was used to investigate the effects of MP, a new heteropolysaccharide extracted from wild morels, on the diversity and composition of microbiota along the intestine in mice, as well as the production of short-chain fatty acids (SCFAs). The results showed that MP treatment increased the number of operational taxonomic unit (OTUs) and diversity along the intestine, especially in the small intestine. MP treatment induced a significant decrease in the number of Firmicutes and a significant increase in the number of Bacteroidetes in the small intestine microbiota. It was also observed that the relative abundance of SCFA-producing bacteria, especially Lachnospiraceae, was increased in both the cecum and colon of MP-treated mice. Moreover, MP promoted the production of SCFAs in mice. These results provide a foundation for further understanding the health benefits conferred by morel polysaccharides.
Collapse
Affiliation(s)
- Wenyan HUO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Peng QI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Langjun CUI
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Liguang ZHANG
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Lu DAI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Yu LIU
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Suying HU
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Zhengping FENG
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Ting QIAO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Junzhi LI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| |
Collapse
|
31
|
Recovery of ergosterol and vitamin D2 from mushroom waste - Potential valorization by food and pharmaceutical industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
A Review on the Potential Reuse of Functional Polysaccharides Extracted from the By-Products of Mushroom Processing. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02403-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
A diet containing native or fermented wheat bran does not interfere with natural microbiota of laying hens. Animal 2020; 14:1147-1155. [PMID: 31937375 DOI: 10.1017/s1751731119003343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wheat bran (WB) is an important side product of the milling industry and can serve as dietary fiber compound for monogastric animals. The aim of this study was to evaluate the influence of native or fermented WB on the gut physiology and microbiology of laying hens. To accomplish this, 24 laying hens were fed the following diets: conventional diet without WB; 15% native WB in the diet; 15% WB fermented with Pleurotus eryngii; and 15% WB fermented with P. eryngii and a lactic acid bacterial culture. Immediately after slaughtering, digesta samples were taken from the jejunum, ileum and cecum, respectively. Total DNA was extracted and subsequently investigated with 16S DNA amplicon sequencing. Neither native nor fermented WB supplementations negatively affected the feed conversion ratio, laying performance or the relative abundances and alpha-diversity of microbiota in the intestine. Effects of WB-based diets on gut morphology were only recognized in the jejunum (reduced villum height and mucosa thickness). Likewise, WB supplementation decreased the digestibility of DM and starch. Based on these findings, it was demonstrated that different WB variants are applicable without exerting practically negative consequences on performance or on gut microbiota. Fermentation improved the digestibility/retention of dietary fat and phosphorus. However, no further beneficial effects were observed. This study also allowed a more in-depth view on the laying hens' gut microbiome and its variation within the gut segments.
Collapse
|
34
|
Skenderidis P, Mitsagga C, Lampakis D, Petrotos K, Giavasis I. The Effect of Encapsulated Powder of Goji Berry ( Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms 2019; 8:microorganisms8010057. [PMID: 31905688 PMCID: PMC7022968 DOI: 10.3390/microorganisms8010057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of the present work was to investigate the potential prebiotic action of Goji berry powder on selected probiotic bacteria grown in a nutritive synthetic substrate and in simulated gastric and intestinal juices. Different probiotic strains of Bifidobacterium and Lactobacillus were grown in these substrates with or without the addition of encapsulated goji berry extracts of different polysaccharide and polyphenol contents. The results proved that the addition of the extracts promoted the proliferation of probiotic strains and, in particular, increased the number of bacterial colonies of Bifidobacterium animalis subsp. lactis (Bb12), Bifidobacterium longum (Bb46), and Lactobacillus casei by 2, 0.26, and 1.34 (log cfu/mL), respectively. Furthermore, the prebiotic effect seems to be correlated to Goji berry polysaccharides and/or polyphenols, higher contents of which (under the tested concentrations) could increase the stress tolerance of B. lactis and B. longum in a simulated gastrointestinal environment. According to the findings of the present research, it can be suggested that the Goji berry encapsulated extracts could be used as prebiotic additives in food or nutraceuticals, in order to stimulate growth or protect the viability of probiotic strains of Bifidobacterium and Lactobacillus.
Collapse
Affiliation(s)
- Prodromos Skenderidis
- Department of Biosystems Engineering/Agricultural Technology, University of Thessaly, 41110 Larissa, Greece; (D.L.); (K.P.)
- Department of Food Technology, University of Thessaly, End of N. Temponera Street, 43100 Karditsa, Greece; (C.M.); (I.G.)
- Correspondence:
| | - Chrysanthi Mitsagga
- Department of Food Technology, University of Thessaly, End of N. Temponera Street, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Dimitrios Lampakis
- Department of Biosystems Engineering/Agricultural Technology, University of Thessaly, 41110 Larissa, Greece; (D.L.); (K.P.)
| | - Konstantinos Petrotos
- Department of Biosystems Engineering/Agricultural Technology, University of Thessaly, 41110 Larissa, Greece; (D.L.); (K.P.)
| | - Ioannis Giavasis
- Department of Food Technology, University of Thessaly, End of N. Temponera Street, 43100 Karditsa, Greece; (C.M.); (I.G.)
| |
Collapse
|
35
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Structure, bioactivity and applications of natural hyperbranched polysaccharides. Carbohydr Polym 2019; 223:115076. [PMID: 31427017 DOI: 10.1016/j.carbpol.2019.115076] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
Abstract
In recent years, hyperbranched polymers, especially the natural hyperbranched polysaccharides (HBPSs), are receiving much attention due to their diverse biological activities and applications. With high degree of branching (DB), HBPSs mainly exist in the form of either a comb-brush shape, dendrimer-like particulate, or globular particle. HBPSs also possess some unique properties, such as high density, large spatial cavities, and numerous terminal functional groups, which distinguish them from other polymers. As a natural biopolymer, HBPS has excellent bioavailability, biocompatibility, and biodegradability, which have versatile applications in the fields of food, medicine, cosmetic, and nanomaterials. In this review, the source and structure of HBPSs from plant, animal, microbial and fungal origins as well as their biological functions and applications are covered, with the aim of further advancing the research of their structure and bioactivity.
Collapse
|
37
|
Song AX, Mao YH, Siu KC, Tai WCS, Wu JY. Protective effects of exopolysaccharide of a medicinal fungus on probiotic bacteria during cold storage and simulated gastrointestinal conditions. Int J Biol Macromol 2019; 133:957-963. [DOI: 10.1016/j.ijbiomac.2019.04.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
|
38
|
Huang ML, Huang JY, Kao CY, Fang TJ. Fermented soymilk and soy and cow milk mixture, supplemented with orange peel fiber or Tremella flava fermented powder as prebiotics for high exopolysaccharide-producing Lactobacillus pentosus SLC 13. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4373-4382. [PMID: 30851051 DOI: 10.1002/jsfa.9671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND A high exopolysaccharide-producing Lactobacillus pentosus SLC 13 strain was isolated from mustard pickles and showed the characteristics of a probiotic. Orange peel fiber powder (OPFP) and Tremella flava fermented powder (TFP) were shown to be potential prebiotics for L. pentosus SLC 13. The present study aimed to further develop new symbiotic fermented lactic acid beverages using SLC 13 with different proportions of cow milk and soymilk as food substrates, as well as with OPFP or TFP as prebiotics. RESULTS Acidification rate (soymilk groups, 3.02-4.37 mU min-1 ; soymilk/milk mixture groups, 1.33-2.84 mU min-1 ) and fermentation time (soymilk groups, 7.09-9.25 h; soymilk/milk mixture groups, 12.51-27.34 h) indicated that soymilk represents a suitable substrate for SLC 13-mediated fermentation. Moreover, OPFP and TFP induced a higher exopolysaccharide production of SLC 13 and a higher water holding capacity of fermented beverages. Sensory evaluations suggested that soymilk groups fermented with 10 g kg-1 OPFP (SF-1.0P) and that with 5 g kg-1 TFP (SF-0.5T) and also soymilk/milk mixture groups fermented with 5 g kg-1 OPFP (HSMF-0.5P) and that with 10 g kg-1 TFP (HSMF-1.0T) represent potential fermented drinks. Additionally, SF-1.0P and SF-0.5T products could be preserved for at least 21 days at 4 °C, with high viable cell counts (> 8.8 log10 CFU mL-1 ) and water holding capacity. CONCLUSION In the present study, we developed SF-1.0P and SF-0.5T products as a new symbiotic fermented lactic acid beverages. However, in the future, consumer acceptability could be improved by properly regulating the ratio of sugar to acid or seasoning. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Lang Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Yao Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yen Kao
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony J Fang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Food Industry Research and Development Institute, Hsinchu, Taiwan
| |
Collapse
|
39
|
Ghosh S, Khatua S, Acharya K. Crude polysaccharide from a wild mushroom enhances immune response in murine macrophage cells by TLR/NF-κB pathway. J Pharm Pharmacol 2019; 71:1311-1323. [PMID: 31134626 DOI: 10.1111/jphp.13104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/22/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
Mushroom crude polysaccharides offer a complete package of various medicinal activities. In this context, the present study aimed to unveil structural and biomedical properties of crude polysaccharide (MLHWP) obtained from an edible wild mushroom Macrocybe lobayensis (R. Heim) Pegler & Lodge.
Method
Chemical characterization was accomplished with the help of spectrophotometry, Fourier-transform infrared spectroscopy, HPTLC and GC-MS. Immunomodulatory activity of the crude polysaccharide and its signalling mechanism was assessed using RAW 264.7 cells. Furthermore, antioxidant activity was analysed based on radical scavenging, metal ion chelating and reducing effect.
Key findings
Compositional study revealed that MLHWP possessed triple helical structure and its backbone consisted of β-linked glucan along with xylose, rhamnose, mannose and galactose. Investigation on bioactive potency revealed that MLHWP augmented macrophage activity in terms of viability, phagocytosis, NO and ROS generation. Gene expression studies indicated that MLHWP signalled through TLR and modulated expression of immunomodulation-related genes including NF-κB, COX-2, IFN-γ, TNF-α, iNOS and Iκ-βα. Besides, MLHWP displayed noticeable antioxidant potential as reflected in all investigating assays.
Conclusions
Overall, the results portrayed possibility of MLHWP as pharmaceutical agent with multidimensional application.
Collapse
Affiliation(s)
- Sandipta Ghosh
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
40
|
Polysaccharide fractions from Fortunella margarita affect proliferation of Bifidobacterium adolescentis ATCC 15703 and undergo structural changes following fermentation. Int J Biol Macromol 2019; 123:1070-1078. [DOI: 10.1016/j.ijbiomac.2018.11.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
|
41
|
Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed Pharmacother 2018; 105:377-394. [DOI: 10.1016/j.biopha.2018.05.138] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
|
42
|
Khan SH, Mukhtar N, Iqbal J. Role of Mushroom as Dietary Supplement on Performance of Poultry. J Diet Suppl 2018; 16:611-624. [DOI: 10.1080/19390211.2018.1472707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sohail Hassan Khan
- Poultry Research Institute, Livestock and Dairy Development Department, Shamsabad, Rawalpindi, Pakistan
| | - Nasir Mukhtar
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Javid Iqbal
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
43
|
Bilbao-Sainz C, Chiou BS, Punotai K, Olson D, Williams T, Wood D, Rodov V, Poverenov E, McHugh T. Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars. J Food Sci 2018; 83:1880-1887. [PMID: 29846934 DOI: 10.1111/1750-3841.14186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 12/01/2022]
Abstract
Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. PRACTICAL APPLICATION Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars.
Collapse
Affiliation(s)
| | - Bor-Sen Chiou
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Kaylin Punotai
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Donald Olson
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Tina Williams
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Delilah Wood
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Victor Rodov
- Postharvest and Food Science Inst., Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Elena Poverenov
- Postharvest and Food Science Inst., Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Tara McHugh
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| |
Collapse
|
44
|
Zhou F, Jiang X, Wang T, Zhang B, Zhao H. Lyciumbarbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Front Microbiol 2018; 9:1034. [PMID: 29867910 PMCID: PMC5968096 DOI: 10.3389/fmicb.2018.01034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Lycium barbarum is a boxthorn that produces the goji berries. The aim of the current study was to evaluate the proliferative effect of L. barbarum polysaccharides (LBP) on probiotics. LBP was extracted from goji berries and its monosaccharide composition characterized by gas chromatography (GC). The LBP extract contained arabinose, rhamnose, xylose, mannose, galactose, and glucose. LBP obviously promoted the proliferation of lactic acid bacteria (LAB) strains, especially Bifidobacterium longum subsp. infantis Bi-26 and Lactobacillus acidophilus NCFM. In the presence of LBP in the growth medium, the β-galactosidase (β-GAL) and lactate dehydrogenase (LDH) activities of strain Bi-26 significantly increased. The activities of β-GAL, LDH, hexokinase (HK), 6-phosphofructokinase (PFK), and pyruvate kinase (PK) of strain NCFM significantly increased under those conditions. LAB transcriptome sequencing analysis was performed to elucidate the mechanism responsible for the proliferative effect of LBP. The data revealed that LBP promoted the bacterial biosynthetic and metabolic processes, gene expression, transcription, and transmembrane transport. Pyruvate metabolism, carbon metabolism, phosphotransferase system (PTS), and glycolysis/gluconeogenesis genes were overexpressed. Furthermore, LBP improved cell vitality during freeze-drying and tolerance of the gastrointestinal environment. In summary, LBP can be used as a potential prebiotic for Bifidobacterium and Lactobacillus.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoying Jiang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Tao Wang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Bolin Zhang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
45
|
Song AX, Mao YH, Siu KC, Wu JY. Bifidogenic effects of Cordyceps sinensis fungal exopolysaccharide and konjac glucomannan after ultrasound and acid degradation. Int J Biol Macromol 2018; 111:587-594. [DOI: 10.1016/j.ijbiomac.2018.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
46
|
Wang XM, Li XB, Peng Y. Impact of Qi-invigorating traditional Chinese medicines on intestinal flora: A basis for rational choice of prebiotics. Chin J Nat Med 2018; 15:241-254. [PMID: 28527509 DOI: 10.1016/s1875-5364(17)30041-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/30/2023]
Abstract
According to the theory of traditional Chinese medicine (TCM), Qi (vital energy) is regarded as a driving force of biological activities in human body, including both nutrient substances and organ functions. Qi-invigorating TCMs are widely used to treat various symptoms and disorders, such as fatigue, obesity, immunosuppression, intestinal flora imbalance, and gastrointestinal diseases, in which Qi is considered to be reduced or depleted. Interestingly, abundant clinical evidences suggest that these disorders are associated with the alternation of intestinal flora, which directly affects disease status. Herein we review the interaction between gut microbiota and Qi-invigorating TCMs under healthy and disease conditions and discuss the mechanisms of action and applications of Qi-invigorating TCMs in enhancing health status through microbial alternation. A better understanding of the role of Qi-invigorating TCMs in modulating microbial composition and the association between intestinal microbiota and diseases would help reveal the clinical consequences of microbiota alteration and explore opportunities to harness this symbiotic relationship to improve public health.
Collapse
Affiliation(s)
- Xiao-Meng Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Bo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
48
|
Mao YH, Song AX, Yao ZP, Wu JY. Protective effects of natural and partially degraded konjac glucomannan on Bifidobacteria against antibiotic damage. Carbohydr Polym 2018; 181:368-375. [DOI: 10.1016/j.carbpol.2017.10.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023]
|
49
|
Novel Prospective of Wild Mushroom Polysaccharides as Potential Prebiotics. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem 2017; 243:373-381. [PMID: 29146352 DOI: 10.1016/j.foodchem.2017.09.149] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
Mushrooms have been used extensively, owing to their nutritional and medicinal value, for thousands of years. Modern research confirms the therapeutic effect of traditionally used species. Inflammation is a natural response of the immune system to damaging factors, e.g. physical, chemical and pathogenic. Deficiencies of antioxidants, vitamins, and microelements, as well as physiological processes, such as aging, can affect the body's ability to resolve inflammation. Mushrooms are rich in anti-inflammatory components, such as polysaccharides, phenolic and indolic compounds, mycosteroids, fatty acids, carotenoids, vitamins, and biometals. Metabolites from mushrooms of the Basidiomycota taxon possess antioxidant, anticancer, and most significantly, anti-inflammatory properties. Recent reports indicate that edible mushroom extracts exhibit favourable therapeutic and health-promoting benefits, particularly in relation to diseases associated with inflammation. In all certainty, edible mushrooms can be referred to as a "superfood" and are recommended as a valuable constituent of the daily diet.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agata Grzywacz-Kisielewska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|