1
|
Reiche T, Hageskal G, Hoel S, Tøndervik A, Nærdal GK, Heggeset TMB, Haugen T, Trøen HH, Jakobsen AN. Disinfection in a salmon processing plant: Impact on bacterial communities and efficacy towards foodborne bacteria and biofilms. Int J Food Microbiol 2024; 424:110853. [PMID: 39116462 DOI: 10.1016/j.ijfoodmicro.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Salmon aquaculture is the fastest growing food production system in the world. Deficiencies in the quality or safety of salmon can have global repercussions. Controlling food safety aspects during production is therefore essential. Here, we investigate the state of hygiene in a salmon processing plant using next generation sequencing and classical culture-dependent methods to characterize the surface microbiota before and after cleaning and disinfection (C&D) at ten surface sampling points. Total aerobic counts revealed an average reduction in the bacterial loads of 1.1 log CFU/cm2 by C&D. The highest relative abundance in the core microbiota before C&D was assigned to Acinetobacter, Mycoplasmataceae, Pseudomonas and Enterobacteriaceae in descending order. After C&D, we observed a significant increase in the relative abundance of Pseudomonas (p < 0.05). However, variations were found between conveyors, processing machines and drains. To assess the efficacy of commercial disinfectants, we performed susceptibility assays using advanced robotic high-throughput technologies and included foodborne bacteria which may affect food safety and spoilage. These included 128 Pseudomonas isolates, 46 Aeromonas isolates and 59 Enterobacterales isolates sampled from the salmon processing plant. Generally, minimum inhibitory concentrations (MICs) of the disinfectants were below the user concentration recommended by the producer for most isolates. BacTiter-Glo biofilm assays revealed that 30 min exposure to six out of eight commercial disinfectants resulted in an average reduction of relative luminescence >95 % in 59 single-species biofilms selected for screening. However, disinfection alone may not always be sufficient to eradicate biofilms completely. C&D routines must therefore be continuously assessed to maintain food safety and quality. The results from this study can contribute to understand and improve the state of hygiene in salmon processing environments.
Collapse
Affiliation(s)
- Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway.
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Guro Kruge Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | | | - Tone Haugen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Hanne Hein Trøen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| |
Collapse
|
2
|
Guron GKP, Cassidy JM, Chen CY, Paoli GC. Transfer of beef bacterial communities onto food-contact surfaces. Front Microbiol 2024; 15:1450682. [PMID: 39435439 PMCID: PMC11491791 DOI: 10.3389/fmicb.2024.1450682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Food spoilage and pathogenic bacteria on food-contact surfaces, especially biofilm-forming strains, can transfer to meats during processing. The objectives of this study were to survey the bacterial communities of beef cuts that transfer onto two commonly used food-contact surfaces, stainless steel (SS) and high-density polyethylene (HDPE) and identify potentially biofilm-forming strains. Methods Top round, flank, chuck, and ground beef were purchased from 3 retail stores. SS and HDPE coupons (approximately 2cm × 5cm) were placed on beef portions (3h, 10°C), after which, the coupons were submerged halfway in PBS (24h, 10°C). Bacteria from the beef cuts and coupon surfaces (n = 3) were collected, plated on tryptic soy agar plates and incubated (5 days, 25°C). Bacterial isolates were identified by 16S rRNA gene amplicon sequencing and assayed for biofilm formation using a crystal violet binding (CV) assay (72h, 10°C). Additionally, beef and coupon samples were collected for bacterial community analysis by 16S rRNA gene amplicon sequencing. Results and discussion Sixty-one of 972 beef isolates, 29 of 204 HDPE isolates, and 30 of 211 SS isolates were strong biofilm-formers (Absorbance>1.000 at 590 nm in the CV assay). Strong-binding isolates identified were of the genera Pseudomonas, Acinetobacter, Psychrobacter, Carnobacterium, and Brochothrix. Coupon bacterial communities among stores and cuts were distinct (p < 0.001, PERMANOVA), but there was no distinction between the communities found on HDPE or SS coupons (p > 0.050, PERMANOVA). The bacterial communities identified on the coupons may help determine the communities capable of transferring and colonizing onto surfaces, which can subsequently cross-contaminate foods.
Collapse
Affiliation(s)
- Giselle K. P. Guron
- Oak Ridge Institute for Science and Education, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
| | - Jennifer M. Cassidy
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - George C. Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
3
|
Merino N, Pagán E, Berdejo D, Worby CJ, Young M, Manson AL, Pagán R, Earl AM, García-Gonzalo D. Dynamics of microbiome and resistome in a poultry burger processing line. Food Res Int 2024; 193:114842. [PMID: 39160043 DOI: 10.1016/j.foodres.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Traditionally, surveillance programs for food products and food processing environments have focused on targeted pathogens and resistance genes. Recent advances in high throughput sequencing allow for more comprehensive and untargeted monitoring. This study assessed the microbiome and resistome in a poultry burger processing line using culturing techniques and whole metagenomic sequencing (WMS). Samples included meat, burgers, and expired burgers, and different work surfaces. Microbiome analysis revealed spoilage microorganisms as the main microbiota, with substantial shifts observed during the shelf-life period. Core microbiota of meat and burgers included Pseudomonas spp., Psychrobacter spp., Shewanella spp. and Brochothrix spp., while expired burgers were dominated by Latilactobacillus spp. and Leuconostoc spp. Cleaning and disinfection (C&D) procedures altered the microbial composition of work surfaces, which still harbored Hafnia spp. and Acinetobacter spp. after C&D. Resistome analysis showed a low overall abundance of resistance genes, suggesting that effective interventions during processing may mitigate their transmission. However, biocide resistance genes were frequently found, indicating potential biofilm formation or inefficient C&D protocols. This study demonstrates the utility of combining culturing techniques and WMS for comprehensive of the microbiome and resistome characterization in food processing lines.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisa Pagán
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Colin J Worby
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Young
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rafael Pagán
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego García-Gonzalo
- Departamento de Producción Animal Y Ciencia de Los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain.
| |
Collapse
|
4
|
Veselá H, Kameník J, Dušková M, Ježek F, Svobodová H. Effect of Dry Aging of Pork on Microbiological Quality and Instrumental Characteristics. Foods 2024; 13:3037. [PMID: 39410073 PMCID: PMC11476040 DOI: 10.3390/foods13193037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Meat aging is an important process that affects the quality of meat and is traditionally used mainly for beef. However, in recent years, there has been an increasing demand for pork products subjected to dry aging. The aim of this study was to compare selected parameters (microbiological quality, instrumental analyses of texture and color of meat, weight loss) of pork neck and loin with bone and skin together subjected to dry aging for 14 days. The microbiological profile (total viable psychrotrophic count, Enterobacteriaceae, psychrotrophic lactic acid bacteria, Pseudomonas spp.) on the surface of the meat with the skin and the lateral cutting surfaces without skin was compared on the first day after slaughter and after 14 days of dry aging. The results of this study demonstrated that dry aging did not significantly deteriorate the microbiological profile. Statistically significant weight losses were observed after 14 days of aging. The dry aging of pork had no significant effect on lightness (L*), redness (a*), and shear force. Significant differences were observed for yellowness (b*) and meat hardness (p < 0.05).
Collapse
Affiliation(s)
| | | | - Marta Dušková
- Department of Animal Origin Food & Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno-Královo Pole, Czech Republic; (H.V.); (J.K.); (F.J.); (H.S.)
| | | | | |
Collapse
|
5
|
Zhou G, Dong P, Luo X, Zhu L, Mao Y, Liu Y, Zhang Y. Combined effects of cold and acid on dual-species biofilms of Pseudomonas fluorescens and Listeria monocytogenes under simulated chilled beef processing conditions. Food Microbiol 2024; 117:104394. [PMID: 37919003 DOI: 10.1016/j.fm.2023.104394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Interactions across bacterial species boundaries are usually influenced by environmental stresses, yet little has been evaluated regarding multifactorial stresses on the fate of dual-species biofilm formation in food industry. In this study, the processing conditions of chilled beef were established as a combination of cold and acid stresses (4 °C and pH 5.4), with pH 7.0 or 25 °C serving as the controls, to investigate the interaction of dual-species biofilm between Pseudomonas fluorescens and Listeria monocytogenes. Dual-species biofilms significantly increased biofilm formation at 72 h under the condition of 25°C-pH7.0 and 25°C-pH5.4 (P < 0.05). Compared with mono-species biofilms, the cell numbers of L. monocytogenes in dual-species biofilms were lower at 25 °C (P < 0.05), however, the adherent cells of L. monocytogenes was higher in dual-species biofilms at 4 °C (P < 0.05). Furthermore, the amount of extracellular polysaccharides and proteins secreted by single P. fluorescens biofilms at 4 °C was more than three times than those at 25 °C. The surface-enhanced Raman spectroscopy further profiled the variability of extracellular polymeric substances (EPS) composition. Additionally, RT-qPCR results revealed an upregulation of biofilm-related and genes in co-culture species. It provides valuable insights into the strategies for removing mixed biofilms under diverse stressful conditions in practical food processing.
Collapse
Affiliation(s)
- Guanghui Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China.
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China.
| |
Collapse
|
6
|
Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S, Minkina T, Atroshchenko Y. Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. STRESS BIOLOGY 2024; 4:8. [PMID: 38273092 PMCID: PMC10810767 DOI: 10.1007/s44154-023-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.
Collapse
Affiliation(s)
- L Perelomov
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia.
| | - V D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - M Gertsen
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| | - O Sizova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - I Perelomova
- Tula State University, Lenin Avenue, 92, Tula, 300026, Russia
| | - S Kozmenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - T Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Y Atroshchenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| |
Collapse
|
7
|
Extracellular matrix affects mature biofilm and stress resistance of psychrotrophic spoilage Pseudomonas at cold temperature. Food Microbiol 2023; 112:104214. [PMID: 36906314 DOI: 10.1016/j.fm.2023.104214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Psychrotrophic Pseudomonas as the dominant spoilage bacteria, have biofilm forming ability, increasing persistence and contamination in the chilled food. Biofilm formation of spoilage Pseudomonas at cold temperature was documented, however, role of extracellular matrix in mature biofilm and stress resistance of psychrotrophic Pseudomonas are much less abundant. The aim of this study was to investigate the biofilm forming characteristics of three spoilers P. fluorescens PF07, P. lundensis PL28, and P. psychrophile PP26 at 25 °C, 15 °C and 4 °C, and to explore their stress resistance to chemical and thermal treatments of mature biofilms. The results showed that biofilm biomass of three Pseudomonas at 4 °C was significantly higher than that at 15 °C and 25 °C. The secretion of extracellular polymeric substances (EPS) greatly increased in those Pseudomonas under low temperature, of which extracellular protein constituted about 71.03%-77.44%. Compared to 25 °C, the mature biofilms were observed to more aggregation and thicker spatial structure at 4 °C ranging from 42.7 to 54.6 μm, in contrast to 25.0-29.8 μm at 25 °C, especially strain PF07. These Pseudomonas biofilms switched into moderate hydrophobicity, and their swarming and swimming were significantly inhibited at low temperature. Furthermore, the resistance to NaClO and heating at 65 °C apparently enhanced for mature biofilm formed at 4 °C, indicating the difference in EPS matrix production influenced the stress resistance of biofilm. In addition, three strains contained alg and psl operons for exopolysaccharide biosynthesis, and biofilm related genes of algK, pslA, rpoS, and luxR were significantly up-regulated, while flgA gene was down-regulated at 4 °C compared to 25 °C, consistent with the above phenotype changes. Thus, the dramatic increase of mature biofilm and their stress resistance in psychrotrophic Pseudomonas were associated with large secretion and protection of extracellular matrix under low temperature, which provide a theoretical basis for subsequent biofilm control during cold chain.
Collapse
|
8
|
Thomassen GMB, Reiche T, Hjørungnes M, Mehli L. High Disinfectant Tolerance in Pseudomonas spp. Biofilm Aids the Survival of Listeria monocytogenes. Microorganisms 2023; 11:1414. [PMID: 37374916 DOI: 10.3390/microorganisms11061414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudomonas spp. are the most commonly found bacteria in food-processing environments due to properties such as a high growth rate at low temperatures, a high tolerance of antimicrobial agents, and biofilm formation. In this study, a set of Pseudomonas isolates originating from cleaned and disinfected surfaces in a salmon processing facility were screened for biofilm formation at 12 °C. A high variation in biofilm formation between the isolates was observed. Selected isolates, in both planktonic and biofilm states, were tested for resistance/tolerance to a commonly used disinfectant (peracetic acid-based) and antibiotic florfenicol. Most isolates showed a much higher tolerance in the biofilm state than in the planktonic state. In a multi-species biofilm experiment with five Pseudomonas strains with and without a Listeria monocytogenes strain, the Pseudomonas biofilm appeared to aid the survival of L. monocytogenes cells after disinfection, underscoring the importance of controlling the bacterial load in food-processing environments.
Collapse
Affiliation(s)
- Gunn Merethe Bjørge Thomassen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martinus Hjørungnes
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lisbeth Mehli
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
9
|
High biofilm-forming Pseudomonas strains isolated from poultry slaughterhouse surfaces: Their importance in the persistence of Salmonella enteritidis in slaughterhouses. Int J Food Microbiol 2023; 390:110126. [PMID: 36791517 DOI: 10.1016/j.ijfoodmicro.2023.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The surfaces of poultry slaughterhouse equipment are significant sources of contamination with Pseudomonas strains, which leads to spoilage of poultry meat during subsequent refrigerated storage. In this study, Pseudomonas strains with high biofilm-forming ability were isolated from different surfaces of the poultry slaughterhouse equipment, identified based on molecular data, and characterized their biofilm-forming ability. After 24 h of incubation at 25 °C, 54 out of 58 Pseudomonas strains produced biofilm in vitro on polystyrene microplates. Seven isolates with high-ability to produce biofilm were identified as P. fragi (three strains), P. fluorescens (two strains), P. lundensis and P. cedrina. Despite their differences, these strains produced high amounts of biofilm in pure- and dual-species cultures with S. enteritidis on stainless steel surfaces. However, their ability to produce dual-species biofilms with S. enteritidis depends on whether S. enteritidis form the biofilm simultaneously with the Pseudomonas strains or whether Pseudomonas strains have already formed a biofilm. In concurrent inoculation, S. enteritidis participated in biofilm formation with all seven Pseudomonas strains with varying percent contributions. However, in delayed inoculation, S. enteritidis did not contribute in the biofilm formed by P. lundensis R26, P. fragi R39, and P. fluorescens R47. In addition to highlighting the complexity of bacterial interactions associated with Pseudomonas strains, these results showed that Pseudomonas strains can be implicated in Salmonella persistence in poultry slaughterhouses.
Collapse
|
10
|
Sterniša M, Gradišar Centa U, Drnovšek A, Remškar M, Smole Možina S. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Int J Food Microbiol 2023; 394:110159. [PMID: 36924752 DOI: 10.1016/j.ijfoodmicro.2023.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Pseudomonas spp. are widely distributed bacteria on surfaces in the food production and processing environment, where they form extracellular polymeric substance rich biofilms that interact with other bacteria. In this study, the influence of biofilm of Pseudomonas fragi ATCC 4973 on Listeria monocytogenes ATCC 19115 and Campylobacter jejuni NCTC 11168 was investigated at 5 °C and 15 °C on stainless steel in broth and food homogenates (fish or chicken meat). Stainless steel was then coated with PVDF-HFP/PVP/MoO3 nanocomposite and examined for surface changes (scanning electron microscope, static contact angle, Vickers hardness and elastic modulus). The effect of the prepared nanocomposite coating on P. fragi and on L. monocytogenes and C. jejuni was evaluated in mono- and co-culture. P. fragi produced more biofilm at 15 °C than at 5 °C, especially when food homogenates were used as growth media. Co-cultivation with pathogens did not affect biofilm production by P. fragi, but significant changes were observed in L. monocytogenes and C. jejuni, resulting in a decrease and increase, respectively, in the determined number of culturable biofilm cells. The first change was probably due to competition for the surface, and the second to the oxygen gradient. Stainless steel was then coated with a PVDF-HFP/PVP/MoO3 nanocomposite, which was characterised by lower roughness and higher wettability, but lower hardness compared to uncoated stainless steel. The prepared nanocoating showed bactericidal activity when tested in phosphate buffered saline. When used in food homogenates, a reduction of over 95 % in bacterial counts was observed. An abundant biofilm of P. fragi proved protective to L. monocytogenes and C. jejuni against the functionalised nanocomposite surface when tested in food homogenates. The control of spoilage Pseudomonas spp., which are common in the food production and processing environment, is important for reducing the contamination of food with spoilage bacteria and with pathogens such as L. monocytogenes and C. jejuni, which may be present in the same environment. The PVDF-HFP/PVP/MoO3 nanocomposite showed good potential for use as a coating for food contact surfaces, but possible migration of nanoparticles from the nanocomposite coating to food should be evaluated before its commercial use.
Collapse
Affiliation(s)
- Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Urška Gradišar Centa
- Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Laboratory for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Aljaž Drnovšek
- Department of Thin Films and Surfaces, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maja Remškar
- Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Biofilm formation risk assessment for psychrotrophic pseudomonas in raw milk by MALDI-TOF mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Easy and Affordable: A New Method for the Studying of Bacterial Biofilm Formation. Cells 2022; 11:cells11244119. [PMID: 36552883 PMCID: PMC9777215 DOI: 10.3390/cells11244119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bacterial biofilm formation (BBF) proves itself to be in the spotlight of microbiology research due to the wide variety of infections that it can be associated with, the involvement in food spoilage, industrial biofouling and perhaps sewage treatment. However, BBF remains difficult to study due to the lack of standardization of the existing methods and the expensive equipment needed. We aim to describe a new inexpensive and easy to reproduce protocol for a 3D-printed microfluidic device that can be used to study BBF in a dynamic manner. METHODS We used the SolidWorks 3D CAD Software (EducationEdition 2019-2020, Dassault Systèmes, Vélizy-Villacoublay, France) to design the device and the Creality3D Ender 5 printer (Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China) for its manufacture. We cultivated strains of Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. For the biofilm evaluation we used optical coherence tomography (OCT), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and crystal violet staining technique. RESULTS Based on the analysis, Enterococcus faecalis seems to produce more biofilm in the first hours while Pseudomonas aeruginosa started to take the lead on biofilm production after 24 h. CONCLUSIONS With an estimated cost around €0.1285 for one microfluidic device, a relatively inexpensive and easy alternative for the study of BBF was developed.
Collapse
|
13
|
Exploring the Diversity of Biofilm Formation by the Food Spoiler Brochothrix thermosphacta. Microorganisms 2022; 10:microorganisms10122474. [PMID: 36557727 PMCID: PMC9785830 DOI: 10.3390/microorganisms10122474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Brochothrix thermosphacta is considered as a major spoiler of meat and seafood products. This study explores the biofilm formation ability and the biofilm structural diversity of 30 multi-origin B. thermosphacta strains using a set of complementary biofilm assays (biofilm ring test, crystal violet staining, and confocal laser scanning microscopy). Two major groups corresponding to low and high biofilm producers were identified. High biofilm producers presented flat architectures characterized by high surface coverage, high cell biovolume, and high surface area.
Collapse
|
14
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
15
|
Wei Q, Wang X, Wang K, Pu H, Sun D. Formation of
Shewanella Putrefaciens
Biofilms on Nylon Film and Effects on Putrefaction of Large Yellow Croaker. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Xiaomei Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Kaiqiang Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Hongbin Pu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
| | - Da‐Wen Sun
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre Guangzhou China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre University College Dublin National University of Ireland, Belfield Dublin 4 Ireland
| |
Collapse
|
16
|
Dmitrijs F, Guo J, Huang Y, Liu Y, Fang X, Jiang K, Zha L, Cai J, Fu X. Bacterial Succession in Microbial Biofilm as a Potential Indicator for Postmortem Submersion Interval Estimation. Front Microbiol 2022; 13:951707. [PMID: 35942315 PMCID: PMC9356301 DOI: 10.3389/fmicb.2022.951707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteria acts as the main decomposer during the process of biodegradation by microbial communities in the ecosystem. Numerous studies have revealed the bacterial succession patterns during carcass decomposition in the terrestrial setting. The machine learning algorithm-generated models based on such temporal succession patterns have been developed for the postmortem interval (PMI) estimation. However, the bacterial succession that occurs on decomposing carcasses in the aquatic environment is poorly understood. In the forensic practice, the postmortem submersion interval (PMSI), which approximately equals to the PMI in most of the common drowning cases, has long been problematic to determine. In the present study, bacterial successions in the epinecrotic biofilm samples collected from the decomposing swine cadavers submerged in water were analyzed by sequencing the variable region 4 (V4) of 16S rDNA. The succession patterns between the repeated experimental settings were repeatable. Using the machine learning algorithm for establishing random forest (RF) models, the microbial community succession patterns in the epinecrotic biofilm samples taken during the 56-day winter trial and 21-day summer trial were determined to be used as the PMSI predictors with the mean absolute error (MAE) of 17.87 ± 2.48 ADD (≈1.3 day) and 20.59 ± 4.89 ADD (≈0.7 day), respectively. Significant differences were observed between the seasons and between the substrates. The data presented in this research suggested that the influences of the environmental factors and the aquatic bacterioplankton on succession patterns of the biofilm bacteria were of great significance. The related mechanisms of such influence need to be further studied and clarified in depth to consider epinecrotic biofilm as a reliable predictor in the forensic investigations.
Collapse
Affiliation(s)
- Finkelbergs Dmitrijs
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juanjuan Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Vascular Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yecao Huang
- Department of Forensic Medicine, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yafei Liu
- Department of Forensic Medicine, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xinyue Fang
- Department of Forensic Medicine, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kankan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
- Jifeng Cai
| | - Xiaoliang Fu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Forensic Medicine, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoliang Fu
| |
Collapse
|
17
|
Zhu J, Liu J, Hong X, Sun Y. Synergism With ε-Polylysine Hydrochloride and Cinnamon Essential Oil Against Dual-Species Biofilms of Listeria monocytogenes and Pseudomonas lundensis. Front Microbiol 2022; 13:885502. [PMID: 35756071 PMCID: PMC9226771 DOI: 10.3389/fmicb.2022.885502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Various pathogenic and spoilage bacteria frequently coexist in meat processing environments and can form multispecies biofilms, causing significant health and economic issues. Despite the prevalence and coexistence, only less is known about possible interactions between Listeria monocytogenes (LM) and spoilers like Pseudomonas species, and their community-wide resistance against natural preservatives. This study evaluates the interactions between mono- or dual-species biofilms formed by LM and Pseudomonas lundensis (PL), as well as the sensitivity of these bacteria in dual-species biofilms to ε-polylysine hydrochloride (ε-PLH) alone or combined with cinnamon essential oil (CEO). The results showed that the biofilm cell density of P. lundensis in dual species was higher (p < 0.05) than LM, constituting about 85% of the total population. More biofilms and exopolysaccharide both in mono- or dual species of the two psychrotrophic strains were greatly produced at 15°C than at 30°C. The biomass, biovolume, and thickness of dual-species biofilms were significantly lower than single PL biofilm when tested using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy, indicating the competitive interactions between them prevail. Additionally, ε-PLH significantly reduced the biofilm development as mono- and dual species in a concentration-dependent manner, especially single LM biofilm, which was consistent with the decrease in autoinducer-2 (AI-2) activity. LM as dual-species biofilms exhibited lower sensitivity to ε-PLH than its mono-biofilm probably due to protective effect conferred by PL. ε-PLH in combination with CEO, at the maximum sublethal concentrations (MSCs), showed enhanced inhibitory activity against dual-species biofilm formation, as evidenced by thin spare spatial structures and reduced AI-2 activity. In addition, the preformed dual biofilms were dramatically eradicated following treatment with ε-PLH combined with CEO at higher than minimum inhibitory concentration in comparison with either of the compounds used alone, indicating the synergistic antibiofilm of the two preservatives. This study reveals the competitive interactions between the two strains in dual-species biofilms, in which the dominant PL significantly contributed toward the tolerance of LM to ε-PLH, and the use of combined preservatives shows it is an effective strategy to control the multispecies biofilms in meat processing.
Collapse
Affiliation(s)
- Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jingcong Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaoli Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
18
|
Elbehiry A, Marzouk E, Aldubaib M, Moussa I, Abalkhail A, Ibrahem M, Hamada M, Sindi W, Alzaben F, Almuzaini AM, Algammal AM, Rawway M. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB Express 2022; 12:53. [PMID: 35532863 PMCID: PMC9086069 DOI: 10.1186/s13568-022-01390-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Psychrotrophic Pseudomonas is one of the significant microbes that lead to putrefaction in chilled meat. One of the biggest problems in the detection of Pseudomonas is that several species are seemingly identical. Currently, antibiotic resistance is one of the most significant challenges facing the world's health and food security. Therefore, this study was designed to apply an accurate technique for eliminating the identification discrepancy of Pseudomonas species and to study their resistance against various antimicrobials. A total of 320 chicken meat specimens were cultivated, and the isolated bacteria’ were phenotypically recognized. Protein analysis was carried out for cultured isolates via Microflex LT. The resistance of Pseudomonas isolates was recorded through Vitek® 2 AST-GN83 cards. Overall, 69 samples were identified as Pseudomonas spp. and included 18 Pseudomonas lundensis (P. lundensis), 16 Pseudomonas fragi (P. fragi), 13 Pseudomonas oryzihabitans (P. oryzihabitans), 10 Pseudomonas stutzeri (P. stutzeri), 5 Pseudomonas fluorescens (P. fluorescens), 4 Pseudomonas putida (P. putida), and 3 Pseudomonas aeruginosa (P. aeruginosa) isolates. Microflex LT identified all Pseudomonas isolates (100%) correctly with a score value ≥ 2.00. PCA positively discriminated the identified isolates into various groups. The antimicrobial resistance levels against Pseudomonas isolates were 81.16% for nitrofurantoin, 71% for ampicillin and ampicillin/sulbactam, 65.22% for cefuroxime and ceftriaxone, 55% for aztreonam, and 49.28% for ciprofloxacin. The susceptibilities were 100% for cefotaxime, 98.55% for ceftazidime, 94.20% for each piperacillin/tazobactam and cefepime, 91.3% for cefazolin. In conclusion, chicken meat was found to be contaminated with different Pseudomonas spp., with high incidence rates of P. lundensis. Microflex LT is a potent tool for distinguishing Pseudomonads at the species level.
Collapse
|
19
|
Antibacterial efficacy and possible mechanism of action of 2-hydroxyisocaproic acid (HICA). PLoS One 2022; 17:e0266406. [PMID: 35363830 PMCID: PMC8975099 DOI: 10.1371/journal.pone.0266406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.
Collapse
|
20
|
Zhang W, Wei Y, Jin X, Lv X, Liu Z, Ni L. Spoilage of tilapia by Pseudomonas putida with different adhesion abilities. Curr Res Food Sci 2022; 5:710-717. [PMID: 35479657 PMCID: PMC9035656 DOI: 10.1016/j.crfs.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 01/17/2023] Open
Abstract
Four Pseudomonas putida strains isolated from spoiled tilapia were divided into three adhesion abilities—high, medium, and low—by an in vitro mucus model. Four strains had no significant difference in spoilage ability to the inoculated fish fillets. However, according to the in vivo experiment, the spoilage caused by the four P.putida was positively correlated with their adhesion abilities. High adhesion strains not only caused more TVB-N in chilled fish, but also activated the spoilage activity of intestinal flora. The diversity of intestinal flora and the changes in volatile components in fish were detected by high-throughput sequencing and SPME-GC/MS. The strains with high adhesion abilities significantly changed the intestinal flora, which led to a significant increase in low-grade aldehydes, indole, and esters in flesh of fish, as well as the production of a fishy and pungent odor. The intestinal adhesion ability of spoilage bacteria was considered the key factor in spoilage of chilled fish. A positive correlation between the intestinal adhesion ability of P.putida and the spoilage ability in vivo. P.putida affected the intestinal microflora and led to increase in fishy and pungent odor. The intestinal adhesion ability of P.putida was considered as a key factor in spoilage.
Collapse
|
21
|
Ravi K, Falkowski NR, Scales BS, Akulava VD, Valentovich LN, Huffnagle GB. The Psychrotrophic Pseudomonas lundensis, a Non- aeruginosa Pseudomonad, Has a Type III Secretion System of the Ysc Family, Which Is Transcriptionally Active at 37°C. mBio 2022; 13:e0386921. [PMID: 35189702 PMCID: PMC8903896 DOI: 10.1128/mbio.03869-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 01/14/2023] Open
Abstract
The type III secretion system (T3SS) is a needle-like structure found in Gram-negative pathogens that directly delivers virulence factors like toxins and effector molecules into eukaryotic cells. The T3SS is classified into different families according to the type of effector and host. Of these, the Ysc family T3SS, found in Yersinia species and Pseudomonas aeruginosa, confers high virulence to bacteria against eukaryotic hosts. Here, we present the first identification and transcriptional analyses of a Ysc T3SS in a non-aeruginosa Pseudomonas species, Pseudomonas lundensis, an environmental psychrotrophic bacterium and important agent of frozen food spoilage. We have identified and sequenced isolates of P. lundensis from three very distinct ecological niches (Antarctic temporary meltwater pond, U.S. supermarket 1% pasteurized milk, and cystic fibrosis lungs) and compared these to previously reported food spoilage isolates in Europe. In this paper, we show that strains of P. lundensis isolated from these diverse environments with ambient temperatures ranging from below freezing to 37°C all possess a Ysc family T3SS secretion system and a T3S effector, ExoU. Using in vitro and in vivo transcriptomics, we show that the T3SS in P. lundensis is transcriptionally active, is expressed more highly at mammalian body temperature (37°C) than 4°C, and has even higher expression levels when colonizing a host environment (mouse intestine). Thus, this Ysc T3SS-expressing psychrotrophic Pseudomonad has an even greater range of growth niches than previously appreciated, including diseased human airways. IMPORTANCE P. lundensis strains have been isolated from environments that are distinct and diverse in both nutrient availability and environmental pressures (cold food spoilage, Antarctic melt ponds, cystic fibrosis lungs). As a species, this bacterium can grow in diverse niches that markedly vary in available nutrients and temperature, and in our study, we show that these various strains share greater than 99% sequence similarity. In addition, all isolates studied here encoded complete homologs of the Ysc family T3SS seen in P. aeruginosa. Until recently, P. aeruginosa has remained as the only Pseudomonas species to have a characterized functional Ysc (Psc) family T3SS. With the identification of a complete Ysc T3SS in P. lundensis that is expressed at 37°C in vivo, it is intriguing to wonder whether this bacterium may indeed have some level of symbiotic activity, of yet unknown type, when consumed by a mammalian host.
Collapse
Affiliation(s)
- Keerthikka Ravi
- Department of Molecular, Cellular & Developmental Biology, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittan S. Scales
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Volha D. Akulava
- Faculty of Biology, Belarusian State University, Minsk, Belarus
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Leonid N. Valentovich
- Faculty of Biology, Belarusian State University, Minsk, Belarus
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Gary B. Huffnagle
- Department of Molecular, Cellular & Developmental Biology, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Wang X, He Y, Deng Y, Zuo Z, Li D, Chen F, Qu C, Miao J. A diguanylate cyclase regulates biofilm formation in Rhodococcus sp. NJ-530 from Antarctica. 3 Biotech 2022; 12:27. [PMID: 35036275 PMCID: PMC8710177 DOI: 10.1007/s13205-021-03093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023] Open
Abstract
Biofilms represent a protective survival mode in which bacteria adapt themselves to the natural environment for survival purposes. Biofilm formation is regulated by 3,5-cyclic diguanylic acid (c-di-GMP), which is a universal second messenger molecule in bacteria. Diguanylate cyclase (DGC) catalyses c-di-GMP intracellular synthesis, which plays important roles in bacterial adaptation to the natural environment. In this study, the DGC gene was first cloned from Antarctic Rhodococcus sp. NJ-530. DGC contained 948 nucleotides and encoded 315 amino acids with a molecular weight of 34.6 KDa and an isoelectric point of 5.58. qRT-PCR demonstrated that the DGC expression level was significantly affected by lower salinity and temperature. Consistently, more biofilm formation occurred under the same stress. It has been shown that Rhodococcus sp. NJ-530 can adapt to the extreme environment in Antarctica, which is closely related to biofilm formation. These results provide an important reference for studying the adaptive mechanism of Antarctic microorganisms to this extreme environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03093-z.
Collapse
Affiliation(s)
- Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yashan Deng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Zhicong Zuo
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Dan Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
23
|
Antibacterial Mechanism of 3-Carene against the Meat Spoilage Bacterium Pseudomonas lundensis and Its Application in Pork during Refrigerated Storage. Foods 2021; 11:foods11010092. [PMID: 35010218 PMCID: PMC8750086 DOI: 10.3390/foods11010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas lundensis is the main bacterium responsible for meat spoilage and its control is of great significance. 3-Carene, a natural monoterpene, has been proved to possess antimicrobial activities. This study aimed to investigate the antibacterial activity and mechanism of 3-carene against the meat spoilage bacterium P. lundensis, and explore its application on pork. After 3-carene treatment, cellular structural changes were observed. Cell walls and membranes were destroyed, resulting in the leakage of alkaline phosphatase and cellular contents. The decreased activity of Ca2+-Mg2+-ATPase and Na+-K+-ATPase showed the imbalance of intracellular ions. Subsequently, adenosine triphosphate (ATP) content and oxidative respiratory metabolism characteristics indicated that 3-carene inhibited the metabolism of the tricarboxylic acid cycle in P. lundensis. The results of binding 3-carene with the vital proteins (MurA, OmpW, and AtpD) related to the formation of the cell wall, the composition of the cell membrane, and the synthesis of ATP further suggested that 3-carene possibly affected the normal function of those proteins. In addition, the growth of P. lundensis and increase in pH were inhibited in pork during the 5 days of cold storage after the samples were pre-treated with 3-carene. These results show the anti-P. lundensis activity and mechanism of 3-carene, and its potential use in meat preservation under refrigerated conditions.
Collapse
|
24
|
Umiralieva L, Chizhayeva A, Ibraikhan A, Avylov C, Velyamov M. Investigation of the Sanitary State of Air and Refrigeration Equipment of Meat Processing Enterprises in Kazakhstan Using the Method of Metagenomic Analysis. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Mao YC, Chuang HN, Shih CH, Hsieh HH, Jiang YH, Chiang LC, Lin WL, Hsiao TH, Liu PY. An investigation of conventional microbial culture for the Naja atra bite wound, and the comparison between culture-based 16S Sanger sequencing and 16S metagenomics of the snake oropharyngeal bacterial microbiota. PLoS Negl Trop Dis 2021; 15:e0009331. [PMID: 33857127 PMCID: PMC8078740 DOI: 10.1371/journal.pntd.0009331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Naja atra is a major venomous snake found in Taiwan. The bite of this snake causes extensive wound necrosis or necrotizing soft tissue infection. Conventional microbial culture-based techniques may fail to identify potential human pathogens and render antibiotics ineffective in the management of wound infection. Therefore, we evaluated 16S Sanger sequencing and next-generation sequencing (NGS) to identify bacterial species in the oropharynx of N. atra. Using conventional microbial culture methods and the VITEK 2 system, we isolated nine species from snakebite wounds. On the basis of the 16S Sanger sequencing of bacterial clones from agar plates, we identified 18 bacterial species in the oropharynx of N. atra, including Morganella morganii, Proteus vulgaris, and Proteus mirabilis, which were also present in the infected bite wound. Using NGS of 16S metagenomics, we uncovered more than 286 bacterial species in the oropharynx of N. atra. In addition, the bacterial species identified using 16S Sanger sequencing accounted for only 2% of those identified through NGS of 16S metagenomics. The bacterial microbiota of the oropharynx of N. atra were modeled better using NGS of 16S metagenomics compared to microbial culture-based techniques. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri were also identified in the NGS of 16S metagenomics. Understanding the bacterial microbiota that are native to the oropharynx of N. atra, in addition to the bite wound, may have additional therapeutic implications regarding empiric antibiotic selection for managing N. atra bites. Naja atra bites induce extensive wound necrotizing soft tissue infections in a substantial proportion of patients. Empiric antibiotic administration in snakebite patients is a common practice, but clinical reports indicate that this treatment was ineffective in preventing secondary infection given that the microbiota of the infected wound and oropharynx of the culprit snake were not properly established. In this study, only 9 species were detected in cobra bites using a conventional microbial culture method and the VITEK 2 system, whereas 18 species were detected in the cobra oropharynx using microbial culture-based 16S Sanger sequencing. Among these, Morganella morganii, Proteus vulgaris, and Proteus mirabilis were identified as common bacteria. Compared to microbial culture-based 16S Sanger sequencing, NGS-based 16S metagenomic sequencing detected more than 286 bacterial species. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri only appeared with 16S metagenomic sequencing. These results suggest that NGS-based 16S metagenomic sequencing is a better tool for uncovering the bacterial microbiota of the N. atra oropharynx, which may help in developing a proper therapeutic strategy for patients with N. atra bites.
Collapse
Affiliation(s)
- Yan-Chiao Mao
- Department of Emergency Medicine, Division of Clinical Toxicology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Medicine, Division of Clinical Toxicology and Occupational Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hung Shih
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Hsueh Hsieh
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Han Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Liao-Chun Chiang
- Department of Emergency Medicine, Division of Clinical Toxicology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Medicine, Division of Clinical Toxicology and Occupational Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Tsing Hua University, College of Life Sciences, Hsinchu, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (T-HH); (P-YL)
| | - Po-Yu Liu
- Department of Internal Medicine, Division of Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (T-HH); (P-YL)
| |
Collapse
|
26
|
Spyrelli ED, Ozcan O, Mohareb F, Panagou EZ, Nychas GJE. Spoilage assessment of chicken breast fillets by means of fourier transform infrared spectroscopy and multispectral image analysis. Curr Res Food Sci 2021; 4:121-131. [PMID: 33748779 PMCID: PMC7961306 DOI: 10.1016/j.crfs.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
The objective of this research was the evaluation of Fourier transforms infrared spectroscopy (FT-IR) and multispectral image analysis (MSI) as efficient spectroscopic methods in tandem with multivariate data analysis and machine learning for the assessment of spoilage on the surface of chicken breast fillets. For this purpose, two independent storage experiments of chicken breast fillets (n = 215) were conducted at 0, 5, 10, and 15 °C for up to 480 h. During storage, samples were analyzed microbiologically for the enumeration of Total Viable Counts (TVC) and Pseudomonas spp. In addition, FT-IR and MSI spectral data were collected at the same time intervals as for microbiological analyses. Multivariate data analysis was performed using two software platforms (a commercial and a publicly available developed platform) comprising several machine learning algorithms for the estimation of the TVC and Pseudomonas spp. population of the surface of the samples. The performance of the developed models was evaluated by intra batch and independent batch testing. Partial Least Squares- Regression (PLS-R) models from the commercial software predicted TVC with root mean square error (RMSE) values of 1.359 and 1.029 log CFU/cm2 for MSI and FT-IR analysis, respectively. Moreover, RMSE values for Pseudomonas spp. model were 1.574 log CFU/cm2 for MSI data and 1.078 log CFU/cm2 for FT-IR data. From the implementation of the in-house sorfML platform, artificial neural networks (nnet) and least-angle regression (lars) were the most accurate models with the best performance in terms of RMSE values. Nnet models developed on MSI data demonstrated the lowest RMSE values (0.717 log CFU/cm2) for intra-batch testing, while lars outperformed nnet on independent batch testing with RMSE of 1.252 log CFU/cm2. Furthermore, lars models excelled with the FT-IR data with RMSE of 0.904 and 0.851 log CFU/cm2 in intra-batch and independent batch testing, respectively. These findings suggested that FT-IR analysis is more efficient than MSI to predict the microbiological quality on the surface of chicken breast fillets. Poultry meat’s vulnerability to spoilage demands rapid quality assessment LWT-Food Sci. Technol.methods. FT-IR and MSI are non-invasive methods applied in a variety of meat products. SorfML is a web platform providing diverse machine learning algorithms. FT-IR analysis via lars predicted efficiently microbial loads of TVC.
Collapse
Affiliation(s)
- Evgenia D Spyrelli
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera odos 75, 11855, Athens, Greece
| | - Onur Ozcan
- Bioinformatics Group, Department of Agrifood, School of Water, Energy and Environment Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Fady Mohareb
- Bioinformatics Group, Department of Agrifood, School of Water, Energy and Environment Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera odos 75, 11855, Athens, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera odos 75, 11855, Athens, Greece
| |
Collapse
|
27
|
Husain FM, Perveen K, Qais FA, Ahmad I, Alfarhan AH, El-Sheikh MA. Naringin inhibits the biofilms of metallo-β-lactamases (MβLs) producing Pseudomonas species isolated from camel meat. Saudi J Biol Sci 2021; 28:333-341. [PMID: 33424314 PMCID: PMC7785451 DOI: 10.1016/j.sjbs.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/06/2022] Open
Abstract
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Endo A, Koizumi R, Nakazawa Y, Shiwa Y, Maeno S, Kido Y, Irisawa T, Muramatsu Y, Tada K, Yamazaki M, Myoda T. Characterization of the microbiota and chemical properties of pork loins during dry aging. Microbiologyopen 2021; 10:e1157. [PMID: 33415844 PMCID: PMC7914123 DOI: 10.1002/mbo3.1157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Dry aging (DA) allows for the storage of meat without packaging at 0 to 3°C for several weeks. It enhances the production of pleasant flavors, tenderness, and juiciness in meat. Due to the long storage period and roles of indigenous microbiota in the maturation of several meat products, the microbiota of DA meat is of interest in terms of microbial contributions and food hygiene but has not yet been characterized in detail. This study identified the microbiota of pork loins during DA using culturing and culture‐independent meta‐16S rRNA gene sequencing and elucidated its characteristics. The amounts of free amino acids and profiles of aroma‐active compounds were also monitored by high‐performance liquid chromatography and gas chromatography, respectively. The meta‐16S rRNA gene sequencing revealed that Pseudomonas spp. generally dominated the microbiota throughout DA; however, the culturing analysis showed marked changes in the species composition during DA. Acinetobacter spp. were the second most dominant bacteria before DA in the culture‐independent analysis but became a minor population during DA. The cell numbers of yeasts showed an increased tendency during DA, and Debaryomyces hansenii was the only microorganism isolated from all meat samples throughout DA. Well‐known foodborne pathogens were not observed in two microbiota analyses. The amounts of free amino acids were increased by DA, and the number of aroma‐active compounds and their flavor dilution values markedly changed during DA. Most microbial isolates showed positive reactions with proteolytic and lipolytic activities, suggesting their contribution to tenderness and aroma production in DA meats.
Collapse
Affiliation(s)
- Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Ryosuke Koizumi
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan.,Department of Agricultural Innovation for Sustainability, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Yozo Nakazawa
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.,NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Yoshihiko Kido
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Tomohiro Irisawa
- Department of Agricultural Innovation for Sustainability, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Yoshiki Muramatsu
- Department of Bioproduction and Environment Engineering, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Kotaro Tada
- Department of Agricultural Innovation for Sustainability, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Masao Yamazaki
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Takao Myoda
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| |
Collapse
|
29
|
Wickramasinghe NN, Hlaing MM, Ravensdale JT, Coorey R, Chandry PS, Dykes GA. Characterization of the biofilm matrix composition of psychrotrophic, meat spoilage pseudomonads. Sci Rep 2020; 10:16457. [PMID: 33020559 PMCID: PMC7536239 DOI: 10.1038/s41598-020-73612-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
Psychrotrophic Pseudomonas species are the key spoilage bacteria of aerobically stored chilled meat. These organisms readily form biofilms on meat under refrigerated conditions leading to consumer rejection and associated economic losses. Limited information is available on the matrix composition of the biofilms formed by these bacteria. We quantified and characterized the main components of the matrix of mono-species biofilms of selected Pseudomonas fragi and Pseudomonas lundensis strains using chemical analysis and Raman spectroscopy. The biofilms were grown at 10 °C and 25 °C on nitro-cellulose membranes placed on surface sterilized beef cuts. Extra-cellular polymeric substances of the matrix were extracted in soluble and bound forms and were chemically assessed for total carbohydrates, proteins and extra-cellular DNA. Both Pseudomonas species showed a significant increase in total carbohydrates and total proteins when grown at 10 °C as compared to 25 °C. Extra-cellular DNA did not show a strong correlation with growth temperature. Raman spectra were obtained from planktonic bacteria and membrane grown biofilms at 10 °C and 25 °C. Higher levels of guanine were detected in planktonic cells as compared to biofilm cells. This study suggests that psychrotrophic Pseudomonas species may respond to cold stress by increasing extra-cellular polymer secretions.
Collapse
Affiliation(s)
- Nirmani N Wickramasinghe
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
- CSIRO, Agriculture and Food, Werribee, VIC, 3030, Australia
| | - Mya M Hlaing
- CSIRO, Agriculture and Food, Werribee, VIC, 3030, Australia
| | | | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | | | - Gary A Dykes
- Graduate Research School, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
30
|
The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods. Molecules 2020; 25:molecules25112641. [PMID: 32517201 PMCID: PMC7321256 DOI: 10.3390/molecules25112641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial biofilms contribute to problems with preserving food hygiene, jeopardizing any conventional intervention method used by the food industry. Hence, the approach of using essential oil (EO) compounds effective in biofilm control has considerable merit and deserves in-depth research. In this study, the effect of selected EO compounds (eugenol, trans-cinnamaldehyde, citronellol, and terpineol) was assessed on Escherichia coli biofilm control by plate count, resazurin assay, and Syto® 9/PI (-/propidium iodide) staining coupled with flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The selected EO compounds effectively inhibited the growth of planktonic E. coli at low concentrations of 3–5 mM, revealing a high antimicrobial activity. EO compounds markedly interfered with biofilms too, with trans-cinnamaldehyde causing the most prominent effects. Its antibiofilm activity was manifested by a high reduction of cell metabolic activity (>60%) and almost complete reduction in biofilm cell culturability. In addition, almost 90% of the total cells had perturbed cell membranes. Trans-cinnamaldehyde further impacted the cell morphology resulting in the filamentation and, thus, in the creation of a mesh network of cells. Citronellol scored the second in terms of the severity of the observed effects. However, most of all, it strongly prevented native microcolony formation. Eugenol and terpineol also affected the formation of a typical biofilm structure; however, small cell aggregates were still repeatedly found. Overall, eugenol caused the mildest impairment of cell membranes where 50% of the total cells showed the Syto® 9+/PI– pattern coupled with healthy cells and another 48% with injured cells (the Syto® 9+/PI+). For terpineol, despite a similar percentage of healthy cells, another 45% was shared between moderately (Syto® 9+PI+) and heavily (Syto® 9–PI+) damaged cells. The results highlight the importance of a multi-method approach for an accurate assessment of EO compounds’ action against biofilms and may help develop better strategies for their effective use in the food industry.
Collapse
|
31
|
Sterniša M, Klančnik A, Smole Možina S. Spoilage Pseudomonas biofilm with Escherichia coli protection in fish meat at 5 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4635-4641. [PMID: 30895626 DOI: 10.1002/jsfa.9703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pseudomonas are part of the indigenous microbiota of different foods, where they gradually cause spoilage. In fish meat, Pseudomonas fragi and Pseudomonas psychrophila have been identified as important spoilers. The initial aim of this study was to investigate the physiological characteristics, adhesion, and biofilm of P. fragi and P. psychrophila under temperatures related to the fish-processing industry. The further aim was to define the problem of increased growth of pathogenic bacteria in the presence of spoilage bacteria in vitro and in fish meat. RESULTS Temperature dependence on physiological characteristics, adhesion, and biofilm was observed. Hydrophobicity and autoaggregation were most prominent at 15 °C, and at this temperature floating biofilm was also formed. The adhesion of these Pseudomonas was up to 2 log CFU cm-1 more pronounced on stainless steel than polystyrene, with up to five times greater biofilm biomass production at 5 °C on polystyrene. This paralleled at least a 0.5 log CFU g-1 increase in the pathogenic bacterium Escherichia coli in fish meat. CONCLUSION Pseudomonas fragi and P. psychrophila adhesion and biofilm depend on the temperature, and are stimulated by temperatures that can occur during the processing and storage of fish meat. Strong Pseudomonas biofilm formation under refrigeration conditions is protective for E. coli, potentially by providing more favorable conditions by ensuring a higher concentration of nutrients. Interactions between spoilage Pseudomonas and pathogenic bacteria can occur through different mechanisms, and an understanding of these is of particular importance to ensure the overall quality and safety of fish meat and other proteinaceous foods. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meta Sterniša
- Biotechnical Faculty, Department of Food Science, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, Department of Food Science, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Biotechnical Faculty, Department of Food Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Wickramasinghe NN, Ravensdale J, Coorey R, Chandry SP, Dykes GA. The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Compr Rev Food Sci Food Saf 2019; 18:1622-1635. [DOI: 10.1111/1541-4337.12483] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nirmani N. Wickramasinghe
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Joshua Ravensdale
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| | - Ranil Coorey
- School of Molecular an Health SciencesCurtin Univ. Perth Western Australia 6845 Australia
| | - Scott P. Chandry
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Gary A. Dykes
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| |
Collapse
|
33
|
Olszewska M, Nynca A, Białobrzewski I, Kocot A, Łaguna J. Assessment of the bacterial viability of chlorine‐ and quaternary ammonium compounds‐treated
Lactobacillus
cells via a multi‐method approach. J Appl Microbiol 2019; 126:1070-1080. [DOI: 10.1111/jam.14208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Affiliation(s)
- M.A. Olszewska
- Chair of Industrial and Food Microbiology Faculty of Food Science University of Warmia and Mazury in Olsztyn Olsztyn Poland
| | - A. Nynca
- Laboratory of Molecular Diagnostics University of Warmia and Mazury in Olsztyn Olsztyn Poland
| | - I. Białobrzewski
- Chair of Systems Engineering Faculty of Engineering University of Warmia and Mazury in Olsztyn Olsztyn Poland
| | - A.M. Kocot
- Chair of Industrial and Food Microbiology Faculty of Food Science University of Warmia and Mazury in Olsztyn Olsztyn Poland
| | - J. Łaguna
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Olsztyn Poland
| |
Collapse
|
34
|
Zhu J, Yan Y, Wang Y, Qu D. Competitive interaction on dual-species biofilm formation by spoilage bacteria, Shewanella baltica and Pseudomonas fluorescens. J Appl Microbiol 2019; 126:1175-1186. [PMID: 30592126 DOI: 10.1111/jam.14187] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
AIMS This study aims to characterize the biofilm produced by mono- and dual-species of Shewanella baltica and Pseudomonas fluorescens as fish spoilers at the different incubation temperature, and to elucidate the interactive behaviour of dual-species biofilm development. METHODS AND RESULTS The mono- and dual-species biofilm formation and adhesion characteristics of S. baltica and P. fluorescens were evaluated by using crystal violet staining, scanning electron microscopy and confocal laser scanning microscopy. Results showed that P. fluorescens had significantly higher biofilm biomass and polysaccharides production than S. baltica, and two isolates reached the maximum biofilm biomass during the early stationary phase. Lower biomass and polysaccharides in dual-species biofilms were observed compared to mono-species of P. fluorescens. Meanwhile, S. baltica and P. fluorescens formed fragile and viscous pellicles with different spatial architectures respectively. In dual-species pellicle few large microcolonies were dominated by P. fluorescens. Compared to mono-species of PF07, adherent cell population and biofilm thickness at the developing phase significantly decreased, and biofilm-forming cycle prolonged in the dual-species biofilms. Biofilm formation and adhesion of mono- and dual-species at 4 or 15°C were significantly higher than at 30°C during the same phase. The culture supernatant extracts of the two spoilage strains greatly inhibited biofilm development to each other. CONCLUSIONS Shewanella baltica and P. fluorescens had different biofilm and pellicle characteristics, and the inhibitory development on dual-species biofilm was associated with the competitive interaction by the two psychrotrophic spoilage bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This work contributes to a better understanding of interactive behaviour of multispecies biofilm communities by psychrotrophic spoilage bacteria at low temperature, which could contribute to further control contamination of spoilage organism during the preservation and processing of aquatic products.
Collapse
Affiliation(s)
- J Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Y Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Y Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - D Qu
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Liu L, Yan Y, Feng L, Zhu J. Quorum sensing asaI mutants affect spoilage phenotypes, motility, and biofilm formation in a marine fish isolate of Aeromonas salmonicida. Food Microbiol 2018; 76:40-51. [DOI: 10.1016/j.fm.2018.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
36
|
Mao YH, Song AX, Wang ZM, Yao ZP, Wu JY. Protection of Bifidobacterial cells against antibiotics by a high molecular weight exopolysaccharide of a medicinal fungus Cs-HK1 through physical interactions. Int J Biol Macromol 2018; 119:312-319. [DOI: 10.1016/j.ijbiomac.2018.07.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
|
37
|
Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain. Int J Food Microbiol 2018; 290:86-95. [PMID: 30317110 DOI: 10.1016/j.ijfoodmicro.2018.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023]
Abstract
In this work, psychrotrophs known to cause food spoilage were isolated from commercial food products. Further, temperature sensitivities and volatile organic compounds of the representative strains were characterized to evaluate the population heterogeneity. A total of 490 isolates belonging to 38 genera of 20 families were identified from 30 psychrotroph-positive samples, among which Gram-negative bacteria occurred frequently. The genus Pseudomonas exhibited a clear predominance, especially Pseudomonas fragi, followed by Psychrobacter, Brochothrix, Serratia, and Stenotrophomonas, with the dominant bacteria varying with origin. Aquatic products related to Hafnia and quick-frozen food corresponding to Stenotrophomonas, as well as livestock products were shown to be good ecological niches for growth of psychrotrophs. The genus Pantoea was shown to have an intimate relationship with fruits. While in bean, cereal grain and dairy products, only Pseudomonas was present. The fits of the growth curves demonstrated good adaptability and tolerance of the tested strains under 4 °C, and multifarious growth also reflected intra-species differences and phenotypic diversity. Various kinds of esters, aromatic compounds, alcohols, and ketones were frequently detected by GC-MS. High alcohols were seen in Psychrobacter, but hydrocarbons and ethers were more often found in Pseudomonas. In particular, since high amounts of isophorone were only discovered in bacteria samples, it is speculated to be the characteristic substance of psychrotrophs.
Collapse
|
38
|
Yuan L, Sadiq FA, Burmølle M, Liu T, He G. Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. J Food Prot 2018; 81:1651-1660. [PMID: 30207500 DOI: 10.4315/0362-028x.jfp-18-094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Milk spoilage caused by psychrotrophic bacteria and their heat-stable enzymes is a serious challenge for the dairy industry. In many studies, spoilage has been explored based on the simplistic view of undesirable enzymes produced by planktonic cells. Recently, biofilms and quorum sensing (QS) have been suggested as important factors in the deterioration of milk, which opens new avenues for investigation of the processes and challenges. Production and heat stability of enzymes are enhanced in biofilms, mainly because of inherent differences in physiological states and protective shielding by extracellular polymeric substances. QS plays a key role in modulating expression of hydrolytic enzymes and biofilm formation. To date, few studies have been conducted to investigate the complex interplays of enzyme production, biofilm formation, and QS. This review provides novel insights into milk spoilage with particular emphasis on the roles of biofilms and QS and summarizes potential effective strategies for controlling the spoilage of milk.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Faizan A Sadiq
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tongjie Liu
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| |
Collapse
|
39
|
Marino M, Maifreni M, Baggio A, Innocente N. Inactivation of Foodborne Bacteria Biofilms by Aqueous and Gaseous Ozone. Front Microbiol 2018; 9:2024. [PMID: 30210486 PMCID: PMC6120990 DOI: 10.3389/fmicb.2018.02024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
In this study, the efficacy of treatments with ozone in water and gaseous ozone against attached cells and microbial biofilms of three foodborne species, Pseudomonas fluorescens, Staphylococcus aureus, and Listeria monocytogenes, was investigated. Biofilms formed on AISI 304 stainless steel coupons from a mixture of three strains (one reference and two wild strains) of each microbial species were subjected to three types of treatment for increasing times: (i) ozonized water (0.5 ppm) by immersion in static condition, (ii) ozonized water under flow conditions, and (iii) gaseous ozone at different concentrations (0.1-20 ppm). The Excel add-in GinaFit tool allowed to estimate the survival curves of attached cells and microbial biofilms, highlighting that, regardless of the treatment, the antimicrobial effect occurred in the first minutes of treatment, while by increasing contact times probably the residual biofilm population acquired greater resistance to ozonation. Treatment with aqueous ozone under static conditions resulted in an estimated viability reduction of 1.61-2.14 Log CFU/cm2 after 20 min, while reduction values were higher (3.26-5.23 Log CFU/cm2) for biofilms treated in dynamic conditions. S. aureus was the most sensitive species to aqueous ozone under dynamic conditions. With regard to the use of gaseous ozone, at low concentrations (up to 0.2 ppm), estimated inactivations of 2.01-2.46 Log CFU/cm2 were obtained after 60 min, while at the highest concentrations a complete inactivation (<10 CFU/cm2) of the biofilms of L. monocytogenes and the reduction of 5.51 and 4.72 Log CFU/cm2 of P. fluorescens and S. aureus respectively after 60 and 20 min were achieved. Considering the results, ozone in water form might be used in daily sanitation protocols at the end of the day or during process downtime, while gaseous ozone might be used for the treatment of confined spaces for longer times (e.g., overnight) and in the absence of personnel, to allow an eco-friendly control of microbial biofilms and consequently reduce the risk of cross-contamination in the food industry.
Collapse
Affiliation(s)
| | - Michela Maifreni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|
40
|
Draft Genome Sequences of Nine Strains of Brochothrix thermosphacta, Carnobacterium divergens, Lactobacillus algidus, Lactobacillus fuchuensis, Lactococcus piscium, Leuconostoc gelidum subsp. gasicomitatum, Pseudomonas lundensis, and Weissella viridescens, a Collection of Psychrotrophic Species Involved in Meat and Seafood Spoilage. GENOME ANNOUNCEMENTS 2018; 6:6/24/e00479-18. [PMID: 29903812 PMCID: PMC6003748 DOI: 10.1128/genomea.00479-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we present the draft genome sequences of nine strains from various psychrotrophic species identified in meat products and being recognized as important emerging food spoilers. Many of these species have only one or few strains being sequenced, and this work will contribute to the improvement of the overall genomic knowledge about them.
Collapse
|
41
|
Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Dutra TV, Fernandes MDS, Perdoncini MRFG, Anjos MMD, Abreu Filho BAD. Capacity ofEscherichia coliandStaphylococcus aureusto produce biofilm on stainless steel surfaces in the presence of food residues. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatiane Viana Dutra
- Post-Graduate Program in Food Science State; University of Maringá; Paraná, Maringá 87020-900 Brazil
| | - Meg da Silva Fernandes
- Graduate Program in Food Science; Universidade Estadual de Maringá; Paraná, Maringá 87020-900 Brazil
| | | | - Márcia Maria dos Anjos
- Graduate Program in Food Science; Universidade Estadual de Maringá; Paraná, Maringá 87020-900 Brazil
| | | |
Collapse
|
43
|
Barker JC, Khansa I, Gordillo GM. A Formidable Foe Is Sabotaging Your Results: What You Should Know about Biofilms and Wound Healing. Plast Reconstr Surg 2017; 139:1184e-1194e. [PMID: 28445380 DOI: 10.1097/prs.0000000000003325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
LEARNING OBJECTIVES After reading this article, the participant should be able to: 1. Describe biofilm pathogenesis as it relates to problem wounds. 2. Understand the preclinical and clinical evidence implicating biofilm in problem wounds. 3. Explain the diagnostic and treatment challenges that biofilms create for problem wounds. 4. Demonstrate a basic understanding of emerging strategies aimed at counteracting these processes. SUMMARY Biofilm represents a protected mode of growth for bacteria, allowing them to evade standard diagnostic techniques and avoid eradication by standard therapies. Although only recently discovered, biofilm has existed for millennia and complicates nearly every aspect of medicine. Biofilm impacts wound healing by allowing bacteria to evade immune responses, prolonging inflammation and disabling skin barrier function. It is important to understand why problem wounds persist despite state-of-the-art treatment, why they are difficult to accurately diagnose, and why they recur. The aim of this article is to focus on current gaps in knowledge related to problem wounds, specifically, biofilm infection.
Collapse
Affiliation(s)
- Jenny C Barker
- Columbus, Ohio.,From the Department of Plastic Surgery, Comprehensive Wound Center, The Ohio State University
| | - Ibrahim Khansa
- Columbus, Ohio.,From the Department of Plastic Surgery, Comprehensive Wound Center, The Ohio State University
| | - Gayle M Gordillo
- Columbus, Ohio.,From the Department of Plastic Surgery, Comprehensive Wound Center, The Ohio State University
| |
Collapse
|
44
|
Møretrø T, Langsrud S. Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Compr Rev Food Sci Food Saf 2017; 16:1022-1041. [DOI: 10.1111/1541-4337.12283] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Trond Møretrø
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| |
Collapse
|
45
|
Inactivation and induction of sublethal injury of Listeria monocytogenes in biofilm treated with various sanitizers. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|