1
|
Le Quéré JL, Schoumacker R. Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules 2023; 28:6308. [PMID: 37687137 PMCID: PMC10489873 DOI: 10.3390/molecules28176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Perception of flavor is a dynamic process during which the concentration of aroma molecules at the olfactory epithelium varies with time as they are released progressively from the food in the mouth during consumption. The release kinetics depends on the food matrix itself but also on food oral processing, such as mastication behavior and food bolus formation with saliva, for which huge inter-individual variations exist due to physiological differences. Sensory methods such as time intensity (TI) or the more-recent methods temporal dominance of sensations (TDS) and temporal check-all-that-apply (TCATA) are used to account for the dynamic and time-related aspects of flavor perception. Direct injection mass spectrometry (DIMS) techniques that measure in real time aroma compounds directly in the nose (nosespace), aimed at obtaining data that reflect the pattern of aroma release in real time during food consumption and supposed to be representative of perception, have been developed over the last 25 years. Examples obtained with MS operated in chemical ionization mode at atmospheric or sub-atmospheric pressure (atmospheric pressure chemical ionization APCI or proton-transfer reaction PTR) are given, with emphases on studies conducted with simultaneous dynamic sensory evaluation. Inter-individual variations in terms of aroma release and their relevance for understanding flavor perception are discussed as well as the evidenced cross-modal interactions.
Collapse
Affiliation(s)
- Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | | |
Collapse
|
2
|
Kaur M, Barringer S. Effect of Yogurt and Its Components on the Deodorization of Raw and Fried Garlic Volatiles. Molecules 2023; 28:5714. [PMID: 37570683 PMCID: PMC10420880 DOI: 10.3390/molecules28155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Garlic contains sulfur volatiles that cause a bad odor after consumption. The objective of this study was to understand how yogurt and its components cause deodorization. Raw and fried garlic samples were mixed with various treatments and measurements of volatiles were conducted using a selected-ion flow-tube mass spectrometer. Frying garlic significantly reduced almost all sulfur volatile compounds. Raw garlic was deodorized more than fried garlic by all of the treatments. Fat, protein and water significantly reduced the concentration of sulfur-based volatiles in garlic. At the same concentration, either fat or protein produced higher deodorization, depending on the hydrophobicity of the volatile. Whey protein, casein and their complex all caused deodorization. Increasing the pH to 7 or heating changed the structure of the proteins and decreased the deodorization of the volatiles, showing the importance of proteins for deodorization. As the quantity of fat increased, the deodorization of the volatiles also increased. Foods with higher fat or protein content can be formulated to offer a potential solution to reduce the unpleasant odor associated with garlic consumption.
Collapse
Affiliation(s)
| | - Sheryl Barringer
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Sekine Y, Oikawa D, Todaka M. Human skin gas profile of individuals with the people allergic to me phenomenon. Sci Rep 2023; 13:9471. [PMID: 37301918 PMCID: PMC10257688 DOI: 10.1038/s41598-023-36615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies have shown that some people claim that their skin gases provoke allergy-like reactions in people in their near vicinity. Such a phenomenon or symptom is called 'people allergic to me (PATM)'. Although numerous people suffer from PATM, the actual conditions are unknown. The aim of this study was to investigate the characteristics of human skin profiles in patients with PATM by measuring the dermal emission fluxes of 75 skin gases using passive flux sampler and gas chromatography/mass spectrometry. We found common features in the human skin gas profiles of 20 subjects with PATM, with a significant difference from those of 24 non-PATM subjects: greater emissions of petrochemicals, organosulfur compounds, and some aldehydes and lower emissions of aroma compounds and others. The ratio of toluene to benzaldehyde is considered a vital sign that suggests the fundamental of PATM. These findings indicate that PATM is a medically unexplained phenomenon or symptom worthy of further research, which requires an interdisciplinary approach.
Collapse
Affiliation(s)
- Yoshika Sekine
- Department of Chemistry, School of Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Daisuke Oikawa
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Michihito Todaka
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| |
Collapse
|
4
|
Effect of Elevated CO2 during Low Temperature Storage on the Quality Attributes of Cut Spearmint. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of elevated CO2 in a controlled atmospheric condition (CA) on the quality attributes of fresh-cut spearmint (Mentha spicata) during refrigerated storage is investigated in the present study. Cut stems of spearmint were exposed to the continuous flow of humidified air enriched with 0 (as a control), 5, 10 and 20% CO2 during storage at 5 °C. Weight loss, leaf colour, total phenols, antioxidant activity, aromatic profile, ascorbic acid, ethanol, ammonia and ethanol-acetaldehyde concentrations were measured before and after storage for 5, 10 and 14 days. Over time, CO2 treatments increased the weight loss, surface colour, L* (from white to black) and b* (from blue to yellow) values, but lowered a* (from green to red). When compared to fresh spearmint, the lowest CO2 concentration was able to maintain the overall colour variations. The 20% CO2 treatment showed significant declines in the total phenolic content, antioxidant potential and low appearance score after 10 days, thus its quality assessment was terminated. Vitamin C levels decreased with time in all the treatments, although the 10% and 20% CO2 treatments had the lowest levels. The toxicity of the cell structures detected by the ammonia content increased and was significantly higher in all CO2 treatments. Storage in the CA with the gas composition at 5% preserved the aromatic profiles similar to those stored in air. In conclusion, increased CO2 did not improve the storability of fresh cut spearmint held at low temperatures, and the 20% gas composition had a significant negative impact on the visual quality.
Collapse
|
5
|
Oxidative Stress in Plasma from Patients with Marfan Syndrome Is Modulated by Deodorized Garlic Preliminary Findings. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5492127. [PMID: 35082968 PMCID: PMC8786463 DOI: 10.1155/2022/5492127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Marfan syndrome (MFS) is a genetic disorder of connective tissue that affects the fibrillin-1 protein (FBN-1). It is associated with the formation of aneurysms, damage to the endothelium and oxidative stress (OS). Allium sativum (garlic) has antioxidant properties; therefore, the goal of this study was to show the antioxidant effect of deodorized garlic (DG) on antioxidant enzymes and OS markers in the plasma of patients with MFS. The activity of antioxidant enzymes such as extracellular superoxide dismutase (EcSOD), peroxidases, glutathione peroxidase (GPx), gluthatione-S-tranferase (GST), and thioredoxin reductase (TrxR) was quantified, and nonenzymatic antioxidant system markers including lipid peroxidation (LPO), carbonylation, nitrates/nitrites, GSH, and vitamin C in plasma were determined in patients with MFS before and after treatment with DG. The results show that DG increased the activity of the EcSOD, peroxidases, GPx, GST, TrxR (p ≤ 0.05) and decrease LPO, carbonylation, and nitrates/nitrites (p ≤ 0.01). However, glutathione was increased (p = 0.01) in plasma from patients with MFS. This suggests that treatment with garlic could lower the OS threshold by increasing the activity of antioxidant enzymes and could help in the prevention and mitigation of adverse OS in patients with MFS.
Collapse
|
6
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
7
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
8
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as “plant molecular farming” (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose “chassis” for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany. .,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
9
|
Jeong S, Lee HG, Cho CH, Yoo S. Deodorization films based on polyphenol compound-rich natural deodorants and polycaprolactone for removing volatile sulfur compounds from kimchi. J Food Sci 2021; 86:1004-1013. [PMID: 33580503 DOI: 10.1111/1750-3841.15626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 01/23/2023]
Abstract
As natural polyphenols have been known to have the deodorizing activity, the deodorizing properties and mechanisms of action of polyphenols, the main constituents of green tea extract (GTE), black tea extract (BTE), and grape seed extract (GSE), against volatile sulfur compounds (VSCs) in kimchi were investigated. Six VSCs were targeted and detected to be in high abundance in kimchi. The deodorizing activity (%) toward VSCs was found to be in the following order: GSE (58.4 to 91.8) >GTE (37.6 to 73.8) >BTE (28.4 to 60.3). This was attributed to the high phenolic (892.6 ± 10.5 mg GAE/g) and flavonoid (666.5 ± 23.9 mg CE/g) contents in GSE, that is, polymeric proanthocyanidins (85.97%). Particularly, the hydroxyl groups in the polyphenols showed deodorizing activity against VSCs via a sulfur-capture reaction. For packaging applications, deodorization films based on GSE and polycaprolactone were developed, and the GSE/polycaprolactone 20% films exhibited strong deodorizing effects (54.9 to 99.8%) against kimchi VSCs.
Collapse
Affiliation(s)
- Suyeon Jeong
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hyun-Gyu Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Chi Heung Cho
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - SeungRan Yoo
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| |
Collapse
|
10
|
Sato S, Sekine Y, Kakumu Y, Hiramoto T. Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic. Sci Rep 2020; 10:465. [PMID: 31949194 PMCID: PMC6965658 DOI: 10.1038/s41598-019-57258-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 12/02/2022] Open
Abstract
Diallyl disulfide (DADS) and allyl methyl sulfide (AMS) have been known as a metabolic product of sulfur-containing foods, typically garlic. The odour of such organosulfur compounds following garlic ingestion is often considered as an unpleasant element. Although previous studies have identified the DADS and AMS associated with garlic breath, no study has been reported on the determination of both compounds emanating from human skin surface. This study aimed to demonstrate the effect of garlic ingestion on the dermal emissions of DADS and AMS using a passive flux sampler coupled with gas chromatography-mass spectrometry. Firstly, baseline levels were investigated for 30 healthy volunteers in their daily life. The results of 1 h-sampling at the forearm showed the emission fluxes of both compounds followed the lognormal distribution with a geometric mean of 0.18 ng cm-2 h-1 for DADS and 0.22 ng cm-2 h-1 for AMS. Subsequently, the garlic ingestion tests were conducted for selected volunteers. The emission flux of DADS increased just after grilled garlic ingestion and decreased gradually thereafter. In contrast, the dermal emission flux of AMS reached a peak at 30 min after ingestion, and then gradually decreased. This peak shift suggests AMS is relatively latent in the skin organs.
Collapse
Affiliation(s)
- Shodai Sato
- Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yoshika Sekine
- Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Yuya Kakumu
- Innovative Technology Research Laboratory, Takasago International Corporation, 1-4-11 Nishiyawata, Hiratsuka, Kanagawa, 254-0073, Japan
| | - Tadahiro Hiramoto
- Innovative Technology Research Laboratory, Takasago International Corporation, 1-4-11 Nishiyawata, Hiratsuka, Kanagawa, 254-0073, Japan
| |
Collapse
|
11
|
Langford VS, Padayachee D, McEwan MJ, Barringer SA. Comprehensive odorant analysis for on‐line applications using selected ion flow tube mass spectrometry (
SIFT
‐
MS
). FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Murray J. McEwan
- Syft Technologies Limited Christchurch New Zealand
- Department of Chemistry University of Canterbury Christchurch New Zealand
| | - Sheryl A. Barringer
- Department of Food Science and Technology The Ohio State University Columbus OH United States of America
| |
Collapse
|
12
|
Castada HZ, Barringer SA. Online, real‐time, and direct use of SIFT‐MS to measure garlic breath deodorization: a review. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hardy Z. Castada
- Department of Food Science & Technology The Ohio State University Columbus Ohio USA
| | - Sheryl Ann Barringer
- Department of Food Science & Technology The Ohio State University Columbus Ohio USA
| |
Collapse
|
13
|
Castada HZ, Barringer SA, Wick M. Gas-phase chemical ionization of 4-alkyl branched-chain carboxylic acids and 3-methylindole using H 3 O + , NO + , and O 2+ ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1641-1650. [PMID: 28752562 DOI: 10.1002/rcm.7944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE 4-Methyloctanoic acid, 4-ethyloctanoic acid, 4-methylnonanoic acid, and 3-methylindole are primary contributors to the distinctive aroma and flavor of lamb meat. The reactions of H3 O+ , NO+ , and O2+ with these compounds, and identification of the product ions and their distribution, are fundamental to their characterization and rapid, real-time trace analysis using selected ion flow tube mass spectrometry (SIFT-MS). METHODS The chemical ionization of pure standards of 4-ethyloctanoic acid, 4-methyloctanoic acid, 4-ethylnonanoic acid, and 3-methylindole was carried out using the H3 O+ , NO+ , and O2+ reagent ions of a V200™ SIFT mass spectrometer. Kinetic data were calculated using the Langevin collision rate with parameterized trajectory equations. Identification of product ions, distribution, and interferences was performed by further evaluation of the pertinent ion-molecule reaction mechanisms, careful spectral analyses, and molecular mass-molecular structure pairing. RESULTS The collisional capture rate constants of the reaction of the precursor ions H3 O+ , NO+ , and O2+ , their extended hydrates and the analytes, which were assumed to occur at or near the collisional rate, were all of the order of 10-9 cm3 molecule s-1 - typical for bimolecular ion-molecule reactions. Positive identification of the primary and secondary product ions, fragmented ionic species, and potential ion conflicts and interferences, from each reagent ion channel, was determined for each compound. CONCLUSIONS We have established the ion chemistry involved in the ionization of the 4-alkyl branched-chain fatty acids and 3-methylindole using the precursor ions, H3 O+ , NO+ , and O2+ in SIFT-MS. The ion-molecular chemistry and the associated kinetics serve as a fundamental basis for the accurate characterization of these compounds by SIFT-MS.
Collapse
Affiliation(s)
- Hardy Z Castada
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Sheryl A Barringer
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Macdonald Wick
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Castada HZ, Mirondo R, Sigurdson GT, Mónica Giusti M, Barringer S. Deodorization of garlic odor by spearmint, peppermint, and chocolate mint leaves and rosmarinic acid. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|