1
|
Akbel E, Kucukkurt I, Ince S, Demirel HH, Acaroz DA, Zemheri-Navruz F, Kan F. Investigation of protective effect of resveratrol and coenzyme Q 10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol Res (Camb) 2024; 13:tfad123. [PMID: 38173543 PMCID: PMC10758596 DOI: 10.1093/toxres/tfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
It is seen that cyclophosphamide, which is used in treating many diseases, especially cancer, causes toxicity in studies, and its metabolites induce oxidative stress. This study aimed to investigate the protective effects of resveratrol and Coenzyme Q10, known for their antioxidant properties, separately and together, against oxidative stress induced by cyclophosphamide. In this study, 35 Wistar albino male rats were divided into five groups. Groups; Control group, cyclophosphamide (CP) group (CP as 75 mg kg i.p. on day 14), coenzyme Q10 (CoQ10) + CP group (20 mg/kg i.p. CoQ10 + 75 mg kg i.p. CP), resveratrol (Res) + CP group (20 mg/kg i.p. Res + 75 mg/kg i.p. CP), CoQ10 + Res + CP group (20 mg/kg i.p Res + 20 mg/kg i.p CoQ10 and 75 mg/kg i.p.CP). At the end of the experiment, the cholesterol, creatinine and urea levels of the group given CP increased, while a decrease was observed in the groups given Res and CoQ10. Malondialdehyde level was high, glutathione level, superoxide dismutase and catalase activities were decreased in the blood and all tissues (liver, kidney, brain, heart and testis) of the CP given group. DNA damage and histopathological changes were also observed. In contrast, Res and CoQ10, both separately and together, reversed the CP-induced altered level and enzyme activities and ameliorated DNA damage and histopathological changes. In this study, the effects of Res and CoQ10 against CP toxicity were examined both separately and together.
Collapse
Affiliation(s)
- Erten Akbel
- Usak Health Training School, Usak University, 64200, Uşak, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74110, Bartın, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Huang D, Shen S, Zhuang Q, Ye X, Qian Y, Dong Z, Wan X. Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner. Chin Med 2024; 19:16. [PMID: 38268006 PMCID: PMC10809463 DOI: 10.1186/s13020-024-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Cholesterol gallstone (CG) disease is a worldwide common disease characterized by cholesterol supersaturation in gallbladder bile. Ganoderma lucidum polysaccharide (GLP) has been shown to possess various beneficial effects against metabolic disorders. However, the role and underlying mechanism of GLP in CG formation are still unknown. This study aimed to determine the role of GLP in ameliorating lithogenic diet (LD)-induced CG formation. METHODS Mice were fed either a normal chow diet, a LD, or LD supplemented with GLP. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of genes involved in cholesterol and bile acid (BA) metabolism. The BA concentrations in the ileum were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The microbiota in cecal contents were characterized using 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS GLP effectively alleviated CG formation induced by LD. Specifically, GLP reduced the total cholesterol (TC) levels, increased the total BA levels, and decreased the cholesterol saturation index (CSI) in gallbladder bile. The protective effect of GLP was attributed to the inhibition of farnesoid X receptor (FXR) signaling, increased hepatic BA synthesis and decreased hepatic cholesterol synthesis and secretion. GLP also altered the BA composition in the ileum, reducing FXR-agonistic BAs and increasing FXR-antagonistic BAs, which may contribute to the inhibition of intestinal FXR signaling. Additionally, GLP improved dysbiosis of the intestinal flora and reduced the serum levels of hydrogen sulfide (H2S), a bacterial metabolite that can induce hepatic FXR, thereby inhibiting hepatic FXR signaling. Moreover, the protective effect of GLP against CG formation could be reversed by both the global and gut-restricted FXR agonists. CONCLUSIONS Taken together, GLP ameliorates CG formation by regulating cholesterol and BA metabolism in an FXR-dependent manner. Our study demonstrates that GLP may be a potential strategy for the prevention against CG disease.
Collapse
Affiliation(s)
- Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yueqin Qian
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
3
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Zhang X, Yang G, Chen Y, Mu Z, Zhou H, Zhang L. Resveratrol pre-treatment alleviated caerulein-induced acute pancreatitis in high-fat diet-feeding mice via suppressing the NF-κB proinflammatory signaling and improving the gut microbiota. BMC Complement Med Ther 2022; 22:189. [PMID: 35842665 PMCID: PMC9288014 DOI: 10.1186/s12906-022-03664-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND hyperlipidemia acute pancreatitis (HTG-AP) is a major hidden danger affecting human health, however, whether there is a protective effect of resveratrol on HTG-AP is unclear. Therefore our study was aimed to investigate the preventive effect and the underlying mechanism of resveratrol in the HTG-AP mice model. METHODS This research was divided into two parts. In the first part, mice were adaptively fed with normal chow or HFD for 6 weeks. From the second week, resveratrol-treated mice were in intragastric administration with resveratrol (45 mg/kg/d) for 4 weeks. In the second part, the procedures were the same as the first part. After the last intragastric administration with resveratrol, all mice were intraperitoneal injections of cerulean. RESULTS We found resveratrol effectively inhibited pancreatic pathological injury in the HFD, AP, and HTG-AP mice. Resveratrol reduced the LPS, IL-6, TNF-α, and MCP-1 expressions in the HFD mice. Resveratrol also reduced TNF-α, MDA, and MCP-1 expressions and increased SOD and T-AOC expressions in the AP and HTG-AP mice. Furthermore, resveratrol suppressed the NF-κB pro-inflammatory signaling pathway in pancreatic tissues in the AP and HTG-AP mice. Moreover, resveratrol improved the gut microbiota in the HFD mice. CONCLUSION The resveratrol pre-treatment could attenuate pancreas injury, inflammation, and oxidative stress in the HTG-AP mice, via restraining the NF-κB signaling pathway and regulating gut microbiota. Therefore, Our study proved that the resveratrol pre-treatment had a preventive effect on HTG-AP.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, No.63, Cultural Rd., Shunqing Dist, Nanchong, 637000, Sichuan Province, China.
| | - Yulin Chen
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhao Mu
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Haiyue Zhou
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Luoyao Zhang
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| |
Collapse
|
5
|
Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Aβ Processing in SAMP8 Mice. Int J Mol Sci 2022; 23:ijms23147580. [PMID: 35886936 PMCID: PMC9324102 DOI: 10.3390/ijms23147580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol metabolism seems dysregulated and linked to amyloid-β (Aβ) formation in neurodegeneration, but the underlying mechanisms are poorly known. Resveratrol (RSV) is a polyphenol with antioxidant activity and neuroprotective properties. Here, we analyzed the effect of age and RSV supplementation on cholesterol metabolism in the brain and blood serum, and its potential link to Aβ processing, in SAMP8 mice—an animal model of aging and Alzheimer’s disease. In the brain, our results revealed an age-related increase in ApoE and unesterified cholesterol in the plasma membrane whereas LDL receptor, HMG-CoA reductase, HMG-CoA-C1 synthase, and ABCA1 transporter remained unaltered. Furthermore, BACE-1 and APP gene expression was decreased. This dysregulation could be involved in the amyloidogenic processing pathway of APP towards Aβ formation. In turn, RSV exhibited an age-dependent effect. While levels of unesterified cholesterol in the plasma membrane were not affected by RSV, several participants in cholesterol uptake, release, and de novo synthesis differed, depending on age. Thus, RSV supplementation exhibited a different neuroprotective effect acting on Aβ processing or cholesterol metabolism in the brain at earlier or later ages, respectively. In blood serum, HDL lipoprotein and free cholesterol were increased by age, whereas VLDL and LDL lipoproteins remained unaltered. Again, the protective effect of RSV by decreasing the LDL or increasing the HDL levels also seems to depend on the intervention’s moment. In conclusion, age is a prominent factor for cholesterol metabolism dysregulation in the brain of SAMP8 mice and influences the protective effects of RSV through cholesterol metabolism and Aβ processing.
Collapse
|
6
|
The Activity of Ten Natural Extracts Combined in a Unique Blend to Maintain Cholesterol Homeostasis-In Vitro Model. Int J Mol Sci 2022; 23:ijms23073805. [PMID: 35409162 PMCID: PMC8998641 DOI: 10.3390/ijms23073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hypercholesterolemia is a major cause of cardiovascular disease and statins, the HMGCoA inhibitors, are the most prescribed drugs. Statins reduce the production of hepatic cholesterol, leading to greater expression of the LDL receptor and greater absorption of circulating LDL, reducing peripheral LDL levels. Unfortunately, statins are believed to induce myopathy and other severe diseases. To overcome this problem, safe nutraceuticals with the same activity as statins could hold great promise in the prevention and treatment of hypercholesterolemia. In this study, the anti-cholesterol efficacy of a new nutraceutical, called Esterol10®, was evaluated. METHODS HepG2 cells were used to study the biological mechanisms exerted by Esterol10® analyzing different processes involved in cholesterol metabolism, also comparing data with Atorvastatin. RESULTS Our results indicate that Esterol10® leads to a reduction in total hepatocyte cholesterol and an improvement in the biosynthesis of free cholesterol and bile acids. Furthermore, the anti-cholesterol activity of Esterol10® was also confirmed by the modulation of the LDL receptor and by the accumulation of lipids, as well as by the main intracellular pathways involved in the metabolism of cholesterol. CONCLUSIONS Esterol10® is safe and effective with anti-cholesterol activity, potentially providing an alternative therapy to those based on statins for hypercholesterolemia disease.
Collapse
|
7
|
Frigerio J, Tedesco E, Benetti F, Insolia V, Nicotra G, Mezzasalma V, Pagliari S, Labra M, Campone L. Anticholesterolemic Activity of Three Vegetal Extracts (Artichoke, Caigua, and Fenugreek) and Their Unique Blend. Front Pharmacol 2021; 12:726199. [PMID: 34887750 PMCID: PMC8650624 DOI: 10.3389/fphar.2021.726199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic-related diseases, in particular hyperlipidemia and hypercholesterolemia, are a thorn on the side of the national health institutes around the globe. Indeed, liver lipid and cholesterol dysregulation could lead to atherosclerotic plaque formation and cardiovascular diseases. Currently, statin administration and monacolin K consumption are the main therapies proposed to counter this alarming connection, but relevant side effects are known. To overcome this issue, safe nutraceutical formulations and/or vegetal extracts, endowed with anticholesterolemic activity, could be instrumental in hypercholesterolemia prevention and treatment. In the present work, the anticholesterolemic efficacy of three vegetal extracts used in traditional medicine (artichoke, caigua, and fenugreek), their unique blend (ACFB), and the monacolin K-containing red yeast extract (RYR), was investigated with an in vitro approach based on hepatic cell line HepG2. The impact on cholesterol of the three extracts, their blend, and RYR were investigated by determining hepatocyte total and free cholesterol and bile acids biosynthesis. According to our results, the anticholesterolemic activity of the vegetal extracts was confirmed, and a novel choleretic activity of caigua extract was evidenced. ACFB showed to be safer than RYR while showing a similar effect on total and free cholesterol and bile acids synthesis compared to it. The anticholesterolemic activity of the blend was obtained with lower vegetal extract concentrations compared with the single vegetal extract, potentially indicating an additive effect between the extracts. In conclusion, the vegetal extracts and their blend, ACFB, are safe and are endowed with anticholesterolemic activity, potentially providing complementary therapies to the statin-based ones for hyperlipidemia and hypercholesterolemia-related complications.
Collapse
Affiliation(s)
- Jessica Frigerio
- FEM2-Ambiente, Milano, Italy
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Erik Tedesco
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | | | | | | | - Stefania Pagliari
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Massimo Labra
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Luca Campone
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
8
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
9
|
Effect of resveratrol supplementation on biomarkers associated with atherosclerosis in humans. Complement Ther Clin Pract 2021; 46:101491. [PMID: 34731768 DOI: 10.1016/j.ctcp.2021.101491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Previous studies have suggested the beneficial effects of resveratrol against cardiovascular disease (CVD). However, there are inconsistent results on cardiovascular-related biomarkers mainly because of variable dosage, intervention time and baseline characteristics of the population. Thus, the exact effect of resveratrol remains unclear. We conducted a review to classify the studies that applied resveratrol to supplement humans according to the major biomarkers and identify which protocol characteristics would be associated with each result profile. Randomized clinical trials that assessed resveratrol effect on biomarkers related to atherosclerosis were searched in databases. Biochemical data were collected from 27 studies on the baseline and post-intervention time. We selected 12 biomarkers to compose the matrix, based on their clinical relevance and higher variation level. A total of 32 assays were obtained from these 27 studies. The net change (%) was calculated for each biomarker. Applying multivariate analysis, the assays were grouped into 3 clusters. Studies that composed Cluster II were characterized by a mean dose of 454.14 mg/day for 74.21 days and showed higher reduction of triglyceride concentration and blood pressure, while those composing Cluster III applied doses around 273.75 mg/day for about 175.33 days and showed the highest HDL increase. Thus, interventions with resveratrol could be customized according to the patient condition, in terms of "dose/time of intervention". This information can be applied to combine resveratrol with drugs to reduce blood pressure or improve lipid profile in further clinical studies.
Collapse
|
10
|
The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int J Mol Sci 2021; 22:ijms221810152. [PMID: 34576315 PMCID: PMC8466271 DOI: 10.3390/ijms221810152] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the leading causes of death worldwide. The cardioprotective effects of natural polyphenols such as resveratrol (3,5,4-trihydroxystilbene) have been extensively investigated throughout recent decades. Many studies of RES have focused on its favorable effects on pathological conditions related to cardiovascular diseases and their risk factors. The aim of this review was to summarize the wide beneficial effects of resveratrol on the cardiovascular system, including signal transduction pathways of cell longevity, energy metabolism of cardiomyocytes or cardiac remodeling, and its anti-inflammatory and antioxidant properties. In addition, this paper discusses the significant preclinical and human clinical trials of recent years with resveratrol on cardiovascular system. Finally, we present a short overview of antiviral and anti-inflammatory properties and possible future perspectives on RES against COVID-19 in cardiovascular diseases.
Collapse
|
11
|
Shao D, Di Y, Lian Z, Zhu B, Xu X, Guo D, Huang Q, Jiang C, Kong J, Shi J. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct 2020; 11:1258-1269. [PMID: 31967154 DOI: 10.1039/c9fo02352f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abnormal lipid metabolism in macrophages leads to atherosclerosis (AS). Excessive LDL cholesterol uptake by macrophages in the aortic endothelium leads to formation of foam cells. Previous studies suggested that proanthocyanidins effectively suppress this process, while the in-depth mechanism has not been elucidated. In mononuclear THP-1 cells, we found that the oligomeric fraction of proanthocyanidins was more effective in suppressing foam cell formation and 25 μg ml-1 for 48 h were the optimum conditions. Under these model conditions, we investigated gene expression and for the first time reported expression of regulatory microRNA (miRNA). It was found that the proanthocyanidins restrained macrophage foaming mainly by lowering the expression levels of cholesterol influx-related receptors CD36 and SR-A, and promoting the expression of cholesterol efflux-related receptor ABCA1. Further, it was latest revealed that proanthocyanidins could notably inhibit the expression of ACAT1, a key gene for intracellular cholesterol esterification. Further investigation was performed on the expression of regulatory miRNAs (miR-134 for CD36, miR-134, miR-155 for SR-A, miR-155, let-7g for LOX-1, miR-9 for ACAT1, miR-27a, miR-19b, miR-10b and miR-33a for ABCA1). The relative expression of miR-9, a miRNA targeting ACAT1, was decreased after the treatment of proanthocyanidins. It was most likely that proanthocyanidins suppressed the expression of ACAT1 via up-regulating the expression of miR-9, thus lessening the intracellular lipid accumulation and eventually inhibiting macrophage foam cell formation. This assumption was further verified by use of miR-9 mimic and its inhibitor.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int J Biol Macromol 2020; 165:1694-1705. [PMID: 33058986 DOI: 10.1016/j.ijbiomac.2020.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharides are important active constituents of Radix Puerariae lobatae (RPL). In this study, a novel homogeneous polysaccharide from RPL was successfully obtained by HP-20 macroporous resin and purified by Sepharose G-100 column chromatography. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-1,3-linked and α-1,4-linked glucose. The molecular weight of PL-S2 was 18.73 kDa. The hypolipidemic effect of PL-S2 on hyperlipidemic rats was evaluated in histopathology and metabolomics analyses. PL-S2 significantly reduced plasma lipid levels and inhibited bile acid metabolism. We also demonstrated that treatment with PL-S2 activated FXR, CYP7A1, BESP, and MRP2 in rat liver. Our findings first indicate that PL-S2 decreases plasma lipid levels in hyperlipidemic rats by activating the FXR signaling pathway and promoting bile acid excretion. Therefore, PL-S2 derived from RPL is implicated as a functional food factor with lipid-regulating activity, and highlighted as a potential food supplement for the treatment of hyperlipidemia.
Collapse
|
13
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
14
|
Marelli C, Lamari F, Rainteau D, Lafourcade A, Banneau G, Humbert L, Monin ML, Petit E, Debs R, Castelnovo G, Ollagnon E, Lavie J, Pilliod J, Coupry I, Babin PJ, Guissart C, Benyounes I, Ullmann U, Lesca G, Thauvin-Robinet C, Labauge P, Odent S, Ewenczyk C, Wolf C, Stevanin G, Hajage D, Durr A, Goizet C, Mochel F. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain 2019; 141:72-84. [PMID: 29228183 DOI: 10.1093/brain/awx297] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.
Collapse
Affiliation(s)
- Cecilia Marelli
- Gui de Chauliac University Hospital, Department of Neurology, Montpellier, France.,Gui de Chauliac University Hospital, Expert Center for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Montpellier, France
| | - Foudil Lamari
- APHP, La Pitié-Salpêtrière University Hospital, Department of Biochemistry, Paris, France.,University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Reference Center for Adult Neurometabolic Diseases, Paris, France
| | - Dominique Rainteau
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Alexandre Lafourcade
- APHP, Hôpital La Pitié-Salpêtrière, Département de Biostatistiques, Santé publique et Information médicale, Centre de Pharmacoépidémiologie (Cephepi), F-75013, Paris, France
| | - Guillaume Banneau
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Functional Unit of Molecular and Cellular Neurogenetics, Paris, France
| | - Lydie Humbert
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Marie-Lorraine Monin
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Elodie Petit
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Rabab Debs
- APHP, La Pitié-Salpêtrière University Hospital, Department of Neurology, Paris, France
| | | | - Elisabeth Ollagnon
- La Croix-Rousse University Hospital, Department of Genetics, Lyon, France
| | - Julie Lavie
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Julie Pilliod
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Isabelle Coupry
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Patrick J Babin
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Claire Guissart
- Institut Universitaire de Recherche Clinique, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Imen Benyounes
- APHP, La Pitié-Salpêtrière University Hospital, Department of Biochemistry, Paris, France
| | - Urielle Ullmann
- Institut de Pathologie et Génétique, Centre de Génétique Humaine, Gosselies, Belgium
| | - Gaetan Lesca
- Lyon University Hospital, Department of Medical Genetics, Lyon, France
| | | | - Pierre Labauge
- Gui de Chauliac University Hospital, Department of Neurology, Montpellier, France.,Gui de Chauliac University Hospital, Reference Center for Adult Leukodystrophy, Montpellier, France
| | - Sylvie Odent
- Rennes University Hospital, Department of Clinical Genetics, Rennes, France
| | - Claire Ewenczyk
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Claude Wolf
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Giovanni Stevanin
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Neurogenetic lab, Paris, France
| | - David Hajage
- APHP, Hôpital La Pitié-Salpêtrière, Département de Biostatistiques, Santé publique et Information médicale, Centre de Pharmacoépidémiologie (Cephepi), F-75013, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, UMR 1123 ECEVE, Paris, France
| | - Alexandra Durr
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Neurogenetic Reference Center, Paris, France
| | - Cyril Goizet
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France.,Bordeaux University Hospital, Department of Medical Genetics, Bordeaux, France.,Bordeaux University Hospital, Neurogenetic Reference Center, Bordeaux, France
| | - Fanny Mochel
- APHP, La Pitié-Salpêtrière University Hospital, Reference Center for Adult Neurometabolic Diseases, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
15
|
Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018; 10:nu10111651. [PMID: 30400297 PMCID: PMC6266067 DOI: 10.3390/nu10111651] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Resveratrol is a polyphenol which has been shown to have beneficial effects on metabolic syndrome-related alterations in experimental animals, including glucose and lipid homeostasis improvement and a reduction in fat mass, blood pressure, low-grade inflammation, and oxidative stress. Clinical trials have been carried out to address its potential; however, results are still inconclusive. Even though resveratrol is partly metabolized by gut microbiota, the relevance of this “forgotten organ” had not been widely considered. However, in the past few years, data has emerged suggesting that the therapeutic potential of this compound may be due to its interaction with gut microbiota, reporting changes in bacterial composition associated with beneficial metabolic outcomes. Even though data is still scarce and for the most part observational, it is promising nevertheless, suggesting that resveratrol supplementation could be a useful tool for the treatment of metabolic syndrome and its associated conditions.
Collapse
|
16
|
Dolezelova E, Prasnicka A, Cermanova J, Carazo A, Hyrsova L, Hroch M, Mokry J, Adamcova M, Mrkvicova A, Pavek P, Micuda S. Resveratrol modifies biliary secretion of cholephilic compounds in sham-operated and cholestatic rats. World J Gastroenterol 2017; 23:7678-7692. [PMID: 29209109 PMCID: PMC5703928 DOI: 10.3748/wjg.v23.i43.7678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of resveratrol on biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
METHODS Resveratrol (RSV) or saline were administered to rats by daily oral gavage for 28 d after sham operation or reversible bile duct obstruction (BDO). Bile was collected 24 h after the last gavage during an intravenous bolus dose of the Mdr1/Mrp2 substrate azithromycin. Bile acids, glutathione and azithromycin were measured in bile to quantify their level of biliary secretion. Liver expression of enzymes and transporters relevant for bile production and biliary secretion of major bile constituents and drugs were analyzed at the mRNA and protein levels using qRT-PCR and Western blot analysis, respectively. The TR-FRET PXR Competitive Binding Assay kit was used to determine the agonism of RSV at the pregnane X receptor.
RESULTS RSV increased bile flow in sham-operated rats due to increased biliary secretion of bile acids (BA) and glutathione. This effect was accompanied by the induction of the hepatic rate-limiting transporters for bile acids and glutathione, Bsep and Mrp2, respectively. RSV also induced Cyp7a1, an enzyme that is crucial for bile acid synthesis; Mrp4, a transporter important for BA secretion from hepatocytes to blood; and Mdr1, the major apical transporter for xenobiotics. The findings were supported by increased biliary secretion of azithromycin. The TR-FRET PXR competitive binding assay confirmed RSV as a weak agonist of the human nuclear receptor PXR, which is a transcriptional regulator of Mdr1/Mrp2. RSV demonstrated significant hepatoprotective properties against BDO-induced cirrhosis. RSV also reduced bile flow in BDO rats without any corresponding change in the levels of the transporters and enzymes involved in RSV-mediated hepatoprotection.
CONCLUSION Resveratrol administration for 28 d has a distinct effect on bile flow and biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
Collapse
Affiliation(s)
- Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Prasnicka
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Mrkvicova
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Wang Q, Jiao L, He C, Sun H, Cai Q, Han T, Hu H. Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC Gastroenterol 2017; 17:74. [PMID: 28599622 PMCID: PMC5466737 DOI: 10.1186/s12876-017-0629-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background The gut microbiome exerts extensive roles in metabolism of nutrients, pharmaceuticals, organic chemicals. Little has been known for the role of gut microbiota in regulating cholesterol and bile acids in association with gallstone formation. This study investigated the changes in the composition of gut microbiota in mice fed with lithogenic diet (LD). Methods Adult male C57BL/6 J mice were fed with either lithogenic diet (1.25% cholesterol and 0.5% cholic acid) or chow diet as control for 56 days. The fecal microbiota were determined by 16S rRNA gene sequencing. Results LD led to formation of cholesterol gallstone in mice. The richness and alpha diversity of gut microbial reduced in mice fed with LD. Firmicutes was significantly decreased from 59.71% under chow diet to 31.45% under LD, P < 0.01, as well as the ratio of Firmicutes to Bacteroidetes. Differences in gut microbiota composition were also observed at phylum, family and genus levels between the two groups. Conclusion Our results suggested that gut microbiota dysbiosis might play an important role in the pathogenesis of cholesterol gallstone formation in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0629-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qihan Wang
- Department of Surgery, Shanghai Institute of Digestive Surgery Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Long Jiao
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, #150 Jimo Road, Shanghai, 201200, China
| | - Chuanqi He
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, #150 Jimo Road, Shanghai, 201200, China
| | - Haidong Sun
- Department of Surgery, Shanghai Institute of Digestive Surgery Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Qu Cai
- Department of Surgery, Shanghai Institute of Digestive Surgery Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Tianquan Han
- Department of Surgery, Shanghai Institute of Digestive Surgery Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Hai Hu
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, #150 Jimo Road, Shanghai, 201200, China.
| |
Collapse
|
18
|
Granato D, Nunes DS, Barba FJ. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|