1
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Shi M, Guo Q, Xiao Z, Sarengaowa, Xiao Y, Feng K. Recent Advances in the Health Benefits and Application of Tangerine Peel ( Citri Reticulatae Pericarpium): A Review. Foods 2024; 13:1978. [PMID: 38998484 PMCID: PMC11241192 DOI: 10.3390/foods13131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.
Collapse
Affiliation(s)
- Minke Shi
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Qihan Guo
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Zhewen Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Sarengaowa
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Ke Feng
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
3
|
Fonseca-Bustos V, Madera-Santana TJ, Martínez-Núñez YY, Robles-Ozuna LE, Montoya-Ballesteros LDC. Techniques of incorporation of salty compounds, food matrix, and sodium behaviour and its effect over saltiness perception: an overview. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:861-869. [PMID: 38487281 PMCID: PMC10933219 DOI: 10.1007/s13197-023-05861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 03/17/2024]
Abstract
The salty taste is usually associated with the positively charged ion sodium present in sodium chloride. Due to its relevance in the food industry, there have been several studies to determine how this ion behaves in various food matrices, or the use of techniques to improve saltiness perception to reduce the amount necessary for savoury food. Several databases were searched, and it was discovered that sodium can interact with the protein, modifying its mobility, as well as, other components of the food matrix, such as fat, that seem to interfere with saltiness perception, increasing or reducing it. Several techniques were used to identify the interaction between sodium and the food matrix, as well as sensory testing to determine the influence of different modification strategies to enhance the saltiness perception. Due to the multiple factors involved in the salty taste, understanding the effect of the technique to modify saltiness perception, the interaction of the matrix components of the food, and the sodium interaction with those components, can be of use in the developing process of foods with a reduction in the sodium content. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05861-6.
Collapse
Affiliation(s)
- Verónica Fonseca-Bustos
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Tomás J. Madera-Santana
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Yesica Y. Martínez-Núñez
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Luis E. Robles-Ozuna
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Luz del Carmen Montoya-Ballesteros
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| |
Collapse
|
4
|
Montero ML, Duizer LM, Ross CF. Sensory Perception and Food-Evoked Emotions of Older Adults Assessing Microwave-Processed Meals with Different Salt Concentrations. Foods 2024; 13:631. [PMID: 38397608 PMCID: PMC10887961 DOI: 10.3390/foods13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study employed a home-use test to explore the sensory perception and evoked emotions of older adults in the assessment of chicken pasta meals with different salt concentrations. Ready-to-eat (RTE) meals with three salt levels (100%, 75%, and 50%) and two treatments-with and without added herbs-were tested. Multiple sensory attributes and overall meal liking were evaluated by participants (n = 54; 60-86 years of age) with hedonic and just-about-right scores. Twenty-five food-evoked emotions were also tested. Sensory results suggested a 50% salt reduction is possible with minimal impact on the overall liking, while a 25% salt reduction did not affect the saltiness and flavor liking of the meals. Herb addition positively impacted the aroma, flavor, and spiciness liking of the meals. The emotions that differed (p < 0.05) among meals were active, aggressive, bored, calm, happy, and wild, with the meals with herbs added eliciting more positive emotions. A questionnaire elicited information about participants' interest in healthy eating, food technology neophobia, and picky behaviors to determine the influence of these factors on participants' salt consumption habits. Sensory acceptance data combined with questionnaires explored what influenced this group of older adults in their acceptance of and interest in RTE meals.
Collapse
Affiliation(s)
- Maria Laura Montero
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
- National Center for Food Science and Technology (CITA), University of Costa Rica, San José 11501-2060, Costa Rica
| | - Lisa M. Duizer
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Carolyn F. Ross
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
5
|
Jia S, Shen H, Wang D, Liu S, Ding Y, Zhou X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem 2024; 431:137142. [PMID: 37591146 DOI: 10.1016/j.foodchem.2023.137142] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Sodium chloride (NaCl) confers a unique flavor and quality in meat products, however, due to growing concerns about the adverse effects of excessive NaCl consumption, how to reduce NaCl content while ensuring quality and safety has become a research hotspot in this field. This review mainly discusses the role of NaCl in dry-cured meat, as well as novel salt-reducing substances that can substitute for the effects of NaCl to achieve sodium reduction objectives. New technologies, such as vacuum curing, ultrahigh pressure curing, ultrasonic curing, pulsed electric field curing, and gamma irradiation, to facilitate the development of low-sodium products are also introduced. The majority of current salt reduction technologies function to enhance salt diffusion and decrease curing time, resulting in a decrease in NaCl content. Notably, future studies should focus on implementing multiple strategies to compensate for the deficiencies in flavor and safety caused by NaCl reduction.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanrui Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Dong Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Li H, Lin L, Feng Y, Zhao M. Exploration of optimal preparation strategy of Chenpi (pericarps of Citrus reticulata Blanco) flavouring essence with great application potential in sugar and salt-reduced foods. Food Res Int 2024; 175:113669. [PMID: 38129020 DOI: 10.1016/j.foodres.2023.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
To obtain flavouring essence with application potential in sugar and salt-reduced foods, the optimal strategy for extraction and microencapsulation of essential oil (EO) from Chenpi was investigated. UPLC-QTOF-MS/MS and liquid-liquid-extraction-GC-MS confirmed the selectivity for volatiles ranked in hydrodistillation > supercritical fluid extraction > solvent extraction. The aroma characteristic of Chenpi EO was distinguished by 33 key volatiles (screened out via headspace-SPME-GC-MS) and quantitative descriptive analysis. EO extracted by supercritical fluid extraction was preferred for preserving the original aroma of Chenpi and displaying more fruity, honey and floral. Chenpi flavouring essence with superior encapsulation efficiency, particle size, water dispersibility, and thermostability was obtained through optimally microencapsulating EO with gum arabic and maltodextrin (1:1) by high-pressure homogenization coupled with spray drying. Chenpi flavouring essence was able to reduce the usage of sugar and salt by 20 % via enhancing flavour perception of sweetness and saltiness. This study first developed a flavouring essence promisingly effective in both sugar and salt-reduced foods.
Collapse
Affiliation(s)
- Hanliang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China.
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| |
Collapse
|
7
|
Ross C, Sablani S, Tang J. Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs. Foods 2023; 12:foods12061322. [PMID: 36981248 PMCID: PMC10048495 DOI: 10.3390/foods12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The crewed suborbital and space flights launched by private companies over the past three years have rejuvenated public interest in space travel, including space tourism. Ready-to-eat meals (MREs) are the main source of nutrients and energy for space travelers. It is critical that those meals are free of bacterial and viral pathogens and have adequate shelf life. The participation of private companies in space programs will create new opportunities and demand for high-quality and microbiologically safe MREs for future space travels. In this article, we provide a brief review of nutrition and energy requirements for human activities in space. We discuss the general thermal processing requirements for control of bacterial and viral pathogens in MREs and introduce advanced thermal preservation technologies based on microwaves for production of MREs with different shelf-lives under various storage conditions. We also present the latest advancements in the development of polymer packaging materials for quality preservation of thermally stabilized MREs over extended storage. Finally, we recommend future research on issues related to the sensory quality of specially formulated MREs, microbial safety of dried foods that complement high moisture MREs, and food package waste management in future space missions.
Collapse
Affiliation(s)
- Carolyn Ross
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Shyam Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
8
|
The use of herbs and spices in sodium-reduced meals enhances saltiness and is highly accepted by the elderly. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Role of Aromatic Herbs and Spices in Salty Perception of Patients with Hyposmia. Nutrients 2022; 14:nu14234976. [PMID: 36501005 PMCID: PMC9740803 DOI: 10.3390/nu14234976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Herbs and spices represent a possibility for the improvement of anosmia and ageusia. In this work we evaluated the role of Mediterranean aromatic herbs and spices in the salty taste perception of patients with hyposmia compared to healthy controls. To this goal, the salty taste perception in response to pure salt and different types of commercial flavored sea salt was assessed in patients with hyposmia, with or without a post-acute coronavirus syndrome, and healthy controls. Myrtle berries and leaves, a mixture of Mediterranean herbs and plants such as helichrysum, rosemary, liquorice, fennel seeds and myrtle leaves, oranges and saffron were used as salt flavoring ingredients. Differences in gustatory perception between 57 patients with hyposmia and 91 controls were evaluated considering the rate of the gustatory dimensions of pleasantness, intensity, and familiarity, using a 7-point hedonic Likert-type scale. At a dose of 0.04 g/mL, saline solutions of flavored salts, with an average 15% less NaCl, were perceived by patients with hyposmia as equally intense but less familiar than pure salt solution, with similar scores in the pleasantness dimension. Our study highlighted the central role of Mediterranean aromatic plants in the enhancement of salty perception in patients with hyposmia.
Collapse
|
10
|
Rosa A, Pinna I, Piras A, Porcedda S, Masala C. Flavoring of sea salt with Mediterranean aromatic plants affects salty taste perception. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6005-6013. [PMID: 35446446 PMCID: PMC9540657 DOI: 10.1002/jsfa.11953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Salt (sodium chloride) is an essential component of daily food, crucial for many physiological processes. Due to health risks related to salt over consumption, considerable interest is devoted to strategies to reduce dietary salt intake. In this work we evaluated the sensory dimensions of sea salts flavored with Mediterranean aromatic plants with the aim to confirm the role of herbs/spices in the enhancement of salty perception and to validate the use of flavored salts as a strategy to reduce salt intake. To this goal we compared taste dimensions (pleasantness, intensity, and familiarity) of solutions obtained with salt and sea salts flavored with Mediterranean herbs, spices, and fruits. Sensorial differences were analyzed using a seven-point hedonic Likert-type scale on 58 non-trained judges. RESULTS Main flavor compounds, identified by gas chromatography-flame ionization detection-mass spectrometry (GC-FID-MS) analysis, were α-pinene and 1,8-cineole in myrtle salt (FS 1), verbenone, α-pinene, 1,8-cineole, and rosifoliol in herbs/plants salt (FS 2), and limonene in orange fruits/saffron salt (FS 3). At the dose of 0.04 g mL-1 , saline solutions obtained with flavored salt (containing approximately 6-30% less sodium chloride) were perceived as more intense, less familiar, but equally pleasant than pure salt solution. In particular, sea salt flavored with orange fruits/saffron emerged as the most interesting in potentiating saltiness perception. CONCLUSION Our study confirmed the important role of Mediterranean aromatic plants in the enhancement of saltiness perception and qualified the use of flavored sea salt during food preparation/cooking instead of normal salt as a potential strategy to reduce the daily salt intake. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Ilenia Pinna
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Alessandra Piras
- Department of Chemical and Geological SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Silvia Porcedda
- Department of Chemical and Geological SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Carla Masala
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| |
Collapse
|
11
|
Montero ML, Ross CF. Saltiness perception in white sauce formulations as tested in older adults. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Romaniw OC, Montero ML, Sharma M, Ross CF, Duizer LM. Creating foods for older adults: Emotional responses and liking of microwave-assisted thermal sterilization processed meals. J Food Sci 2022; 87:3173-3189. [PMID: 35638326 DOI: 10.1111/1750-3841.16200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to examine emotional and liking responses to foods designed for older adults and made using microwave-assisted thermal sterilization technology (MATS). Six chicken pasta meals (three each with and without herbs) were formulated with three concentrations of salt at 100%, 75%, and 50%. Seventy-six community-dwelling older adults conducted sensory and emotional evaluations. Sensory testing involved measuring liking of various sensory attributes using a 9-point hedonic scale, Just-about-right scales to measure appropriateness of the intensity of the attributes, and check-all-that-apply questions to identify perceived flavor and texture attributes. EsSense25 methodology was used for capturing food-evoked emotional responses. Significant differences existed in all measured sensory attributes and in 14 out of the 25 tested emotions across the six meals. Liking scores for all pastas with herbs and high salt pasta with no herbs were not significantly different for all tested attributes and fell between neither like nor dislike and like slightly on the 9-point hedonic scale. These samples were also associated with positive emotions related to energy and activation. Low-salt pastas with no herbs were consistently the least liked samples and evoked negative emotions. Results show that sodium content can be reduced by up to half when herbs are added to microwave-processed pasta meals without compromising liking. PRACTICAL APPLICATION: Chicken pasta meals manufactured using microwave-assisted thermal sterilization technology are acceptable to community living individuals 60 years and older. Emotional responses to the meal are positive. When formulating these meals, herbs can be added to lower sodium content formulations to improve liking and increase the number of positive emotions associated with the meal. Microwave-assisted thermal sterilization, sodium reduction, emotional responses, consumer liking, older adults.
Collapse
Affiliation(s)
- Olivia C Romaniw
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Maria Laura Montero
- School of Food Science, Washington State University, Pullman, Washington, USA.,National Center for Food Science and Technology (CITA), University of Costa Rica, San José, Costa Rica
| | - Madhu Sharma
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn F Ross
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Lisa M Duizer
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Ai Y, Han P. Neurocognitive mechanisms of odor-induced taste enhancement: A systematic review. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Dunteman AN, McKenzie EN, Yang Y, Lee Y, Lee SY. Compendium of sodium reduction strategies in foods: A scoping review. Compr Rev Food Sci Food Saf 2022; 21:1300-1335. [PMID: 35201660 DOI: 10.1111/1541-4337.12915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/04/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
In response to health concerns generated by increased sodium intake, many new approaches have been studied to reduce the sodium content in processed food. It has been suggested that reducing sodium in the food supply may be the most appropriate solution. The aim of this scoping review was to establish what sodium reduction strategies are effective in maintaining acceptable sensory qualities for various food industry applications. Studies that evaluate and report on the effectiveness of a sodium reduction strategy relevant to food and included outcomes detailing how the strategies were received by human subjects using sensory data are included, as well as book chapters, literature reviews, and patents focusing on sodium reduction strategies. Only those published in English and since 1970 were included. Literature was obtained through Scopus, PubMed, EBSCOhost, and ScienceDirect databases, whereas patents were obtained through US Patent Trademark Office, Google Patents, and PATENTSCOPE databases. Two-hundred and seventy-seven primary studies, 27 literature reviews, 10 book chapters, and 143 patents were selected for inclusion. Data extracted included details such as analytical methods, broad and specific treatment categories, significant outcomes, and limitations among other material. Sodium reduction methods were categorized as either salt removal, salt replacement, flavor modification, functional modification, or physical modification. Although salt removal and salt replacement were the majority of included studies, future research would benefit from combining methods from other categories while investigating the impact on sensory characteristics, technological aspects, and consumer perception of the strategy.
Collapse
Affiliation(s)
- Aubrey N Dunteman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Elle N McKenzie
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Ying Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Soo-Yeun Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
15
|
Archer NS, Cochet-Broch M, Mihnea M, Garrido-Bañuelos G, Lopez-Sanchez P, Lundin L, Frank D. Sodium Reduction in Bouillon: Targeting a Food Staple to Reduce Hypertension in Sub-saharan Africa. Front Nutr 2022; 9:746018. [PMID: 35187028 PMCID: PMC8847432 DOI: 10.3389/fnut.2022.746018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Bouillon cubes are a staple ingredient used in Sub-saharan African countries providing flavor enhancement to savory foods. Bouillon has been identified as a vehicle for fortification to overcome micronutrient deficiencies in Sub-saharan Africa. However, bouillon has a high sodium content (and in addition with other foods) contributes to dietary sodium intake above recommended guidelines. High dietary sodium intake is a key risk factor for hypertension and cardiovascular disease (CVD). Africa has the highest rates of hypertension and CVD globally with nearly half the adult population above 25 years affected. This review presents current state of research on sodium reduction strategies in bouillon. The key challenge is to reduce sodium levels while maintaining optimal flavor at the lowest possible production cost to ensure bouillon continues to be affordable in Sub-saharan Africa. To produce lower sodium bouillon with acceptable flavor at low cost will likely involve multiple sodium reduction strategies; direct reduction in sodium, sodium replacement and saltiness boosting flavor technologies. Efforts to reduce the sodium content of bouillon in Sub-saharan Africa is a worthwhile strategy to: (i) lower the overall sodium consumption across the population, and (ii) deliver population-wide health benefits in a region with high rates of hypertension and CVD.
Collapse
Affiliation(s)
- Nicholas S. Archer
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Sydney, NSW, Australia
- *Correspondence: Nicholas S. Archer
| | - Maeva Cochet-Broch
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Sydney, NSW, Australia
| | - Mihaela Mihnea
- RISE Research Institutes of Sweden, Agriculture and Food, Gothenburg, Sweden
| | | | | | - Leif Lundin
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Melbourne, VIC, Australia
| | - Damian Frank
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Sydney, NSW, Australia
| |
Collapse
|
16
|
Effect of Salt Content Reduction on Food Processing Technology. Foods 2021; 10:foods10092237. [PMID: 34574347 PMCID: PMC8469246 DOI: 10.3390/foods10092237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Higher salt intake is associated with the risk of cardiovascular and kidney diseases, hypertension and gastric cancer. Salt intake reduction represents an effective way to improve people’s health, either by the right choice of food or by a reduction of added salt. Salt substitutes are often used and also herb homogenates are treated by high pressure technology. Salt reduction significantly influences the shelf life, texture, pH, taste, and aroma of cheese. The composition of emulsifying salts or starter cultures must be modified to enact changes in microbial diversity, protease activity and the ripening process. The texture becomes softer and aroma atypical. In bakery products, a salt reduction of only 20–30% is acceptable. Water absorption, dough development, length and intensity of kneading and stability of dough are changed. Gluten development and its viscoelastic properties are affected. The salt reduction promotes yeast growth and CO2 production. Specific volume and crust colour intensity decreased, and the crumb porosity changed. In meat products, salt provides flavour, texture, and shelf life, and water activity increases. In this case, myofibrillar proteins’ solubility, water binding activity and colour intensity changes were found. The composition of curing nitrite salt mixtures and starter cultures must be modified.
Collapse
|
17
|
Consumer Acceptance of a Ready-to-Eat Meal during Storage as Evaluated with a Home-Use Test. Foods 2021; 10:foods10071623. [PMID: 34359493 PMCID: PMC8303846 DOI: 10.3390/foods10071623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 01/28/2023] Open
Abstract
A home-use test (HUT) is one method that provides a measure of ecological validity as the product is consumed in home under common daily use circumstances. One product that benefits from being evaluated in-home are ready-to-eat (RTE) meals. This study determined consumer acceptance of microwave-thermally-pasteurized jambalaya, a multi-meat and vegetable dish from American Cajun cuisine, and a control (cooked frozen jambalaya) through an on-line home-use test (HUT) over a 12-week storage period. Paralleling the HUT, an online auction determined consumers’ willingness to pay. The study also explored how the social environment may impact the liking of the meals when a partner of the participants joined the sensory evaluation of the meals. Consumers (n = 50) evaluated microwave-processed jambalaya stored at 2 °C and a control (cooked frozen jambalaya stored at −31 °C) after 2, 8 and 12 weeks of storage. Consumer liking of different sensory attributes was measured. Participants could choose to share the meals with a partner as a way to enhance ecological validity. The responses from 21 partners to the sensory-related questions were collected. After the sensory evaluation, the participants bid on the meal they had just sampled. Results showed that processing method (microwave vs. control) did not significantly influence the measured sensory attributes. Only flavor liking decreased over storage time (p < 0.05). The inclusion of partners significantly increased (p = 0.04) the liking of the appearance of the meals. The mean values of the bids for the meals ranged from $3.33–3.74, matching prices of commercially available jambalaya meals. This study found suggests that the shelf- life of microwave-processed meals could be extended up to 12 weeks without changing its overall liking. The study also shows the importance of exploring HUT methodology for the evaluation of consumers’ acceptance of microwave-processed jambalaya and how including a partner could contribute to enhance ecological validity.
Collapse
|
18
|
Garrido D, Gallardo RK, Ross CF, Montero ML, Tang J. The effect of intrinsic and extrinsic quality on the willingness to pay for a convenient meal: A combination of
home‐use‐test
with online auctions. J SENS STUD 2021. [DOI: 10.1111/joss.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dolores Garrido
- School of Economic Sciences, Washington State University Pullman Washington USA
- Department of Economics Union College Schenectady New York USA
| | - R. Karina Gallardo
- School of Economic Sciences, Puyallup Research and Extension Center, Washington State University Puyallup Washington USA
| | - Carolyn F. Ross
- School of Food Science, Washington State University Pullman Washington USA
| | - Maria Laura Montero
- School of Food Science, Washington State University Pullman Washington USA
- National Center for Food Science and Technology (CITA), University of Costa Rica San José Province Mercedes Costa Rica
| | - Juming Tang
- Distinguished Chair of Food Engineering, Department of Biological Systems Engineering, Washington State University Pullman Washington USA
| |
Collapse
|
19
|
Patel J, Sonar CR, Al-Ghamdi S, Tang Z, Yang T, Tang J, Sablani SS. Influence of ultra-high barrier packaging on the shelf-life of microwave-assisted thermally sterilized chicken pasta. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 2020; 248:116784. [DOI: 10.1016/j.carbpol.2020.116784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
21
|
Montero ML, Sablani S, Tang J, Ross CF. Characterization of the sensory, chemical, and microbial quality of microwave-assisted, thermally pasteurized fried rice during storage. J Food Sci 2020; 85:2711-2719. [PMID: 32794282 DOI: 10.1111/1750-3841.15384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Companies producing ready-to-eat (RTE) meals are looking for processing alternatives that allow them to gain presence in the supermarket chill section. Microwave-assisted pasteurization systems (MAPS) offer the potential to produce safe, high-quality foods. This research examined sensory, physical, chemical, and microbial changes in fried rice processed with MAPS and stored at 7 °C over a 6-week storage period. Additional fried rice samples (cooked but not MAPS-processed) were stored at -31 °C and were used as the control. Randomly selected trays of each type of rice were analyzed at 1, 4, and 6 weeks of storage. Aroma, appearance, taste/flavor, texture, mouthfeel, and aftertaste were evaluated by a semitrained sensory panel with rate-all-that-apply questions. The type of rice treatment (MAPS or control) significantly influenced sensory attributes (P < 0.05), with firm texture attribute of the egg being more intense in the MAPS-rice compared to the control. In addition, storage time affected the sensory modalities of both rice samples, including aroma, appearance, and taste/flavor (P < 0.05). No spoilage-associated sensory attributes were detected in the MAPS-rice during storage. At each examination point, various physical, chemical, and microbial analyses were conducted for the MAPS- and control rice. From the physical and chemical perspective, the MAPS-rice did not present relevant changes over the period tested. Microbial growth was the main cause of spoilage of the MAPS-rice; however, MAPS was able to extend the regular 5-day shelf life of a chilled fried rice meal to 6 weeks, demonstrating the potential of this technology for the RTE industry. PRACTICAL APPLICATION: The findings of this study indicate that, by applying microwave technology to RTE fried rice, the shelf life can be extended from 5 to 7 days up to 42 days (6 weeks) when stored at 7 °C. This temperature closely mimics that of consumers' refrigerators in the United States. This study also shows the potential of working with a semitrained panel and RATA questions when characterizing sensory changes during storage.
Collapse
Affiliation(s)
- María Laura Montero
- School of Food Science, Washington State University, Pullman, WA, 99164, U.S.A
| | - Shyam Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, U.S.A
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, U.S.A
| | - Carolyn F Ross
- School of Food Science, Washington State University, Pullman, WA, 99164, U.S.A
| |
Collapse
|
22
|
Barnett SM, Sablani SS, Tang J, Ross CF. The potential for microwave technology and the ideal profile method to aid in salt reduction. J Food Sci 2020; 85:600-610. [PMID: 32017103 DOI: 10.1111/1750-3841.15034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022]
Abstract
This study was the first to evaluate the influence of the combination strategies of flavor addition and microwave-assisted thermal sterilization (MATS) processing for salt reduction implications. In freshly prepared mashed potatoes, a 30% and 50% salt reduction (w/w) in comparison to a 100% salt sample with three flavor variations (no additional flavor, garlic, and pepper) were investigated. Also, using the ideal profile method (IPM), the influence of MATS versus retort processing, in comparison to a freshly prepared sample, and flavor addition on mashed potato sensory properties and acceptance was investigated. Chemical characterization using the electronic tongue for nonvolatile compounds and headspace solid-phase microextraction (HS-SPME)/gas chromatography-mass spectrometry (GC-MS) for volatile analysis was completed. IPM revealed the ideal data were consistent at both the panel and consumer levels from a sensory and hedonic perspective. Results demonstrated the ideal mashed potato product would remain low in bitterness but have more intense pepper and potato aromas and flavors than the current samples evaluated. The salt level could be reduced by 50% while still maintaining flavor and overall acceptance in freshly prepared samples, but this was accompanied by a loss in saltiness intensity perception. The saltiness intensity was not different from the freshly prepared samples when processed via MATS but was different when processed by the retort. For chemical characterization, the electronic tongue showed a high discrimination index (>89%) and correlated highly (>0.8) with many sensory attributes. As salt concentration in the mashed potatoes decreased, the recovery of volatile compounds decreased. The present work contributes to the understanding of product reformulation for the purpose of salt reduction. PRACTICAL APPLICATION: Product developers need strategies to bring salt down to target levels while maintaining consumer acceptance. The combination strategies of flavor addition and MATS processing may allow for a new strategy to assist product developers in reaching salt reduction targets. Furthermore, developers should bear in mind that noticeable intensity differences may not alter the preference for the product. Thus, intensity differences that result in changes in acceptance should be the focus of quality insurance rather than utilizing just noticeable differences.
Collapse
Affiliation(s)
- Sasha M Barnett
- School of Food Science, Washington State Univ., Pullman, WA, 99164, USA
| | - Shyam S Sablani
- Dept. of Biological Systems Engineering, Washington State Univ., Pullman, WA, 99164, USA
| | - Juming Tang
- Dept. of Biological Systems Engineering, Washington State Univ., Pullman, WA, 99164, USA
| | - Carolyn F Ross
- School of Food Science, Washington State Univ., Pullman, WA, 99164, USA
| |
Collapse
|