1
|
Cui L, Wang X, He C, Liu Z, Liang J. Effect of puffing treatment on volatile components of green tea explored by gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem X 2024; 23:101746. [PMID: 39257491 PMCID: PMC11386056 DOI: 10.1016/j.fochx.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
The effect of puffing treatment on the volatile components of green tea has been studied. A total of 155 volatile compounds were identified by using HS-SPME and SPE extraction methods, combined with gas chromatography-mass spectrometry (GC-MS). The total concentration of volatile compounds in puffed green tea increased by 2.25 times compared to that in before puffing. 12 key volatile compounds in green tea were identified before and after puffing using a combination of multivariate statistical analysis, GC-O, AEDA dilution analysis, and relative odor activity value (rOAV). The puffing process generates the Maillard reaction, where sugars react with amino acids to produce Maillard reaction products (such as pyrazine, pyrrole, furan, and their derivatives), giving them a unique baking aroma. The proportion of these compounds in the total volatile matter increased. The research results provided guidance and a theoretical basis for improving the aroma processing of green tea.
Collapse
Affiliation(s)
- Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Huang Z, Zhang L, Xuan J, Zhao T, Peng W. Antibacterial and Antiallergic Effects of Three Tea Extracts on Histamine-Induced Dermatitis. Pharmaceuticals (Basel) 2024; 17:1181. [PMID: 39338343 PMCID: PMC11435320 DOI: 10.3390/ph17091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurrent inflammatory skin condition with a genetic basis. However, the fundamental reasons and mechanisms behind this phenomenon remain incompletely understood. While tea extracts are known to reduce histamine-induced skin allergies and inflammation, the specific mechanisms by which various types of Chinese tea provide their protective effects are still not fully elucidated. In this study, a model of skin itching induced by histamine is used to explore the functions and mechanisms of three types of tea extract (Keemun black tea (HC), Hangzhou green tea (LC), and Fujian white tea (BC)) in alleviating histamine-induced dermatitis. The components of three tea extracts are identified by UPLC-Q-TOF-MS, and we found that their main components are alkaloids, fatty acyls, flavonoids, organic acids, and phenols. The inhibitory effects of three types of tea extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in skin injury are investigated by MIC and flow cytometry. The three types of tea extract have an inhibitory effect on the growth of bacterial flora, with HC showing the best inhibitory activity. The effect of the three types of tea extract on histamine-induced dermatitis is also evaluated. Furthermore, itchy skin experiments, HE staining, toluidine blue staining, and immunohistochemical staining of mouse skin tissues were performed to determine the variations of scratching, epidermal thickness, mast cell number, IL-1β, and NGF content after the administration of the tea extracts. The three types of tea extracts all alleviate and inhibit skin itching, epidermal hyperplasia, and allergic dermatitis. BC effectively alleviates epidermal hyperplasia caused by skin allergies, and LC significantly downregulates NGF. HC reduces histamine-induced mast cell infiltration and downregulates IL-1β to alleviate skin itching. Consequently, tea emerges a potent natural product that can inhibit the growth of skin wound bacterial flora and exhibit skin repair effects on histamine-induced allergic dermatitis.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Tiantian Zhao
- Key Laboratory of Functional Foods, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| |
Collapse
|
4
|
Cui J, Wu B, Zhou J. Changes in amino acids, catechins and alkaloids during the storage of oolong tea and their relationship with antibacterial effect. Sci Rep 2024; 14:10424. [PMID: 38710752 DOI: 10.1038/s41598-024-60951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.
Collapse
Affiliation(s)
- Jilai Cui
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China.
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China
| |
Collapse
|
5
|
Li Y, Zhang J, Jia H, Pan Y, Xu YQ, Wang Y, Deng WW. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea. Food Chem 2023; 427:136711. [PMID: 37390734 DOI: 10.1016/j.foodchem.2023.136711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yue Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| |
Collapse
|
6
|
Qiu Z, Liao J, Chen J, Chen P, Sun B, Li A, Pan Y, Liu H, Zheng P, Liu S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023; 12:2067. [PMID: 37238885 PMCID: PMC10217579 DOI: 10.3390/foods12102067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The flavor and quality of tea largely depends on the cultivar from which it is processed; however, the cultivar effect on the taste and aroma characteristics of Hakka stir-fried green tea (HSGT) has received little attention. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluations were used to detect and predict the essential taste and aroma-contributing substances of HSGTs made from Huangdan (HD), Meizhan (MZ) and Qingliang Mountain (QL) cultivars. Orthogonal partial least squares data analysis (OPLS-DA) ranked four substances that putatively distinguished the tastes of the HSGTs, epigallocatechin gallate (EGCG) > theanine > epigallocatechin (EGC) > epicatechin gallate (ECG). Ten substances with variable importance in projections (VIPs) ≥ 1 and odor activation values (OAVs) ≥ 1 contributed to their overall aromas, with geranylacetone having the most significant effect on HD (OAV 1841), MZ (OAV 4402), and QL (OAV 1211). Additionally, sensory evaluations found that HD was relatively equivalent to QL in quality, and both were superior to MZ. HD had a distinct floral aroma, MZ had a distinct fried rice aroma, and QL had a balance of fried rice and fresh aromas. The results provide a theoretical framework for evaluating the cultivar effect on the quality of HSGT and put forward ideas for future HSGT cultivar development.
Collapse
Affiliation(s)
- Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jinmei Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peifen Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Yiyu Pan
- Meizhou Runqi Culture and Technology Development Co., Ltd., Meizhou 514000, China;
| | - Hongmei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| |
Collapse
|
7
|
Polyphenols and Antioxidant Activity of Thunbergia laurifolia Infused Tea under Drying Conditions. J FOOD QUALITY 2023. [DOI: 10.1155/2023/5046880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Thunbergia laurifolia leaf is used in Thai herbal medicine to moderate alcohol, food poisoning, and other health-related diseases mainly due to its overwhelming phytochemical compounds which exert several biological functions such as antioxidant, and anti-inflammatory properties, among others. This study investigated the potential effects of hot air-drying conditions (TL-D80°C, TL-D90°C, and TL -D100°C) of T. laurifolia tea leaves on phenolic compounds, total flavonoid content (TFC), total phenolic content (TPC), and antioxidant activities (AOA) of the infused teas. The results show that an increase in drying temperature significantly
improved TPC (709.7 ± 1.36–744.8 ± 5.79 mg GAE/) and TFC (198.98 ± 7.59–207.16 ± 4.10 mg RE/L) of infused teas. TL-D80°C (69.9 ± 0.95%) and TL-D90°C (69.3 ± 0.7%) infused teas showed significantly
higher DPPH inhibitory effect compared to TL-D100°C. Treatment had no effects
on ABTS.+ scavenging activity. The phenolic compounds detected in infused teas were rosmarinic acid, caffeic acid, gallic acid, catechin, rutin, and quercetin. Regarding, the cumulative phenolic compounds TL-D100°C infused teas were significantly higher
compared to TL-D90°C and TL-D80°C. The results suggest that drying conditions (i.e., TL-D100°C within 30 min) could be used to achieve appropriate moisture content of T. laurifolia tea leaves without compromising the phytochemical compositions and antioxidant potentials of the resulting infused teas.
Collapse
|
8
|
Zhang S, Liu S, Li H, Luo L, Zeng L. Identification of the key phytochemical components responsible for sensory characteristics of Hunan fuzhuan brick tea. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Production regions discrimination of Huangguanyin oolong tea by using the content of chemical components and rare earth elements. Food Res Int 2023; 165:112522. [PMID: 36869522 DOI: 10.1016/j.foodres.2023.112522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Oolong tea is one of the most popular tea beverages in China. Tea cultivars, processing technology and origin of production affect the quality and price of oolong teas. To investigate the differences in Huangguanyin oolong tea from different production regions, the chemical components, mineral elements and rare earth elements of Huangguanyin oolong tea produced in Yunxiao (YX) and Wuyishan (WY) were analyzed by using spectrophotometry methods, targeted metabolomics and inductive plasma coupled mass spectrometry (ICP-MS). The results of spectrophotometry methods revealed that there were significant differences in thearubigin, tea polyphenols and water extract between Huangguanyin oolong teas from different production regions. Targeted metabolomics identified a total of 31 chemical components in Huangguanyin oolong teas from the two production regions, of which 14 chemical components were significantly different and contributed to the regional differentiation of Huangguanyin oolong tea. Yunxiao Huangguanyin had relatively higher contents of (-)-Epigallocatechin-3-O-(3-O-methylgallate) (EGCG3″Me), ornithine (Orn) and histidine (His), while Wuyishan Huangguanyin had relatively higher contents of glutamic acid (Glu), γ-aminobutyric acid (GABA), β-aminobutyric acid (β-ABA) and other components. Moreover, ICP-MS identified a total of 15 mineral elements and 15 rare earth elements in Huangguanyin oolong tea from the two production regions, of which 15 elements were significantly different between YX and WY, and contributed to the regional differentiation of Huangguanyin oolong tea. K had a relatively higher content in Yunxiao Huangguanyin, while rare earth elements had relatively higher contents in Wuyishan Huangguanyin. The classification results by the production region showed that the discrimination rate of the support vector machine (SVM) model based on the 14 different chemical components reached 88.89%, while the SVM model based on the 15 elements reached 100%. Therefore, we used targeted metabolomics and ICP-MS techniques to screen and explore the chemical components, mineral elements and rare earth elements differences among two production regions, which indicated the feasibility of Huangguanyin oolong tea classification by production regions in the study. The results will provide some reference for the distinction between the two production regions of Huangguanyin oolong tea.
Collapse
|
11
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Wang W, Wang H, Wu Z, Duan T, Liu P, Ou S, El-Nezami H, Zheng J. Reduction in Five Harmful Substances in Fried Potato Chips by Pre-Soaking Treatment with Different Tea Extracts. Foods 2023; 12:foods12020321. [PMID: 36673412 PMCID: PMC9858103 DOI: 10.3390/foods12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Thermally processed food always contains various types of harmful substances. Control of their levels in food is important for human health. This work used the extracts from green tea dust, old green tea, yellow tea, white tea, oolong tea, and black tea to simultaneously mitigate diverse harmful substances in fried potato chips. The six tea extracts (30 g/L) all showed considerable inhibitory effects on the formation of 5-hydroxymethylfurfural (reduced by 19.8%-53.2%), glyoxal (26.9%-36.6%), and methylglyoxal (16.1%-75.1%). Green tea and black tea extracts exhibited better inhibitory abilities than the other three teas and were further investigated for other harmful compounds by various concentration treatments. Finally, pre-soaking of fresh potato slices in 50 g/L extracts of green tea dust displayed, overall, the most promising inhibitory capacity of HMF (decreased by 73.3%), glyoxal (20.3%), methylglyoxal (69.7%), acrylamide (21.8%), and fluorescent AGEs (42.9%) in fried potato chips, while it exhibited the least impact on the color and texture. The high level of catechins in green tea dust may contribute most to its outstanding inhibitory effect, whereas the distinguished inhibitory effect of black tea extract was speculated to be attributable to the high levels of theaflavins and amino acids in the fully fermented tea. This study indicated that green tea dust, a predominant waste of the tea industry, had great potential to be exploited to improve food quality and safety.
Collapse
Affiliation(s)
- Weitao Wang
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
| | - Huaixu Wang
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
| | - Zhongjun Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Duan
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Hani El-Nezami
- School of Biological Science, University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, China
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Correspondence: (H.E.-N.); (J.Z.); Tel.: +86-8522-6630 (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence: (H.E.-N.); (J.Z.); Tel.: +86-8522-6630 (J.Z.)
| |
Collapse
|
13
|
Ye Y, Yan W, Peng L, He J, Zhang N, Zhou J, Cheng S, Cai J. Minerals and bioactive components profiling in Se-enriched green tea and the pearson correlation with Se. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
ZHANG Y, LI X, LI H, HUANG L, HUANG J, TANG Q. Rapid and non-destructive determination of tea polyphenols content in Chongzhou new loquat tea lines based on near infrared spectroscopy. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Ying ZHANG
- Sichuan Agricultural University, China; Chongqing Academy of Agricultural Sciences, China
| | | | - Hui LI
- Sichuan Agricultural University, China
| | | | | | - Qian TANG
- Sichuan Agricultural University, China
| |
Collapse
|
15
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
16
|
Ansari P, Hannan JMA, Choudhury ST, Islam SS, Talukder A, Seidel V, Abdel-Wahab YHA. Antidiabetic Actions of Ethanol Extract of Camellia sinensis Leaf Ameliorates Insulin Secretion, Inhibits the DPP-IV Enzyme, Improves Glucose Tolerance, and Increases Active GLP-1 (7-36) Levels in High-Fat-Diet-Fed Rats. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9110056. [PMID: 36422117 PMCID: PMC9698069 DOI: 10.3390/medicines9110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 05/14/2023]
Abstract
Camellia sinensis (green tea) is used in traditional medicine to treat a wide range of ailments. In the present study, the insulin-releasing and glucose-lowering effects of the ethanol extract of Camellia sinensis (EECS), along with molecular mechanism/s of action, were investigated in vitro and in vivo. The insulin secretion was measured using clonal pancreatic BRIN BD11 β cells, and mouse islets. In vitro models examined the additional glucose-lowering properties of EECS, and 3T3L1 adipocytes were used to assess glucose uptake and insulin action. Non-toxic doses of EECS increased insulin secretion in a concentration-dependent manner, and this regulatory effect was similar to that of glucagon-like peptide 1 (GLP-1). The insulin release was further enhanced when combined with isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, but was decreased in the presence of verapamil, diazoxide and Ca2+ chelation. EECS also depolarized the β-cell membrane and elevated intracellular Ca2+, suggesting the involvement of a KATP-dependent pathway. Furthermore, EECS increased glucose uptake and insulin action in 3T3-L1 cells and inhibited dipeptidyl peptidase IV (DPP-IV) enzyme activity, starch digestion and protein glycation in vitro. Oral administration of EECS improved glucose tolerance and plasma insulin as well as inhibited plasma DPP-IV and increased active GLP-1 (7-36) levels in high-fat-diet-fed rats. Flavonoids and other phytochemicals present in EECS could be responsible for these effects. Further research on the mechanism of action of EECS compounds could lead to the development of cost-effective treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Correspondence:
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Samara T. Choudhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sara S. Islam
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Abdullah Talukder
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | |
Collapse
|
17
|
Lin S, Huang H, Zheng J, Lin H, Wang Y, Xu P. Microbial enrichment evaluation during the fermentation of ensiling pruned branches from tea plants. Int J Food Microbiol 2022; 374:109742. [DOI: 10.1016/j.ijfoodmicro.2022.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
18
|
Dynamic Variation of Amino Acid Contents and Identification of Sterols in Xinyang Mao Jian Green Tea. Molecules 2022; 27:molecules27113562. [PMID: 35684499 PMCID: PMC9182030 DOI: 10.3390/molecules27113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
As important biomolecules in Camellia sinensis L., amino acids (AAs) are considered to contribute to the overall green tea sensory quality and undergo dynamic changes during growth. However, limited by analytical capacity, detailed AAs composition in different growth stages remains unclear. To address this question, we analyzed the dynamic changes of 23 AAs during leaf growth in Xinyang Mao Jian (XYMJ) green tea. Using amino acid analyzer, we demonstrated that most AAs are abundant on Pure Brightness Day and Grain Rain Day. After Grain Rain, 23 AAs decreased significantly. Further analysis shows that theanine has a high level on the day before Spring Equinox and Grain Rain, accounting for 44–61% of the total free AAs content in tea leaves. Glu, Pro, and Asp are the second most abundant AAs. Additionally, spinasterol and 22,23-dihydrospinasterol are first purified and identified in ethanol extract of XYMJ by silica gel column chromatography method. This study reveals the relationship between plucking days and the dynamic changes of AAs during the growth stage and proves the rationality of the traditional plucking days of XYMJ green tea.
Collapse
|
19
|
Gao Y, Cao QQ, Chen YH, Granato D, Wang JQ, Yin JF, Zhang XB, Wang F, Chen JX, Xu YQ. Effects of the Baking Process on the Chemical Composition, Sensory Quality, and Bioactivity of Tieguanyin Oolong Tea. Front Nutr 2022; 9:881865. [PMID: 35651510 PMCID: PMC9150783 DOI: 10.3389/fnut.2022.881865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Tieguanyin oolong tea (TOT), a semi-oxidized tea originating from Anxi county in China, is categorized into jade TOT, medium-baked TOT, and deep-baked TOT, based on different baking processes. To study the effects of baking, chemical analysis, sensory evaluation, and bioactivity assessments of the three TOTs were conducted. The results indicated that the baking process promoted the formation of colored macromolecules (e.g., theabrownins), which affected the color of tea infusion. Free amino acids underwent the Maillard reaction and generated specific Maillard reaction products, such as 5-hydroxymethylfurfural and furfural, which modified the taste and aroma. Floral and fresh volatiles were remarkably reduced, while multiple new volatiles were produced, forming a typically baked aroma. The antioxidant activity and antibacterial activity were reduced after baking, which might be associated with the decrease of monomeric catechins. These results provide a scientific basis for understanding the changes caused by the baking process.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Qing-Qing Cao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yu-Hong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Jun-Feng Yin,
| | - Xue-Bo Zhang
- National Tea Quality Supervision and Inspection Center, Fujian, China
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jian-Xin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| |
Collapse
|
20
|
Ye JH, Ye Y, Yin JF, Jin J, Liang YR, Liu RY, Tang P, Xu YQ. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Selim DA, Shawky E, Abu El-Khair RM. Identification of the discriminatory chemical markers of different grades of Sri Lankan white, green and black tea (Camellia sinenesis L.) via metabolomics combined to chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. HORTICULTURE RESEARCH 2022; 9:6510850. [PMID: 35040977 PMCID: PMC8788373 DOI: 10.1093/hr/uhab029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
Free amino acids are one of the main chemical components in tea, and they contribute to the pleasant flavor, function, and quality of tea, notably the level of theanine. Here, a high-density genetic map was constructed to characterize quantitative trait loci (QTLs) for free amino acid content. A total of 2688 polymorphic SNP markers were obtained using genotyping-by-sequencing (GBS) based on 198 individuals derived from a pseudotestcross population of "Longjing 43" × "Baijiguan", which are elite and albino tea cultivars, respectively. The 1846.32 cM high-density map with an average interval of 0.69 cM was successfully divided into 15 linkage groups (LGs) ranging from 93.41 cM to 171.28 cM. Furthermore, a total of 4 QTLs related to free amino acid content (theanine, glutamate, glutamine, aspartic acid and arginine) identified over two years were mapped to LG03, LG06, LG11 and LG14. The phenotypic variation explained by these QTLs ranged from 11.8% to 23.7%, with an LOD score from 3.56 to 7.7. Furthermore, several important amino acid metabolic pathways were enriched based on the upregulated differentially expressed genes (DEGs) among the offspring. These results will be essential for fine mapping genes involved in amino acid pathways and diversity, thereby providing a promising avenue for the genetic improvement of tea plants.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun-Ya Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| |
Collapse
|
24
|
Cao QQ, Fu YQ, Wang JQ, Zhang L, Wang F, Yin JF, Xu YQ. Sensory and chemical characteristics of Tieguanyin oolong tea after roasting. Food Chem X 2021; 12:100178. [PMID: 34927052 PMCID: PMC8651997 DOI: 10.1016/j.fochx.2021.100178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
Roasting, a critical process for oolong tea, has been applied to Tieguanyin tea to improve flavor attributes. To investigate the effects of the roasting on the flavor of Tieguanyin, the global metabolomics analysis on the non-volatile and volatile components were proceeded. The weakening of bitterness and astringency, caused by roasting, may be attributed to the decreasing of flavonoids glycosides and procyanidins, whereas the enhancing of sweet aftertaste to the increasing of gallic acid. Besides, l-theanine flavan-3-ols adducts (N-ehtyl-2-pyrrolidinone substituted flavan-3-ols) increased dramatically at 130 °C compared with 105 °C, with the reduction of l-theanine and flavan-3-ols. Meanwhile, high temperature hampered the volatiles' diversity and intensity, resulting from the lowering of floral volatiles, i.e., β-ionone, jasmine, and nerolidol, yet the nitrogen-containing heterocyclic compounds increased, e.g., pyrroles and pyrazines. The results can help to comprehensively understand the influences of roasting technology on the flavor and chemistry of oolong tea.
Collapse
Affiliation(s)
- Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Qing Fu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
25
|
Liang S, Granato D, Zou C, Gao Y, Zhu Y, Zhang L, Yin JF, Zhou W, Xu YQ. Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Authentication of Geographical Origin in Hainan Partridge Tea ( Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics. Foods 2021; 10:foods10092130. [PMID: 34574244 PMCID: PMC8464849 DOI: 10.3390/foods10092130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/19/2023] Open
Abstract
Partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) is a local characteristic tea in Hainan, the southernmost province of China, and the quality of partridge tea may be affected by the producing areas. In this study, stable isotope and targeted metabolomics combined chemometrics were used as potential tools for analyzing and identifying partridge tea from different origins. Elemental analysis-stable isotope ratio mass spectrometer and liquid chromatography-tandem mass spectrometrywas used to analyze the characteristics of C/N/O/H stable isotopes and 54 chemical components, including polyphenols and alkaloids in partridge tea samples from four regions in Hainan (Wanning, Wenchang, Sanya and Baoting). The results showed that there were significant differences in the stable isotope ratios and polyphenol and alkaloid contents of partridge tea from different origins, and both could accurately classify partridge tea from different origins. The correct separation and clustering of the samples were observed by principal component analysis and the cross-validated Q2 values by orthogonal partial least squares discriminant analysis (OPLS-DA) were 0.949 (based on stable isotope) and 0.974 (based on polyphenol and alkaloid), respectively. Potential significance indicators for origin identification were screened out by OPLS-DA and random forest algorithm, including three stable isotopes (δ13C, δ D, and δ18O) and four polyphenols (luteolin, protocatechuic acid, astragalin, and naringenin). This study can provide a preliminary guide for the origin identification of Hainan partridge tea.
Collapse
|
27
|
Shang A, Li J, Zhou DD, Gan RY, Li HB. Molecular mechanisms underlying health benefits of tea compounds. Free Radic Biol Med 2021; 172:181-200. [PMID: 34118386 DOI: 10.1016/j.freeradbiomed.2021.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Tea is one of the three most widely consumed beverages in the world, not only because of its unique flavor but also due to its various health benefits. The bioactive components in tea, such as polyphenols, polysaccharides, polypeptides, pigments, and alkaloids, are the main contributors to its health functions. Based on epidemiological surveys, the consumption of tea and its compounds in daily life has positive effects on cardiovascular diseases, cancers, hepatopathy, obesity, and diabetes mellitus. In experimental studies, the antioxidant, anti-inflammatory, anti-cancer, anti-obesity, cardiovascular protective, liver protective, and hypoglycemic activities of tea and the related mechanisms of action have been widely investigated. The regulation of several classical signaling pathways, such as nuclear factor-κB (NF-κB), AMP activated protein kinase (AMPK), and wingless/integrated (Wnt) signaling, is involved. Clinical trials have also demonstrated the potential of tea products to be applied as dietary supplements and natural medicines. In this paper, we reviewed and discussed the recent literature on the health benefits of tea and its compounds, and specifically explored the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|