1
|
Wang YL, Zhang HB. Assembly and Function of Seed Endophytes in Response to Environmental Stress. J Microbiol Biotechnol 2023; 33:1119-1129. [PMID: 37311706 PMCID: PMC10580892 DOI: 10.4014/jmb.2303.03004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Yong-Lan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
2
|
Navazas A, Mesa V, Thijs S, Fuente-Maqueda F, Vangronsveld J, Peláez AI, Cuypers A, González A. Bacterial inoculant-assisted phytoremediation affects trace element uptake and metabolite content in Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153088. [PMID: 35063508 DOI: 10.1016/j.scitotenv.2022.153088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Natural plant-associated microorganisms are of critical importance to plant growth and survival in field conditions under toxic concentrations of trace elements (TE) and these plant-microbial processes can be harnessed to enhance phytoremediation. The total bacterial diversity from grey willow (Salix atrocinerea) on a brownfield heavily-polluted with lead (Pb) and arsenic (As) was studied through pyrosequencing. Culturable bacteria were isolated and in vitro tested for plant growth-promotion (PGP) traits, arsenic (As) tolerance and impact on As speciation. Two of the most promising bacterial strains - the root endophyte Pantoea sp. AV62 and the rhizospheric strain Rhodococcus erythropolis AV96 - were inoculated in field to S. atrocinerea. This bioaugmentation resulted in higher As and Pb concentrations in both, roots and leaves of bacterial-inoculated plants as compared to non-inoculated plants. In consequence, bacterial bioaugmentation also affected parameters related to plant growth, oxidative stress, the levels of phytochelatins and phenylpropanoids, together with the differential expression of genes related to these tolerance mechanisms to TE in leaves. This study extends our understanding about plant-bacterial interactions and provides a solid basis for further bioaugmentation studies aiming to improve TE phytoremediation efficiency and predictability in the field.
Collapse
Affiliation(s)
- Alejandro Navazas
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Victoria Mesa
- Faculty of Pharmacy, Université de Paris, UMR-S1139, F-75006 Paris, France
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ana I Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| |
Collapse
|
3
|
Chu C, Fan M, Song C, Li N, Zhang C, Fu S, Wang W, Yang Z. Unveiling Endophytic Bacterial Community Structures of Different Rice Cultivars Grown in a Cadmium-Contaminated Paddy Field. Front Microbiol 2021; 12:756327. [PMID: 34867879 PMCID: PMC8635021 DOI: 10.3389/fmicb.2021.756327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2022] Open
Abstract
Endophytic bacteria play potentially important roles in the processes of plant adaptation to the environment. Understanding the composition and dynamics of endophytic bacterial communities under heavy metal (HM) stress can reveal their impacts on host development and stress tolerance. In this study, we investigated root endophytic bacterial communities of different rice cultivars grown in a cadmium (Cd)-contaminated paddy field. These rice cultivars are classified into low (RBQ, 728B, and NX1B) and high (BB and S95B) levels of Cd-accumulating capacity. Our metagenomic analysis targeting 16S rRNA gene sequence data reveals that Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, Bacteroidetes, and Spirochaetes are predominant root endophytic bacterial phyla of the five rice cultivars that we studied. Principal coordinate analysis shows that the developmental stage of rice governs a larger source of variation in the bacterial communities compared to that of any specific rice cultivar or of the root Cd content. Endophytic bacterial communities during the reproductive stage of rice form a more highly interconnected network and exhibit higher operational taxonomic unit numbers, diversities, and abundance than those during the vegetative stage. Forty-five genera are significantly correlated with Cd content in rice root, notably including positive-correlating Geobacter and Haliangium; and negative-correlating Pseudomonas and Streptacidiphilus. Furthermore, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis shows that functional pathways, such as biosynthesis of siderophore and type II polyketide products, are significantly enhanced during the reproductive stage compared to those during the vegetative stage under Cd stress. The isolated endophytic bacteria from the Cd-contaminated rice roots display high Cd resistance and multiple traits that may promote plant growth, suggesting their potential application in alleviating HM stress on plants. This study describes in detail for the first time the assemblage of the bacterial endophytomes of rice roots under Cd stress and may provide insights into the interactions among endophytes, plants, and HM contamination.
Collapse
Affiliation(s)
- Chaoqun Chu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Meiyu Fan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Chongyang Song
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Chao Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Shaowei Fu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Zhiwei Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions. Microorganisms 2021; 9:microorganisms9122467. [PMID: 34946069 PMCID: PMC8707671 DOI: 10.3390/microorganisms9122467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
The expression of the enzyme 1-aminocylopropane-1-carboxylate (ACC) deaminase, and the consequent modulation of plant ACC and ethylene concentrations, is one of the most important features of plant-associated bacteria. By decreasing plant ACC and ethylene concentrations, ACC deaminase-producing bacteria can overcome some of the deleterious effects of inhibitory levels of ACC and ethylene in various aspects of plant-microbe interactions, as well as plant growth and development (especially under stressful conditions). As a result, the acdS gene, encoding ACC deaminase, is often prevalent and positively selected in the microbiome of plants. Several members of the genus Pseudomonas are widely prevalent in the microbiome of plants worldwide. Due to its adaptation to a plant-associated lifestyle many Pseudomonas strains are of great interest for the development of novel sustainable agricultural and biotechnological solutions, especially those presenting ACC deaminase activity. This manuscript discusses several aspects of ACC deaminase and its role in the increased plant growth promotion, plant protection against abiotic and biotic stress and promotion of the rhizobial nodulation process by Pseudomonas. Knowledge regarding the properties and actions of ACC deaminase-producing Pseudomonas is key for a better understanding of plant-microbe interactions and the selection of highly effective strains for various applications in agriculture and biotechnology.
Collapse
|
5
|
Nascimento FX, Urón P, Glick BR, Giachini A, Rossi MJ. Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. Front Microbiol 2021; 12:752288. [PMID: 34659189 PMCID: PMC8515041 DOI: 10.3389/fmicb.2021.752288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Beneficial 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing bacteria promote plant growth and stress resistance, constituting a sustainable alternative to the excessive use of chemicals in agriculture. In this work, the increased plant growth promotion activity of the ACC deaminase-producing Pseudomonas thivervalensis SC5, its ability to limit the growth of phytopathogens, and the genomics behind these important properties are described in detail. P. thivervalensis SC5 displayed several active plant growth promotion traits and significantly increased cucumber plant growth and resistance against salt stress (100mmol/L NaCl) under greenhouse conditions. Strain SC5 also limited the in vitro growth of the pathogens Botrytis cinerea and Pseudomonas syringae DC3000 indicating active biological control activities. Comprehensive analysis revealed that P. thivervalensis SC5 genome is rich in genetic elements involved in nutrient acquisition (N, P, S, and Fe); osmotic stress tolerance (e.g., glycine-betaine, trehalose, and ectoine biosynthesis); motility, chemotaxis and attachment to plant tissues; root exudate metabolism including the modulation of plant phenolics (e.g., hydroxycinnamic acids), lignin, and flavonoids (e.g., quercetin); resistance against plant defenses (e.g., reactive oxygens species-ROS); plant hormone modulation (e.g., ethylene, auxins, cytokinins, and salicylic acid), and bacterial and fungal phytopathogen antagonistic traits (e.g., 2,4-diacetylphloroglucinol, HCN, a fragin-like non ribosomal peptide, bacteriocins, a lantipeptide, and quorum-quenching activities), bringing detailed insights into the action of this versatile plant-growth-promoting bacterium. Ultimately, the combination of both increased plant growth promotion/protection and biological control abilities makes P. thivervalensis SC5 a prime candidate for its development as a biofertilizer/biostimulant/biocontrol product. The genomic analysis of this bacterium brings new insights into the functioning of Pseudomonas and their role in beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paola Urón
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Admir Giachini
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J Rossi
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
6
|
Nascimento FX, Glick BR, Rossi MJ. Multiple plant hormone catabolism activities: an adaptation to a plant-associated lifestyle by Achromobacter spp. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:533-539. [PMID: 34212524 DOI: 10.1111/1758-2229.12987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Elaborating the plant hormone catabolic activities of bacteria is important for developing a detailed understanding of plant-microbe interactions. In this work, the plant hormone catabolic and plant growth promotion activities of Achromobacter xylosoxidans SOLR10 and A. insolitus AB2 are described. The genome sequences of these strains were obtained and analysed in detail, revealing the genetic mechanisms behind its multiple plant hormone catabolism abilities. Achromobacter strains catabolized indoleacetic acid (IAA) and phenylacetic acid (PAA) (auxins); salicylic acid (SA) and its precursor, benzoic acid (BA); and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). The inoculation of cucumber plants resulted in increased plant growth and development, indicating the beneficial properties of SOLR10 and AB2 strains. Genomic analysis demonstrated the presence of IAA, PAA and BA degradation gene clusters, as well as the nag gene cluster (SA catabolism) and the acdS gene (ACC deaminase), in the genomes of strains SOLR10 and AB2. Additionally, detailed analysis revealed that plant hormone catabolism genes were commonly detected in the Achromobacter genus but were mostly absent in the Bordetella genus, consistent with the notion that Achromobacter evolved in soils in close association with its plant hosts.
Collapse
Affiliation(s)
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Márcio J Rossi
- Laboratório de Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
7
|
Sohn SI, Ahn JH, Pandian S, Oh YJ, Shin EK, Kang HJ, Cho WS, Cho YS, Shin KS. Dynamics of Bacterial Community Structure in the Rhizosphere and Root Nodule of Soybean: Impacts of Growth Stages and Varieties. Int J Mol Sci 2021; 22:5577. [PMID: 34070397 PMCID: PMC8197538 DOI: 10.3390/ijms22115577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial communities in rhizosphere and root nodules have significant contributions to the growth and productivity of the soybean (Glycine max (L.) Merr.). In this report, we analyzed the physiological properties and dynamics of bacterial community structure in rhizosphere and root nodules at different growth stages using BioLog EcoPlate and high-throughput sequencing technology, respectively. The BioLog assay found that the metabolic capability of rhizosphere is in increasing trend in the growth of soybeans as compared to the bulk soil. As a result of the Illumina sequencing analysis, the microbial community structure of rhizosphere and root nodules was found to be influenced by the variety and growth stage of the soybean. At the phylum level, Actinobacteria were the most abundant in rhizosphere at all growth stages, followed by Alphaproteobacteria and Acidobacteria, and the phylum Bacteroidetes showed the greatest change. But, in the root nodules Alphaproteobacteria were dominant. The results of the OTU analysis exhibited the dominance of Bradyrhizobium during the entire stage of growth, but the ratio of non-rhizobial bacteria showed an increasing trend as the soybean growth progressed. These findings revealed that bacterial community in the rhizosphere and root nodules changed according to both the variety and growth stages of soybean in the field.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Jae-Hyung Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Jeonju 55365, Korea;
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Young-Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju 54883, Korea;
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Hyeon-Jung Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Woo-Suk Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Youn-Sung Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Kong-Sik Shin
- Audit and Inspection Office, Rural Development of Administration, Jeonju 54875, Korea;
| |
Collapse
|
8
|
Ribeiro IDA, Bach E, da Silva Moreira F, Müller AR, Rangel CP, Wilhelm CM, Barth AL, Passaglia LMP. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol Res 2021; 248:126754. [PMID: 33848783 DOI: 10.1016/j.micres.2021.126754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/28/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Endophytic bacteria show important abilities in promoting plant growth and suppressing phytopathogens, being largely explored in agriculture as biofertilizers or biocontrol agents. Bacteria from canola roots were isolated and screened for different plant growth promotion (PGP) traits and biocontrol of Sclerotinia sclerotiorum. Thirty isolates belonging to Bacillus, Paenibacillus, Lysinibacillus, and Microbacterium genera were obtained. Several isolates produced auxin, siderophores, hydrolytic enzymes, fixed nitrogen and solubilized phosphate. Five isolates presented antifungal activity against S. sclerotiorum by the dual culture assay and four of them also inhibited fungal growth by volatile organic compounds production. All antagonistic isolates belonged to the Bacillus genus, and had their genomes sequenced for the search of biosynthetic gene clusters (BGC) related to antimicrobial metabolites. These isolates were identified as Bacillus safensis (3), Bacillus pumilus (1), and Bacillus megaterium (1), using the genomic metrics ANI and dDDH. Most strains showed several common BGCs, including bacteriocin, polyketide synthase (PKS), and non-ribosomal peptide synthetase (NRPS), related to pumilacidin, bacillibactin, bacilysin, and other antimicrobial compounds. Pumilacidin-related mass peaks were detected in acid precipitation extracts through MALDI-TOF analysis. The genomic features demonstrated the potential of these isolates in the suppression of plant pathogens; however, some aspects of plant-bacterial interactions remain to be elucidated.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Fernanda da Silva Moreira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Aline Reis Müller
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Caroline Pinto Rangel
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Camila Mörschbächer Wilhelm
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Afonso Luis Barth
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Schmidt CS, Mrnka L, Lovecká P, Frantík T, Fenclová M, Demnerová K, Vosátka M. Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Sci Rep 2021; 11:3810. [PMID: 33589671 PMCID: PMC7884388 DOI: 10.1038/s41598-021-81937-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
Phoma stem canker (caused by the ascomycetes Leptosphaeria maculans and Leptosphaeria biglobosa) is an important disease of oilseed rape. Its effect on endophyte communities in roots and shoots and the potential of endophytes to promote growth and control diseases of oilseed rape (OSR) was investigated. Phoma stem canker had a large effect especially on fungal but also on bacterial endophyte communities. Dominant bacterial genera were Pseudomonas, followed by Enterobacter, Serratia, Stenotrophomonas, Bacillus and Staphylococcus. Achromobacter, Pectobacter and Sphingobacterium were isolated only from diseased plants, though in very small numbers. The fungal genera Cladosporium, Botrytis and Torula were dominant in healthy plants whereas Alternaria, Fusarium and Basidiomycetes (Vishniacozyma, Holtermaniella, Bjerkandera/Thanatephorus) occurred exclusively in diseased plants. Remarkably, Leptosphaeria biglobosa could be isolated in large numbers from shoots of both healthy and diseased plants. Plant growth promoting properties (antioxidative activity, P-solubilisation, production of phytohormones and siderophores) were widespread in OSR endophytes. Although none of the tested bacterial endophytes (Achromobacter, Enterobacter, Pseudomonas, Serratia and Stenotrophomonas) promoted growth of oilseed rape under P-limiting conditions or controlled Phoma disease on oilseed rape cotyledons, they significantly reduced incidence of Sclerotinia disease. In the field, a combined inoculum consisting of Achromobacter piechaudii, two pseudomonads and Stenotrophomonas rhizophila tendencially increased OSR yield and reduced Phoma stem canker.
Collapse
Affiliation(s)
- C S Schmidt
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czech Republic
| | - L Mrnka
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czech Republic.
| | - P Lovecká
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6-Dejvice, Czech Republic
| | - T Frantík
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czech Republic
| | - M Fenclová
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6-Dejvice, Czech Republic
| | - K Demnerová
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6-Dejvice, Czech Republic
| | - M Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czech Republic
| |
Collapse
|
10
|
Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. PLANTS 2020; 9:plants9081002. [PMID: 32781790 PMCID: PMC7466184 DOI: 10.3390/plants9081002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Heavy metals in soil, as selective agents, can change the structure of plant-associated bacterial communities and their metabolic properties, leading to the selection of the most-adapted strains, which might be useful in phytoremediation. Trifolium repens, a heavy metal excluder, naturally occurs on metal mine waste heaps in southern Poland characterized by high total metal concentrations. The purpose of the present study was to assess the effects of toxic metals on the diversity and metabolic properties of the microbial communities in rhizospheric soil and vegetative tissues of T. repens growing on three 70–100-years old Zn–Pb mine waste heaps in comparison to Trifolium-associated bacteria from a non-polluted reference site. In total, 113 cultivable strains were isolated and used for 16S rRNA gene Sanger sequencing in order to determine their genetic affiliation and for in vitro testing of their plant growth promotion traits. Taxa richness and phenotypic diversity in communities of metalliferous origin were significantly lower (p < 0.0001) compared to those from the reference site. Two strains, Bacillus megaterium BolR EW3_A03 and Stenotrophomonas maltophilia BolN EW3_B03, isolated from a Zn–Pb mine waste heap which tested positive for all examined plant growth promoting traits and which showed co-tolerance to Zn, Cu, Cd, and Pb can be considered as potential facilitators of phytostabilization.
Collapse
|
11
|
Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Lead (Pb) and cadmium (Cd) are major environmental pollutants, and the accumulation of these elements in soils and plants is of great concern in agricultural production due to their toxic effects on crop growth. Also, these elements can enter into the food chain and severely affect human and animal health. Bioaugmentation with plant growth-promoting bacteria (PGPB) can contribute to an environmentally friendly and effective remediation approach by improving plant survival and promoting element phytostabilization or extraction under such harsh conditions. We isolated and characterised Pb and Cd-tolerant root-associated bacteria from Helianthus petiolaris growing on a Pb/Cd polluted soil in order to compose inoculants that can promote plant growth and also ameliorate the phytostabilization or phytoextraction efficiency. One hundred and five trace element-tolerant rhizospheric and endophytic bacterial strains belonging to eight different genera were isolated from the aromatic plant species Helianthus petiolaris. Most of the strains showed multiple PGP-capabilities, ability to immobilise trace elements on their cell wall, and promotion of seed germination. Bacillus paramycoides ST9, Bacillus wiedmannii ST29, Bacillus proteolyticus ST89, Brevibacterium frigoritolerans ST30, Cellulosimicrobium cellulans ST54 and Methylobacterium sp. ST85 were selected to perform bioaugmentation assays in greenhouse microcosms. After 2 months, seedlings of sunflower (H. annuus) grown on polluted soil and inoculated with B. proteolyticus ST89 produced 40% more biomass compared to the non-inoculated control plants and accumulated 20 % less Pb and 40% less Cd in the aboveground plant parts. In contrast, B. paramycoides ST9 increased the bioaccumulation factor (BAF) of Pb three times and of Cd six times without inhibiting plant growth. Our results indicate that, depending on the strain, bioaugmentation with specific beneficial bacteria can improve plant growth and either reduce trace element mobility or enhance plant trace element uptake.
Collapse
|
12
|
Taye ZM, Helgason BL, Bell JK, Norris CE, Vail S, Robinson SJ, Parkin IAP, Arcand M, Mamet S, Links MG, Dowhy T, Siciliano S, Lamb EG. Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus Genotypes: Implications for Canola Breeding. Front Microbiol 2020; 10:3007. [PMID: 32010086 PMCID: PMC6974584 DOI: 10.3389/fmicb.2019.03007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
Modifying the rhizosphere microbiome through targeted plant breeding is key to harnessing positive plant-microbial interrelationships in cropping agroecosystems. Here, we examine the composition of rhizosphere bacterial communities of diverse Brassica napus genotypes to identify: (1) taxa that preferentially associate with genotypes, (2) core bacterial microbiota associated with B. napus, (3) heritable alpha diversity measures at flowering and whole growing season, and (4) correlation between microbial and plant genetic distance among canola genotypes at different growth stages. Our aim is to identify and describe signature microbiota with potential positive benefits that could be integrated in B. napus breeding and management strategies. Rhizosphere soils of 16 diverse genotypes sampled weekly over a 10-week period at single location as well as at three time points at two additional locations were analyzed using 16S rRNA gene amplicon sequencing. The B. napus rhizosphere microbiome was characterized by diverse bacterial communities with 32 named bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, and Acidobacteria. Overall microbial and plant genetic distances were highly correlated (R = 0.65). Alpha diversity heritability estimates were between 0.16 and 0.41 when evaluated across growth stage and between 0.24 and 0.59 at flowering. Compared with a reference B. napus genotype, a total of 81 genera were significantly more abundant and 71 were significantly less abundant in at least one B. napus genotype out of the total 558 bacterial genera. Most differentially abundant genera were Proteobacteria and Actinobacteria followed by Bacteroidetes and Firmicutes. Here, we also show that B. napus genotypes select an overall core bacterial microbiome with growth-stage-related patterns as to how taxa joined the core membership. In addition, we report that sets of B. napus core taxa were consistent across our three sites and 2 years. Both differential abundance and core analysis implicate numerous bacteria that have been reported to have beneficial effects on plant growth including disease suppression, antifungal properties, and plant growth promotion. Using a multi-site year, temporally intensive field sampling approach, we showed that small plant genetic differences cause predictable changes in canola microbiome and are potential target for direct and indirect selection within breeding programs.
Collapse
Affiliation(s)
- Zelalem M. Taye
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bobbi L. Helgason
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer K. Bell
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charlotte E. Norris
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sally Vail
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Stephen J. Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Melissa Arcand
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Mamet
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew G. Links
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanner Dowhy
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Eric G. Lamb
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Cordero J, de Freitas JR, Germida JJ. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can J Microbiol 2019; 66:71-85. [PMID: 31658427 DOI: 10.1139/cjm-2019-0330] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rhizosphere and root associated bacteria are key components of plant microbiomes and influence crop production. In sustainable agriculture, it is important to investigate bacteria diversity in various plant species and how edaphic factors influence the bacterial microbiome. In this study, we used high-throughput sequencing to assess bacterial communities associated with the rhizosphere and root interior of canola, wheat, field pea, and lentil grown at four locations in Saskatchewan, Canada. Rhizosphere bacteria communities exhibited distinct profiles among crops and sampling locations. However, each crop was associated with distinct root endophytic bacterial communities, suggesting that crop species may influence the selection of root bacterial microbiome. Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla in the root interior, whereas Gemmatimonadetes, Firmicutes, and Acidobacteria were prevalent in the rhizosphere soil. Pseudomonas and Stenotrophomonas were predominant in the rhizosphere and root interior, whereas Acinetobacter, Arthrobacter, Rhizobium, Streptomyces, Variovorax, and Xanthomonas were dominant in the root interior of all crops. The relative abundance of specific bacterial groups in the rhizosphere correlated with soil pH and silt and organic matter contents; however, there was no correlation between root endophytes and analyzed soil properties. These results suggest that the root microbiome may be modulated by plant factors rather than soil characteristics.
Collapse
Affiliation(s)
- Jorge Cordero
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - J Renato de Freitas
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - James J Germida
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
14
|
Hanaka A, Ozimek E, Majewska M, Rysiak A, Jaroszuk-Ściseł J. Physiological Diversity of Spitsbergen Soil Microbial Communities Suggests Their Potential as Plant Growth-Promoting Bacteria. Int J Mol Sci 2019; 20:E1207. [PMID: 30857335 PMCID: PMC6429280 DOI: 10.3390/ijms20051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to assess the physiological diversity and metabolic activity of the soil bacterial communities inhabiting Spitsbergen soils in search of bacterial abilities facilitating plant growth promotion. In the soil, the total number of culturable microorganisms, the number of their individual physiological groups (including Siderophore Synthesizing; SSB and Phosphate Solubilizing Bacteria; PSB), the dehydrogenase (DH) activity, and the ability to utilize sources of C, N, P (EcoPlate) were analysed. In bacterial isolates, siderophores production, ACC (1-aminocyclopropane-1-carboxylate) deaminase (ACCD) activity, IAA (indole-3-acetic acid) synthesis were examined. The isolates were applied to the seeds of Phaseolus coccineus regarding their germination and root length. The results showed differences between copio- and oligotrophic bacteria. A usually high number of SSB was accompanied by the raised number of PSB. A bigger number of SSB was connected with low values of Fe in the soil. High DH activity was assisted by greater number of copio- and oligotrophic bacteria, raised average well color development value, and N and C contents in the soil. Germination index was more alike relative seed germination than relative root growth. IAA concentration and ACCD activity were conversely related. Synthesis of siderophores was matched with ACCD activity and its high level was combined with elevated germination index. In spite of different localization of soil samples, some isolates proved similar traits of activity. Distinct affiliation of isolates and their various localizations were displayed. Among all isolates tested, some possessed one main trait of activity, but most of them had two or more significant features for potential plant growth stimulation. These isolates could be an important source of useful bacteria.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Małgorzata Majewska
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Anna Rysiak
- Department of Ecology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| |
Collapse
|
15
|
Sánchez-López AS, González-Chávez MDCA, Solís-Domínguez FA, Carrillo-González R, Rosas-Saito GH. Leaf Epiphytic Bacteria of Plants Colonizing Mine Residues: Possible Exploitation for Remediation of Air Pollutants. Front Microbiol 2018; 9:3028. [PMID: 30581428 PMCID: PMC6292962 DOI: 10.3389/fmicb.2018.03028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022] Open
Abstract
Plant surfaces are known as an important sink for various air pollutants, including particulate matter and its associated potentially toxic elements (PTE). Moreover, leaves surface or phylloplane is a habitat that harbors diverse bacterial communities (epiphytic). However, little is known about their possible functions during phytoremediation of air pollutants like PTE. The study of leaf epiphytic bacteria of plants colonizing mine residues (MR) containing PTE is thus a key to understand and exploit plant–epiphytic bacteria interactions for air phytoremediation purposes. In this research, we aimed (i) to characterize the functions of epiphytic bacteria isolated from the phylloplane of Brickellia veronicifolia, Flaveria trinervia, Gnaphalium sp., and Allioniachoisyi growing spontaneously on multi-PTE contaminated MR and (ii) to compare these against the same plant species in a non-polluted control site (NC). Concentrations (mg kg-1) of PTE on MR leaf surfaces of A. choisyi reached up to 232 for Pb, 13 for Cd, 2,728 for As, 52 for Sb, 123 for Cu in F. trinervia, and 269 for Zn in Gnaphalium sp. In the four plant species, the amount of colony-forming units per cm2 was superior in MR leaves than in NC ones, being A. choisyi the plant species with the highest value. Moreover, the proportion of isolates tolerant to PTE (Zn, Cu, Cd, and Sb), UV light, and drought was higher in MR leaves than in those in NC. Strain BA15, isolated from MR B. veronicifolia, tolerated 150 mg Zn L-1, 30 mg Sb L-1, 25 mg Cu L-1; 80 mg Pb L-1, and was able to grow after 12 h of continuous exposition to UV light and 8 weeks of drought. Plant growth promotion related traits [N fixation, indole acetic acid (IAA) production, and phosphate solubilization] of bacterial isolates varied among plant species isolates and between MR and NC sampling condition. The studied epiphytic isolates possess functions interesting for phytoremediation of air pollutants. The results of this research may contribute to the development of novel and more efficient inoculants for microbe-assisted phytoremediation applied to improve air quality in areas exposed to the dispersion of metal mine tailings.
Collapse
Affiliation(s)
- Ariadna S Sánchez-López
- Bio-Engineering Laboratory, Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Mexico
| | | | - Fernando A Solís-Domínguez
- Bio-Engineering Laboratory, Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Rogelio Carrillo-González
- Soil and Environmental Chemistry Laboratory, Edaphology Program, Colegio de Postgraduados, Texcoco, Mexico
| | - Greta H Rosas-Saito
- Electron Microscopy Laboratory, Red de Estudios Moleculares Avanzados, Instituto Nacional de Ecología, Xalapa Enríquez, Mexico
| |
Collapse
|
16
|
Lay CY, Bell TH, Hamel C, Harker KN, Mohr R, Greer CW, Yergeau É, St-Arnaud M. Canola Root-Associated Microbiomes in the Canadian Prairies. Front Microbiol 2018; 9:1188. [PMID: 29937756 PMCID: PMC6002653 DOI: 10.3389/fmicb.2018.01188] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/16/2018] [Indexed: 01/16/2023] Open
Abstract
Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment), and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that seeding density and plant nutrition management modified the abundance of other bacterial and fungal taxa forming the core microbiomes of canola that are expected to impact crop growth. This work helps us to understand the microbial assemblages associated with canola grown under common agronomic practices and indicates microorganisms that can potentially benefit or reduce the yield of canola.
Collapse
Affiliation(s)
- Chih-Ying Lay
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Terrence H Bell
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.,Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, United States
| | - Chantal Hamel
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - K Neil Harker
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Ramona Mohr
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Charles W Greer
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada
| | - Étienne Yergeau
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada.,Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Marc St-Arnaud
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Abdalla MA, McGaw LJ. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes. Front Pharmacol 2018; 9:456. [PMID: 29867466 PMCID: PMC5966565 DOI: 10.3389/fphar.2018.00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017) was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural products from endophytic fungi and bacteria in southern Africa.
Collapse
Affiliation(s)
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Wagner C, Bonte A, Brühl L, Niehaus K, Bednarz H, Matthäus B. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2147-2155. [PMID: 28960362 DOI: 10.1002/jsfa.8699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. RESULTS From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. CONCLUSION Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Claudia Wagner
- Institute for Food Chemistry, University of Münster, Münster, Germany
| | - Anja Bonte
- Department of Safety and Quality of Cereals, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Detmold, Germany
| | - Ludger Brühl
- Department of Safety and Quality of Cereals, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Detmold, Germany
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Hanna Bednarz
- Department of Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bertrand Matthäus
- Department of Safety and Quality of Cereals, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Detmold, Germany
| |
Collapse
|
19
|
Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:347-356. [PMID: 29132002 DOI: 10.1016/j.scitotenv.2017.10.334] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 05/06/2023]
Abstract
Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg-1, respectively) and diesel (6000mgkg-1). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not cause any toxicity. We concluded that rhizoremediation with B. napus combined with an organic amendment is promising for the phytomanagement of calcareous soils with mixed (metals and diesel) contamination.
Collapse
Affiliation(s)
- Rafael G Lacalle
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain.
| | - María T Gómez-Sagasti
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, c/Berreaga 1, E-48160 Derio, Spain
| | - José M Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
20
|
Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:114. [PMID: 29520283 PMCID: PMC5827301 DOI: 10.3389/fpls.2018.00114] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/18/2023]
Abstract
Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection.
Collapse
Affiliation(s)
- Francisco X. Nascimento
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J. Rossi
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
21
|
Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria. Int J Mol Sci 2018; 19:ijms19010291. [PMID: 29351192 PMCID: PMC5796236 DOI: 10.3390/ijms19010291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications.
Collapse
|
22
|
Rangel WDM, de Oliveira Longatti SM, Ferreira PAA, Bonaldi DS, Guimarães AA, Thijs S, Weyens N, Vangronsveld J, Moreira FMS. Leguminosae native nodulating bacteria from a gold mine As-contaminated soil: Multi-resistance to trace elements, and possible role in plant growth and mineral nutrition. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:925-936. [PMID: 28323446 DOI: 10.1080/15226514.2017.1303812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient N2-fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca3(PO4)2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to β-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.
Collapse
Affiliation(s)
- Wesley de M Rangel
- a Biology Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
- b Soil Science Department , UFLA , Lavras , Minas Gerais , Brazil
- c Soil Department , Federal University of Santa Maria (UFSM) , Santa Maria , Rio Grande do Sul , Brazil
| | | | - Paulo A A Ferreira
- b Soil Science Department , UFLA , Lavras , Minas Gerais , Brazil
- c Soil Department , Federal University of Santa Maria (UFSM) , Santa Maria , Rio Grande do Sul , Brazil
| | - Daiane S Bonaldi
- b Soil Science Department , UFLA , Lavras , Minas Gerais , Brazil
| | | | - Sofie Thijs
- d Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- d Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- d Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | | |
Collapse
|
23
|
Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front Microbiol 2017; 8:1385. [PMID: 28790991 PMCID: PMC5524726 DOI: 10.3389/fmicb.2017.01385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Antonio Di Guardo
- Department of Science and High Technology, University of InsubriaComo, Italy
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
24
|
Gundel PE, Rudgers JA, Whitney KD. Vertically transmitted symbionts as mechanisms of transgenerational effects. AMERICAN JOURNAL OF BOTANY 2017; 104:787-792. [PMID: 28515076 DOI: 10.3732/ajb.1700036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/03/2017] [Indexed: 05/29/2023]
Abstract
PREMISE OF THE STUDY A transgenerational effect occurs when a biotic or abiotic environmental factor acts on a parental individual and thereby affects the phenotype of progeny. Due to the importance of transgenerational effects for understanding plant ecology and evolution, their underlying mechanisms are of general interest. Here, we introduce the concept that inherited symbiotic microorganisms could act as mechanisms of transgenerational effects in plants. METHODS We define the criteria required to demonstrate that transgenerational effects are microbially mediated and review evidence from the well-studied, vertically transmitted plant-fungal symbiosis (grass-Epichloë spp.) in support of such effects. We also propose a basic experimental design to test for the presence of adaptive transgenerational effects mediated by plant symbionts. KEY RESULTS An increasingly large body of literature shows that vertically transmitted microorganisms are common in plants, with potential to affect the phenotypes and fitness of progeny. Transgenerational effects could occur via parental modification of symbiont presence/absence, symbiont load, symbiont products, symbiont genotype or species composition, or symbiont priming. Several of these mechanisms appear likely in the grass-Epichloë endophytic symbiosis, as there is variation in the proportion of the progeny that carries the fungus, as well as variation in concentrations of mycelia and secondary compounds (alkaloids and osmolytes) in the seed. CONCLUSIONS Symbiont-mediated transgenerational effects could be common in plants and could play large roles in plant adaptation to changing environments, but definitive tests are needed. We hope our contribution will spark new lines of research on the transgenerational effects of vertically transmitted symbionts in plants.
Collapse
Affiliation(s)
- Pedro E Gundel
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
| | - Jennifer A Rudgers
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico 87131 USA
| | - Kenneth D Whitney
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico 87131 USA
| |
Collapse
|
25
|
Rangel WM, Thijs S, Janssen J, Oliveira Longatti SM, Bonaldi DS, Ribeiro PRA, Jambon I, Eevers N, Weyens N, Vangronsveld J, Moreira FMS. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:142-156. [PMID: 27409290 DOI: 10.1080/15226514.2016.1207600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala-Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.
Collapse
Affiliation(s)
- Wesley M Rangel
- a Biology Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
- b Soil Science Department, Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Sofie Thijs
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jolien Janssen
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Silvia M Oliveira Longatti
- b Soil Science Department, Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
| | - Daiane S Bonaldi
- b Soil Science Department, Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
| | - Paula R A Ribeiro
- b Soil Science Department, Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
| | - Inge Jambon
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Eevers
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- c Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Fatima M S Moreira
- b Soil Science Department, Department , Federal University of Lavras (UFLA) , Lavras , Minas Gerais , Brazil
| |
Collapse
|
26
|
Montalbán B, Croes S, Weyens N, Lobo MC, Pérez-Sanz A, Vangronsveld J. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:985-993. [PMID: 27159736 DOI: 10.1080/15226514.2016.1183566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 µM Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 µM Cd.
Collapse
Affiliation(s)
- Blanca Montalbán
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - Sarah Croes
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - Nele Weyens
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - M Carmen Lobo
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
| | - Araceli Pérez-Sanz
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
| | - Jaco Vangronsveld
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| |
Collapse
|
27
|
Djedidi S, Kojima K, Ohkama-Ohtsu N, Bellingrath-Kimura SD, Yokoyama T. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:27-37. [PMID: 26986237 DOI: 10.1016/j.jenvrad.2016.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.
Collapse
Affiliation(s)
- Salem Djedidi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Katsuhiro Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
28
|
Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism. Front Microbiol 2016; 7:341. [PMID: 27014254 PMCID: PMC4792885 DOI: 10.3389/fmicb.2016.00341] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 11/23/2022] Open
Abstract
Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.
Collapse
Affiliation(s)
- Sofie Thijs
- Department of Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | - Jaco Vangronsveld
- Department of Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
29
|
Eevers N, Gielen M, Sánchez-López A, Jaspers S, White JC, Vangronsveld J, Weyens N. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb Biotechnol 2015; 8:707-15. [PMID: 25997013 PMCID: PMC4476825 DOI: 10.1111/1751-7915.12291] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 01/12/2023] Open
Abstract
Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.
Collapse
Affiliation(s)
- N Eevers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - M Gielen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - A Sánchez-López
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium.,Edafología, Soil and Environmental Chemistry Lab, Colegio de Postgraduados, km 36.5 Carretera Mexico-Texcoco, Estado de Mexico, 56230, Mexico
| | - S Jaspers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - J C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - J Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - N Weyens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| |
Collapse
|
30
|
Croes S, Weyens N, Colpaert J, Vangronsveld J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Environ Microbiol 2015; 17:2379-92. [PMID: 25367683 DOI: 10.1111/1462-2920.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
Plant-associated bacteria are intensively investigated concerning their characteristics for plant growth promotion, biocontrol mechanisms and enhanced phytoremediation efficiency. To obtain endophytes, different sampling and isolation protocols are used although their representativeness is not always clearly demonstrated. The objective of this study was to acquire representative pictures of the cultivable bacterial root, stem and leaf communities for all Brassica napus L. individuals growing on the same field. For each plant organ, genotypic identifications of the endophytic communities were performed using three replicates. Root replicates were composed of three total root systems, whereas stem and leaf replicates needed to consist of six independent plant parts in order to be representative. Greater variations between replicates were found when considering phenotypic characteristics. Correspondence analysis revealed reliable phenotypic results for roots and even shoots, but less reliable ones for leaves. Additionally, realistic Shannon-Wiener biodiversity indices were calculated for all three organs and showed similar Evenness factors. Furthermore, it was striking that all replicates and thus the whole plant contained Pseudomonas and Bacillus strains although aboveground and belowground plant tissues differed in most dominant bacterial genera and characteristics.
Collapse
Affiliation(s)
- Sarah Croes
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jan Colpaert
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
31
|
Pawlik M, Piotrowska-Seget Z. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:860-70. [PMID: 26167752 DOI: 10.1080/15287394.2015.1051200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Małgorzata Pawlik
- a Department of Microbiology , University of Silesia, Jagiellonska 28, 40-032 Katowice , Poland
| | | |
Collapse
|
32
|
Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Carleer R, Vangronsveld J. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1123-36. [PMID: 25942689 DOI: 10.1080/15226514.2015.1045129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.
Collapse
Affiliation(s)
- Jolien Janssen
- a Hasselt University, Centre for Environmental Sciences , Diepenbeek , Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:643-59. [PMID: 24933875 DOI: 10.1080/15226514.2013.837027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We examined whether long-term Cd exposure leads to beneficial changes in the cultivable endophytic bacteria present in the seeds of Agrostis capillaris. Therefore the cultivable seed endophytes of Agrostis capillaris growing on a long-term Cd/Ni-contaminated plot (Cd/Ni seeds) were compared with those originating from a non-contaminated plot (control seeds). We observed plant- and contaminant-dependent effects on the population composition between control and Cd/Ni seeds. Also differences in phenotypic characteristics were found: endophytes from Cd/Ni seeds exhibited more ACC deaminase activity and production of siderophores and IAA, while endophytes from control seeds, very surprisingly, showed more metal tolerance. Finally, the 3 most promising seed endophytes were selected based on their metal tolerance and plant growth promoting potential, and inoculated in Agrostis capillaris seedlings. In case of non-exposed plants, inoculation resulted in a significantly improved plant growth; after inoculation of Cd-exposed plants an increased Cd uptake was achieved without affecting plant growth. This indicates that inoculation of Agrostis with its seed endophytes might be beneficial for its establishment during phytoextraction and phytostabilisation of Cd-contaminated soils.
Collapse
|