1
|
Shalileh F, Gheibzadeh MS, Lloyd JR, Fietz S, Shahbani Zahiri H, Zolfaghari Emameh R. Evolutionary analysis and quality assessment of ζ-carbonic anhydrase sequences from environmental microbiome. J Basic Microbiol 2023; 63:1412-1425. [PMID: 37670218 DOI: 10.1002/jobm.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Carbonic anhydrase (CA) is one of the most vital enzymes in living cells. This study has been performed due to the significance of this metalloenzyme for life and the novelty of some CA families like ζ-CA to evaluate evolutionary processes and quality check their sequences. In this study, bioinformatics methods revealed the presence of ζ-CA in some eukaryotic and prokaryotic microorganisms. Notably, it has not been previously reported in prokaryotes. The coexistence of β- and ζ-CAs in some microorganisms is also a novel finding as well. Also, our analysis identified several CA proteins with 6-14 amino acid intervals between histidine and cysteine in the second highly conserved motif, which can be classified as the novel ζ-CA subfamily members that emerged under the Zn deficiency of aquatic ecosystems and selection pressure in these environments. There is also a possibility that the achieved results are rooted in the contamination of samples from the environmental microbiome genome with genomes of diatom species and the occurrence of errors was observed in the DNA sequencing outcomes. Combining of all results from evolutionary analysis to quality control of ζ-CA DNA sequences is the incentive motivation to explore more the hidden aspects of ζ-CAs.
Collapse
Affiliation(s)
- Farzaneh Shalileh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad S Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Susanne Fietz
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Haapanen S, Patrikainen MS, Parkkila S. Ultrasensitive and rapid diagnostic tool for detection of Acanthamoeba castellanii. Diagn Microbiol Infect Dis 2023; 107:116014. [PMID: 37506594 DOI: 10.1016/j.diagmicrobio.2023.116014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Acanthamoeba keratitis is a devastating infectious disease of the cornea caused by an opportunistic amoeba, Acanthamoeba castellanii. It is poorly recognized, and diagnostic delays can lead to irreversible damage to the vision. The gold standard for diagnosis has been a sample culture that lasts approximately 2 weeks. Nevertheless, the essence of time has led to the need for an accurate and fast technique to detect A. castellanii from a sample. We developed both traditional and quantitative real-time-PCR-based methods to detect A. castellanii in less than 3 hours and with the sensitivity of one amoeba. Diagnostic laboratories can select the best-suited method for their purposes from 2 comparable methods. The correct treatment can be initiated from the emergency room when the diagnosis has been made quickly within a few hours, hence saving the patient from long-term complications.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
4
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
5
|
Barlow A, Roy K, Hawkins K, Ankarah AA, Rosenthal B. A review of testing and assurance methods for Trichinella surveillance programs. Food Waterborne Parasitol 2021; 24:e00129. [PMID: 34458599 PMCID: PMC8379475 DOI: 10.1016/j.fawpar.2021.e00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
While global cases of trichinellosis have fallen since pork regulation began, the disease remains a danger to pork and animal game consumers as well as a liability to producers. Managing food safety risk and supporting agricultural trade requires cost-effective and sensitive diagnostic methods. Several means exist to inspect pork for parasitic infections. Here, we review literature concerning the sensitivity, specificity, and cost of these methods. We found that artificial digestion coupled with optical microscopy to be the best method for verification of Trichinella larva free pork due to its cost efficiency, high specificity, and reliability. Serological techniques such as ELISA are useful for epidemiological surveillance of swine. While current PCR techniques are quick and useful for diagnosing species-specific infections, they are not cost efficient for large-scale testing. However, as PCR techniques, including Lateral Flow- Recombinase Polymerase Amplification (LF-RPA), improve and continue to reduce cost, such methods may ultimately succeed artificial digestion. We compared cost, sensitivity, and specificity of available and foreseeable tools. The magnetic stir bar method remains the gold standard for Trichinella surveillance. Serological methods miss early infections but offer promise for use in surveillance. Isothermal methods offer future promise given their speed, accuracy, and ease of use. Genetic methods are uneconomical but advances have promise to reduce cost.
Collapse
Affiliation(s)
- Alec Barlow
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Kayla Roy
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Kristopher Hawkins
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Ako A Ankarah
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Benjamin Rosenthal
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| |
Collapse
|
6
|
Zolfaghari Emameh R, Hosseini SN, Parkkila S. Application of beta and gamma carbonic anhydrase sequences as tools for identification of bacterial contamination in the whole genome sequence of inbred Wuzhishan minipig (Sus scrofa) annotated in databases. Database (Oxford) 2021; 2021:baab029. [PMID: 34003248 PMCID: PMC8130508 DOI: 10.1093/database/baab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022]
Abstract
Sus scrofa or pig was domesticated thousands of years ago. Through various indigenous breeds, different phenotypes were produced such as Chinese inbred miniature minipig or Wuzhishan pig (WZSP), which is broadly used in the life and medical sciences. The whole genome of WZSP was sequenced in 2012. Through a bioinformatics study of pig carbonic anhydrase (CA) sequences, we detected some β- and γ-class CAs among the WZSP CAs annotated in databases, while β- or γ-CAs had not previously been described in vertebrates. This finding urged us to analyze the quality of whole genome sequence of WZSP for the possible bacterial contamination. In this study, we used bioinformatics methods and web tools such as UniProt, European Bioinformatics Institute, National Center for Biotechnology Information, Ensembl Genome Browser, Ensembl Bacteria, RSCB PDB and Pseudomonas Genome Database. Our analysis defined that pig has 12 classical α-CAs and 3 CA-related proteins. Meanwhile, it was approved that the detected CAs in WZSP are categorized in the β- and γ-CA families, which belong to Pseudomonas spp. and Acinetobacter spp. The protein structure study revealed that the identified β-CA sequence from WZSP belongs to Pseudomonas aeruginosa with PDB ID: 5JJ8, and the identified γ-CA sequence from WZSP belongs to P. aeruginosa with PDB ID: 3PMO. Bioinformatics and computational methods accompanied with bacterial-specific markers, such as 16S rRNA and β- and γ-class CA sequences, can be used to identify bacterial contamination in mammalian DNA samples.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Zhai CC, Liu XL, Bai X, Jia ZJ, Chen SH, Tian LG, Ai L, Tang B, Liu MY, Wu XP, Chen JX. Bioinformatic Prediction and Production of Four Recombinant Proteins from Different Developmental Stages of Trichinella spiralis and Testing of Their Diagnostic Sensitivity in Mice. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:122-135. [PMID: 33786054 PMCID: PMC7988681 DOI: 10.18502/ijpa.v16i1.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Trichinellosis is a serious food-borne parasitic zoonosis, thus finding high quality antigens is the key to serodiagnosis of trichinosis. This article reports the characterization and sensitivity of four recombinant proteins expressed by four genes (Wn10, Zh68, T668, and Wm5) from different developmental stages of Trichinella spiralis for the diagnosis of trichinellosis in mice. Methods: This study was conducted in Jilin University and National Institute of Parasitic Diseases of Chinese Center for Disease Control and Prevention in 2017–2018. The structures and functions of the proteins encoded by four genes were predicted by bioinformatics analysis. The four genes were cloned and expressed, and the recombinant proteins were purified. Anti-Trichinella IgM and IgG antibodies in the sera of mice infected with T. spiralis from 1-45 d post-infection (dpi) were evaluated by ELISA. Results: The optimal antigen epitopes of four proteins (P1, P2, P3, and P4) encoded by the four genes from T- and B-cells were predicted, and four purified recombinant proteins (r-P1, r-P2, r-P3, and r-P4) were successfully produced. For IgM, the antibody levels detected by the four recombinant antigens were approximately equal to the cut-off value. Anti-Trichinella IgG antibodies were first detected by r-P1 at 8 dpi, followed by r-P2, r-P3, and r-P4 at 10 dpi, 14 dpi, and 16 dpi, respectively, and the antibody levels remained high until 45 dpi. Conclusion: The recombinant antigens r-P1, r-P2, r-P3, and r-P4 could be antigens that react with antibodies, they showed high sensitivity in the detection of anti-Trichinella IgG antibodies in mice. Among these proteins, r-P1 may be a candidate antigen for the detection of anti-Trichinella IgG antibodies in the early infection phase and exhibited the best sensitivity among the antigens.
Collapse
Affiliation(s)
- Cheng-Cheng Zhai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China.,Editorial Department of Chinese Journal of Clinical Medicine, Department of Research, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Lei Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Ze-Jun Jia
- Editorial Department of Chinese Journal of Clinical Medicine, Department of Research, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Li-Guang Tian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Bin Tang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Ming-Yuan Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Xiu-Ping Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| |
Collapse
|
8
|
Zolfaghari Emameh R, Masoori L, Nosrati H, Falak R, Parkkila S. Identification and characterization of the first fish parvalbumin-like protein data from a pathogenic fungal species, Trichophyton violaceum. Data Brief 2020; 33:106420. [PMID: 33134447 PMCID: PMC7586069 DOI: 10.1016/j.dib.2020.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 10/26/2022] Open
Abstract
Parvalbumins are the most important fish allergens, which are heat-stable, classified in the family of calcium-binding EF-hand proteins, and contain one magnesium binding site. The functional connection between calcium and parvalbumin gives fish the high-speed swimming ability because of high concentration of Ca2+-binding parvalbumin in fish white muscles. Although parvalbumins are widely studied and conceivably play crucial roles in the physiology and swimming pattern of fishes, still no report is available about their presence in microbes, such as pathogenic fungal species. We detected a DNA sequence in the genome of Trichophyton violaceum and used in silico and polymerase chain reaction (PCR) technique with a designed pair of primers to identify it as parvalbumin-coding gene.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Leila Masoori
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.,Fimlab Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
9
|
Kochanowski M, Różycki M, Dąbrowska J, Bełcik A, Karamon J, Sroka J, Cencek T. Proteomic and Bioinformatic Investigations of Heat-Treated Anisakis simplex Third-Stage Larvae. Biomolecules 2020; 10:E1066. [PMID: 32708775 PMCID: PMC7407331 DOI: 10.3390/biom10071066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Anisakis simplex third-stage larvae are the main source of hidden allergens in marine fish products. Some Anisakis allergens are thermostable and, even highly processed, could cause hypersensitivity reactions. However, Anisakis proteome has not been studied under autoclaving conditions of 121 °C for 60 min, which is an important process in the food industry. The aim of the study was the identification and characterization of allergens, potential allergens, and other proteins of heat-treated A. simplex larvae. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify 470 proteins, including allergens-Ani s 1, Ani s 2, Ani s 3, Ani s 4, Ani s 5-and 13 potential allergens that were mainly homologs of Anisakis spp., Ascaris spp., and Acari allergens. Ani s 2, Ani s 3, Ani s 5, and three possible allergens were found among the top 25 most abundant proteins. The computational analysis allowed us to detect allergen epitopes, assign protein families, and domains as well as to annotate the localization of proteins. The predicted 3D models of proteins revealed similarities between potential allergens and homologous allergens. Despite the partial degradation of heated A. simplex antigens, their immunoreactivity with anti-A. simplex IgG antibodies was confirmed using a Western blot. In conclusion, identified epitopes of allergenic peptides highlighted that the occurrence of Anisakis proteins in thermally processed fish products could be a potential allergic hazard. Further studies are necessary to confirm the IgE immunoreactivity and thermostability of identified proteins.
Collapse
Affiliation(s)
- Maciej Kochanowski
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.R.); (J.D.); (A.B.); (J.K.); (J.S.); (T.C.)
| | | | | | | | | | | | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.R.); (J.D.); (A.B.); (J.K.); (J.S.); (T.C.)
| |
Collapse
|
10
|
Zolfaghari Emameh R, Falak R, Bahreini E. Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2. Biol Proced Online 2020; 22:11. [PMID: 32572334 PMCID: PMC7302923 DOI: 10.1186/s12575-020-00124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus. RESULTS In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures. CONCLUSIONS Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zolfaghari Emameh R, Kuuslahti M, Nosrati H, Lohi H, Parkkila S. Assessment of databases to determine the validity of β- and γ-carbonic anhydrase sequences from vertebrates. BMC Genomics 2020; 21:352. [PMID: 32393172 PMCID: PMC7216627 DOI: 10.1186/s12864-020-6762-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including α, β, γ, δ, ζ, η, θ, and ι, only α-CAs have been reported in vertebrates. RESULTS By an in silico analysis performed on the NCBI and Ensembl databases, we identified several β- and γ-CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive β- or γ-CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived "vertebrate" β- and γ-CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems. CONCLUSIONS Our results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
12
|
Zolfaghari Emameh R, Masoori L, Taheri RA, Falak R. Identification and characterization of parvalbumin-like protein in Trichophyton violaceum. Fungal Biol 2020; 124:592-600. [PMID: 32448450 DOI: 10.1016/j.funbio.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 01/08/2023]
Abstract
Parvalbumins play crucial physiological roles in neuromuscular systems of vertebrates, such as cell-cycle, development of neurons, contraction of muscles, and regulation of intracellular calcium. To perform these neuromuscular functions, parvalbumin may be in associated with other proteins including calbindin, carbonic anhydrase, and cytochrome oxidase. Humans may show an IgE-specific hypersensitivity to parvalbumins after consumption of some distinct fish species. While this protein is abundant in fish muscles, literature review of publications related to fish parvalbumins, do not point to the presence of parvalbumins in eukaryotic microbes. In this study, we propose that distantly related parvalbumins may be found in some non-fish species. Bioinformatics studies such as multiple sequence alignment (MSA), phylogenetic analysis as well as molecular-based experiments indicate that, at least two parvalbumins sequences (UniProt IDs: A0A178F775 and A0A178F7E4) with EF-hand domains and Ca2+-binding sites could be identified in Trichophyton violaceum, a pathogenic fungal species. It was determined that both genes consisted of a single exon and encoded for parvalbumin proteins possessing conserved amino acid motifs. Antigenicity prediction revealed antigenic sites located in both sides of the Ca2+-binding site of the first EF-hand domain. Our phylogenetic analysis revealed that one of parvalbumins (UniProt ID: 0A178F775) can be evolved to other parvalbumins in T. violaceum (UniProt ID: A0A178F7E4) and fish species through evolutionary phenomenon. To confirm our in-silico findings, we designed three primer pairs to detect one of the T. violaceum parvalbumins (UniProt ID: A0A178F7E4) by polymerase chain reaction (PCR); one primer pair showed a strong and specific band in agarose gel electrophoresis. To evaluate the specificity of the method, the primers were tested on extracted DNA from Trichophyton rubrum and T. mentagrophytes. The results demonstrated that the evaluated parvalbumin gene (UniProt ID: A0A178F7E4) was T. violaceum-specific and this pathogenic fungus can be differentiated from T. rubrum and T. mentagrophytes through identification of parvalbumin genes. Further studies are necessary to unravel the biochemical and physiological functions of parvalbumins in T. violaceum.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Leila Masoori
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
KHANMOHAMMADI M, AKHLAGHI L, RAZMJOU E, FALAK R, ZOLFAGHARI EMAMEH R, MOKHTARIAN K, ARSHADI M, TASBIHI M, MEAMAR AR. Morphological Description, Phylogenetic and Molecular Analysis of Dirofilaria immitis Isolated from Dogs in the Northwest of Iran. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:57-66. [PMID: 32489376 PMCID: PMC7244830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Dirofilariasis is a globally distributed arthropod-borne parasitic disease of mainly canids and felids. We evaluated to extend the knowledge of morpho-molecular characteristics and outer ultrastructure of Dirofilaria immitis isolated from Northwest of Iran. METHODS Overall, 67 filarial worms including 41 females and 26 males parasites were collected from the cardiovascular system of the 43 stray dogs in Meshkinshar, Ardebil Province, Northwest of Iran in 2017, and subjected to light and scanning electron microscopy (SEM) as well as carmine alum staining for morpho-molecular and identification. Molecular methods were used for confirmation of morphological findings by sequencing of Cyto-chrome c oxidase subunit I (cox1) gene. RESULTS The partial DNA sequencing of cox1 gene of adult parasites showed considerable homology and close proximity to the previously isolated from Kerman and Meshkinshahr, Iran. The lowest genetic variation and the highest intra-species variability was found in D. immitis and Dirofilaria repens, respectively. No similarity was identified between D. immitis nucleotide sequence and Wolbachia species as its endosymbiont bacteria. CONCLUSION The SEM technique is an excellent tool for differential recognition of the parasite surface morphology and molecular techniques could differentiate and identify Dirofilaria spp.
Collapse
Affiliation(s)
- Majid KHANMOHAMMADI
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran, Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Lame AKHLAGHI
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Correspondence
| | - Elham RAZMJOU
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza FALAK
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza ZOLFAGHARI EMAMEH
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kobra MOKHTARIAN
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi ARSHADI
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran, Al-Zahra Hospitals’, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Minoo TASBIHI
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza MEAMAR
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Correspondence
| |
Collapse
|
14
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
15
|
Zolfaghari Emameh R, Purmonen S, Sukura A, Parkkila S. Surveillance and diagnosis of zoonotic foodborne parasites. Food Sci Nutr 2017; 6:3-17. [PMID: 29387356 PMCID: PMC5778216 DOI: 10.1002/fsn3.530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal‐derived foods.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology Division of Industrial & Environmental Biotechnology National Institute of Genetic Engineering and Biotechnology (NIGEB) Tehran Iran
| | - Sami Purmonen
- Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Antti Sukura
- Department of Veterinary Biosciences Faculty of Veterinary Medicine University of Helsinki Helsinki Finland
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences University of Tampere Tampere Finland.,Fimlab Laboratories Ltd and Tampere University Hospital Tampere Finland
| |
Collapse
|