1
|
Chen Y, Wang Z, Chen C, Xiao S, Lv J, Lin L, Liu J, Li X, Wang W, Wei D. Metabolic Engineering of Filamentous Fungus Trichoderma reesei for Itaconic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4716-4724. [PMID: 39963051 PMCID: PMC11869998 DOI: 10.1021/acs.jafc.4c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Itaconic acid (IA) is a multifunctional platform chemical with numerous biological functions. Here, Trichoderma reesei was engineered as a remarkable cell factory to produce IA. Heterologous overexpression of the mitochondrial tricarboxylate transport protein and cis-aconitate decarboxylase from Aspergillus terreus in T. reesei initiated IA production with a titer of 20 g/L. By increasing the copy number of mttA and cadA and the overexpression of the plasma membrane transporter proteins (MFSA), the titer of IA reached 56.7 g/L. The precursor synthesis pathway of IA was overexpressed by the overexpression of aconitase and citrate synthase, and the IA competition pathway was blocked by the deletion of the P450 monooxygenase gene cyp3 to further enhance IA production. The final strain resulted in a final IA titer of 93.5 g/L through fed-batch fermentation in a 1 L bioreactor. Our study demonstrates that T. reesei can serve as a relevant platform in industry for IA production.
Collapse
Affiliation(s)
- Yumeng Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Cangcang Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Xiao
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Lv
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Lin
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Liu
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Xinrui Li
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Al Akiki Dit Al Mazraani R, Malys N, Maliene V. Itaconate and its derivatives as anti-pathogenic agents. RSC Adv 2025; 15:4408-4420. [PMID: 39931396 PMCID: PMC11808480 DOI: 10.1039/d4ra08298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Pathogenic microorganisms and viruses cause outbreaks and pandemics that affect millions of people worldwide. Despite recent advances in pharmacology and medicine, the ability of infectious diseases to spread in the modern era is accelerating due to various factors contributing to increased human-to-human and human-animal contacts. With the global rise of drug resistance among pathogens and frequently occurring viral outbreaks, alternative drugs and therapies that specifically inhibit microbial virulence or regulate immune responses are attracting growing interest. The present review focuses on itaconate and its derivatives as potential anti-pathogenic agents. It summarizes the current state of research on itaconate metabolism in bacteria, fungi and mammals. This is followed by a comprehensive review of recent advances studying itaconate and its derivatives as anti-inflammatory, immunoregulatory, antimicrobial and antiviral compounds, along with their mechanisms of action. Finally, the review emphasises the existing challenges and future research directions for the application of itaconate and its derivatives as anti-pathogenic agents.
Collapse
Affiliation(s)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
| | - Vida Maliene
- Built Environment and Sustainable Technologies Research Institute, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
3
|
Ernst P, Zlati F, Kever L, Wirtz A, Goldbaum R, Pietruszka J, Wynands B, Frunzke J, Wierckx N. Selective production of the itaconic acid-derived compounds 2-hydroxyparaconic and itatartaric acid. Metab Eng Commun 2024; 19:e00252. [PMID: 39655188 PMCID: PMC11626831 DOI: 10.1016/j.mec.2024.e00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
There is a strong interest in itaconic acid in the medical and pharmaceutical sectors, both as an anti-bacterial compound and as an immunoregulator in mammalian macrophages. Fungal hosts also produce itaconic acid, and in addition they can produce two derivatives 2-hydroxyparaconic and itatartaric acid. Not much is known about these two derivatives, while their structural analogy to itaconate could open up several applications. In this study, we report the production of these two itaconate-derived compounds. By overexpressing the itaconate P450 monooxygenase Cyp3 in a previously engineered itaconate-overproducing Ustilago cynodontis strain, itaconate was converted to its lactone 2-hydroxyparaconate. The second product itatartarate is most likely the result of the subsequent lactone hydrolysis. A major challenge in the production of 2-hydroxyparaconate and itatartarate is their co-production with itaconate, leading to difficulties in their purification. Achieving high derivatives specificity was therefore the paramount objective. Different strategies were evaluated including process parameters such as substrate and pH, as well as strain engineering focusing on Cyp3 expression and product export. 2-hydroxyparaconate and itatartarate were successfully produced from glucose and glycerol, with the latter resulting in a higher derivatives specificity due to an overall slower metabolism on this non-preferred carbon source. The derivatives specificity could be further increased by metabolic engineering approaches including the exchange of the native itaconate transporter Itp1 with the Aspergillus terreus itaconate transporter MfsA. Both 2-hydroxyparaconate and itatartarate were recovered from fermentation supernatants following a pre-existing protocol. 2-hydroxyparaconate was recovered first through a process of evaporation, lactonization, and extraction with ethyl acetate. Subsequently, itatartarate could be obtained in the form of its sodium salt by saponification of the purified 2-hydroxyparaconate. Finally, several analytical methods were used to characterize the resulting products and their structures were confirmed by nuclear magnetic resonance spectroscopy. This work provides a promising foundation for obtaining 2-hydroxyparaconate and itatartarate in high purity and quantity. This will allow to unravel the full spectrum of potential applications of these novel compounds.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Felicia Zlati
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Larissa Kever
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Rainer Goldbaum
- Institute of Bioorganic Chemistry, Heinrich-Heine University Düsseldorf in Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich-Heine University Düsseldorf in Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
4
|
Yoshioka I, Kirimura K. Generation of citric acid-hyperproducers independent of methanol effect by high-level expression of cexA encoding citrate exporter in Aspergillus tubingensis. Biosci Biotechnol Biochem 2024; 88:1203-1211. [PMID: 39089868 DOI: 10.1093/bbb/zbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Methanol reportedly stimulates citric acid (CA) production by Aspergillus niger and A. tubingensis; however, the underlying mechanisms remain unclear. Here, we elucidated the molecular functions of the citrate exporter gene cexA in relation to CA production by A. tubingensis WU-2223L. Methanol addition to the medium containing glucose as a carbon source markedly increased CA production by strain WU-2223L by 3.38-fold, resulting in a maximum yield of 65.5 g/L, with enhanced cexA expression. Conversely, the cexA-complementing strain with the constitutive expression promoter Ptef1 (strain LhC-1) produced 68.3 or 66.7 g/L of CA when cultivated without or with methanol, respectively. Additionally, strain LhC-2 harboring two copies of the cexA expression cassette produced 80.7 g/L of CA without methanol addition. Overall, we showed that cexA is a target gene for methanol in CA hyperproduction by A. tubingensis WU-2223L. Based on these findings, methanol-independent CA-hyperproducing strains, LhC-1 and LhC-2, were successfully generated.
Collapse
Affiliation(s)
- Isato Yoshioka
- R esearch Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
| | - Kohtaro Kirimura
- R esearch Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
5
|
Grebe LA, Lichtenberg PG, Hürter K, Forsten E, Miebach K, Büchs J, Magnus JB. Phosphate limitation enhances malic acid production on nitrogen-rich molasses with Ustilago trichophora. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:92. [PMID: 38961457 PMCID: PMC11223335 DOI: 10.1186/s13068-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND An important step in replacing petrochemical products with sustainable, cost-effective alternatives is the use of feedstocks other than, e.g., pure glucose in the fermentative production of platform chemicals. Ustilaginaceae offer the advantages of a wide substrate spectrum and naturally produce a versatile range of value-added compounds under nitrogen limitation. A promising candidate is the dicarboxylic acid malic acid, which may be applied as an acidulant in the food industry, a chelating agent in pharmaceuticals, or in biobased polymer production. However, fermentable residue streams from the food and agricultural industry with high nitrogen content, e.g., sugar beet molasses, are unsuited for processes with Ustilaginaceae, as they result in low product yields due to high biomass and low product formation. RESULTS This study uncovers challenges in evaluating complex feedstock applicability for microbial production processes, highlighting the role of secondary substrate limitations, internal storage molecules, and incomplete assimilation of these substrates. A microliter-scale screening method with online monitoring of microbial respiration was developed using malic acid production with Ustilago trichophora on molasses as an application example. Investigation into nitrogen, phosphate, sulphate, and magnesium limitations on a defined minimal medium demonstrated successful malic acid production under nitrogen and phosphate limitation. Furthermore, a reduction of nitrogen and phosphate in the elemental composition of U. trichophora was revealed under the respective secondary substrate limitation. These adaptive changes in combination with the intricate metabolic response hinder mathematical prediction of product formation and make the presented screening methodology for complex feedstocks imperative. In the next step, the screening was transferred to a molasses-based complex medium. It was determined that the organism assimilated only 25% and 50% of the elemental nitrogen and phosphorus present in molasses, respectively. Due to the overall low content of bioavailable phosphorus in molasses, the replacement of the state-of-the-art nitrogen limitation was shown to increase malic acid production by 65%. CONCLUSION The identification of phosphate as a superior secondary substrate limitation for enhanced malic acid production opens up new opportunities for the effective utilization of molasses as a more sustainable and cost-effective substrate than, e.g., pure glucose for biobased platform chemical production.
Collapse
Affiliation(s)
- Luca Antonia Grebe
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | | | - Katharina Hürter
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Eva Forsten
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Katharina Miebach
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Nishitani A, Hiramatsu K, Kadooka C, Hiroshima K, Sawada K, Okutsu K, Yoshizaki Y, Takamine K, Goto M, Tamaki H, Futagami T. Overexpression of the DHA1 family, ChlH and ChlK, leads to enhanced dicarboxylic acids production in koji fungi, Aspergillus luchuensis mut. kawachii and Aspergillus oryzae. J Biosci Bioeng 2024; 137:281-289. [PMID: 38331655 DOI: 10.1016/j.jbiosc.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
The white koji fungus Aspergillus luchuensis mut. kawachii secretes substantial amounts of citric acid through the expression of the citric acid exporter CexA, a member of the DHA1 family. In this study, we aimed to characterize 11 CexA homologs (Chl proteins) encoded in the genome of A. luchuensis mut. kawachii to identify novel transporters useful for organic acid production. We constructed overexpression strains of chl genes using a cexA disruptant of the A. luchuensis mut. kawachii as the host strain, which prevented excessive secretion of citric acid into the culture supernatant. Subsequently, we evaluated the effects of overexpression of chl on producing organic acids by analyzing the culture supernatant. All overexpression strains did not exhibit significant citric acid accumulation in the culture supernatant, indicating that Chl proteins are not responsible for citric acid export. Furthermore, the ChlH overexpression strain displayed an accumulation of 2-oxoglutaric and fumaric acids in the culture supernatant, while the ChlK overexpression strain exhibited the accumulation of 2-oxoglutaric, malic and succinic acids. Notably, the ChlH and ChlK overexpression led to a substantial increase in the production of 2-oxoglutaric acid, reaching approximately 25 mM and 50 mM, respectively. Furthermore, ChlH and ChlK overexpression also significantly increased the secretory production of dicarboxylic acids, including 2-oxoglutaric acid, in the yellow koji fungus, Aspergillus oryzae. Our study demonstrates that overexpression of DHA1 family gene results in enhanced secretion of organic acids in koji fungi of the genus Aspergillus.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kyoka Hiroshima
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
7
|
Haala F, Dielentheis-Frenken MRE, Brandt FM, Karmainski T, Blank LM, Tiso T. DoE-based medium optimization for improved biosurfactant production with Aureobasidium pullulans. Front Bioeng Biotechnol 2024; 12:1379707. [PMID: 38511129 PMCID: PMC10953688 DOI: 10.3389/fbioe.2024.1379707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Polyol lipids (a.k.a. liamocins) produced by the polyextremotolerant, yeast-like fungus Aureobasidium pullulans are amphiphilic molecules with high potential to serve as biosurfactants. So far, cultivations of A. pullulans have been performed in media with complex components, which complicates further process optimization due to their undefined composition. In this study, we developed and optimized a minimal medium, focusing on biosurfactant production. Firstly, we replaced yeast extract and peptone in the best-performing polyol lipid production medium to date with a vitamin solution, a trace-element solution, and a nitrogen source. We employed a design of experiments approach with a factor screening using a two-level-factorial design, followed by a central composite design. The polyol lipid titer was increased by 56% to 48 g L-1, and the space-time yield from 0.13 to 0.20 g L-1 h-1 in microtiter plate cultivations. This was followed by a successful transfer to a 1 L bioreactor, reaching a polyol lipid concentration of 41 g L-1. The final minimal medium allows the investigation of alternative carbon sources and the metabolic pathways involved, to pinpoint targets for genetic modifications. The results are discussed in the context of the industrial applicability of this robust and versatile fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Helm T, Stausberg T, Previati M, Ernst P, Klein B, Busche T, Kalinowski J, Wibberg D, Wiechert W, Claerhout L, Wierckx N, Noack S. Itaconate Production from Crude Substrates with U. maydis: Scale-up of an Industrially Relevant Bioprocess. Microb Cell Fact 2024; 23:29. [PMID: 38245756 PMCID: PMC10799509 DOI: 10.1186/s12934-024-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Industrial by-products accrue in most agricultural or food-related production processes, but additional value chains have already been established for many of them. Crude glycerol has a 60% lower market value than commercial glucose, as large quantities are produced in the biodiesel industry, but its valorisation is still underutilized. Due to its high carbon content and the natural ability of many microorganisms to metabolise it, microbial upcycling is a suitable option for this waste product. RESULTS In this work, the use of crude glycerol for the production of the value-added compound itaconate is demonstrated using the smut fungus Ustilago maydis. Starting with a highly engineered strain, itaconate production from an industrial glycerol waste stream was quickly established on a small scale, and the resulting yields were already competitive with processes using commercial sugars. Adaptive laboratory evolution resulted in an evolved strain with a 72% increased growth rate on glycerol. In the subsequent development and optimisation of a fed-batch process on a 1.5-2 L scale, the use of molasses, a side stream of sugar beet processing, eliminated the need for other expensive media components such as nitrogen or vitamins for biomass growth. The optimised process was scaled up to 150 L, achieving an overall titre of 72 g L- 1, a yield of 0.34 g g- 1, and a productivity of 0.54 g L- 1 h- 1. CONCLUSIONS Pilot-scale itaconate production from the complementary waste streams molasses and glycerol has been successfully established. In addition to achieving competitive performance indicators, the proposed dual feedstock strategy offers lower process costs and carbon footprint for the production of bio-based itaconate.
Collapse
Affiliation(s)
- Tabea Helm
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thilo Stausberg
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | | | - Philipp Ernst
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Bianca Klein
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Tobias Busche
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615, Bielefeld, Germany
| | - Daniel Wibberg
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615, Bielefeld, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | | | - Nick Wierckx
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences - IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany.
| |
Collapse
|
9
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
10
|
Niehoff PJ, Müller W, Pastoors J, Miebach K, Ernst P, Hemmerich J, Noack S, Wierckx N, Büchs J. Development of an itaconic acid production process with Ustilaginaceae on alternative feedstocks. BMC Biotechnol 2023; 23:34. [PMID: 37661280 PMCID: PMC10476437 DOI: 10.1186/s12896-023-00802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Currently, Aspergillus terreus is used for the industrial production of itaconic acid. Although, alternative feedstock use in fermentations is crucial for cost-efficient and sustainable itaconic acid production, their utilisation with A. terreus most often requires expensive pretreatment. Ustilaginacea are robust alternatives for itaconic acid production, evading the challenges, including the pretreatment of crude feedstocks regarding reduction of manganese concentration, that A. terreus poses. RESULTS In this study, five different Ustilago strains were screened for their growth and production of itaconic acid on defined media. The most promising strains were then used to find a suitable alternative feedstock, based on the local food industry. U. cynodontis ITA Max pH, a highly engineered production strain, was selected to determine the biologically available nitrogen concentration in thick juice and molasses. Based on these findings, thick juice was chosen as feedstock to ensure the necessary nitrogen limitation for itaconic acid production. U. cynodontis ITA Max pH was further characterised regarding osmotolerance and product inhibition and a successful scale-up to a 2 L stirred tank reactor was accomplished. A titer of 106.4 gitaconic acid/L with a theoretical yield of 0.50 gitaconic acid/gsucrose and a space-time yield of 0.72 gitaconic acid/L/h was reached. CONCLUSIONS This study demonstrates the utilisation of alternative feedstocks to produce ITA with Ustilaginaceae, without drawbacks in either titer or yield, compared to glucose fermentations.
Collapse
Affiliation(s)
- Paul-Joachim Niehoff
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Waldemar Müller
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Johannes Pastoors
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Katharina Miebach
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Johannes Hemmerich
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Ye DY, Moon JH, Jung GY. Recent Progress in Metabolic Engineering of Escherichia coli for the Production of Various C4 and C5-Dicarboxylic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10916-10931. [PMID: 37458388 DOI: 10.1021/acs.jafc.3c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
As an alternative to petrochemical synthesis, well-established industrial microbes, such as Escherichia coli, are employed to produce a wide range of chemicals, including dicarboxylic acids (DCAs), which have significant potential in diverse areas including biodegradable polymers. The demand for biodegradable polymers has been steadily rising, prompting the development of efficient production pathways on four- (C4) and five-carbon (C5) DCAs derived from central carbon metabolism to meet the increased demand via the biosynthesis. In this context, E. coli is utilized to produce these DCAs through various metabolic engineering strategies, including the design or selection of metabolic pathways, pathway optimization, and enhancement of catalytic activity. This review aims to highlight the recent advancements in metabolic engineering techniques for the production of C4 and C5 DCAs in E. coli.
Collapse
Affiliation(s)
- Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
12
|
Geng C, Jin Z, Gu M, Li J, Tang S, Guo Q, Zhang Y, Zhang W, Li Y, Huang X, Lu X. Microbial production of trans-aconitic acid. Metab Eng 2023; 78:183-191. [PMID: 37315711 DOI: 10.1016/j.ymben.2023.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Trans-aconitic acid (TAA) is a promising bio-based chemical with the structure of unsaturated tricarboxylic acid, and also has the potential to be a non-toxic nematicide as a potent inhibitor of aconitase. However, TAA has not been commercialized because the traditional production processes of plant extraction and chemical synthesis cannot achieve large-scale production at a low cost. The availability of TAA is a serious obstacle to its widespread application. In this study, we developed an efficient microbial synthesis and fermentation production process for TAA. An engineered Aspergillus terreus strain producing cis-aconitic acid and TAA was constructed by blocking itaconic acid biosynthesis in the industrial itaconic acid-producing strain. Through heterologous expression of exogenous aconitate isomerase, we further designed a more efficient cell factory to specifically produce TAA. Subsequently, the fermentation process was developed and scaled up step-by-step, achieving a TAA titer of 60 g L-1 at the demonstration scale of a 20 m3 fermenter. Finally, the field evaluation of the produced TAA for control of the root-knot nematodes was performed in a field trial, effectively reducing the damage of the root-knot nematode. Our work provides a commercially viable solution for the green manufacturing of TAA, which will significantly facilitate biopesticide development and promote its widespread application as a bio-based chemical.
Collapse
Affiliation(s)
- Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Zhigang Jin
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China; Shandong Lukang Pharmaceutical Co. Ltd., Jining, 272021, Shandong, China
| | - Meng Gu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Qiang Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, Shandong, China.
| |
Collapse
|
13
|
Saur KM, Kiefel R, Niehoff PJ, Hofstede J, Ernst P, Brockkötter J, Gätgens J, Viell J, Noack S, Wierckx N, Büchs J, Jupke A. Holistic Approach to Process Design and Scale-Up for Itaconic Acid Production from Crude Substrates. Bioengineering (Basel) 2023; 10:723. [PMID: 37370654 DOI: 10.3390/bioengineering10060723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Bio-based bulk chemicals such as carboxylic acids continue to struggle to compete with their fossil counterparts on an economic basis. One possibility to improve the economic feasibility is the use of crude substrates in biorefineries. However, impurities in these substrates pose challenges in fermentation and purification, requiring interdisciplinary research. This work demonstrates a holistic approach to biorefinery process development, using itaconic acid production on thick juice based on sugar beets with Ustilago sp. as an example. A conceptual process design with data from artificially prepared solutions and literature data from fermentation on glucose guides the simultaneous development of the upstream and downstream processes up to a 100 L scale. Techno-economic analysis reveals substrate consumption as the main constituent of production costs and therefore, the product yield is the driver of process economics. Aligning pH-adjusting agents in the fermentation and the downstream process is a central lever for product recovery. Experiments show that fermentation can be transferred from glucose to thick juice by changing the feeding profile. In downstream processing, an additional decolorization step is necessary to remove impurities accompanying the crude substrate. Moreover, we observe an increased use of pH-adjusting agents compared to process simulations.
Collapse
Affiliation(s)
- Katharina Maria Saur
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Kiefel
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Paul-Joachim Niehoff
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Jordy Hofstede
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Philipp Ernst
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1, 52428 Jülich, Germany
| | - Johannes Brockkötter
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Jochem Gätgens
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1, 52428 Jülich, Germany
| | - Jörn Viell
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1, 52428 Jülich, Germany
| | - Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1, 52428 Jülich, Germany
| | - Jochen Büchs
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
14
|
Elkasaby T, Hanh DD, Kawaguchi H, Kondo A, Ogino C. Effect of different metabolic pathways on itaconic acid production in engineered Corynebacterium glutamicum. J Biosci Bioeng 2023:S1389-1723(23)00139-1. [PMID: 37328405 DOI: 10.1016/j.jbiosc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Itaconic acid (IA), a C5-dicarboxylic acid, is a potential bio-based building block for the polymer industry. There are three pathways for IA production from natural IA producers; however, most of the engineered strains were used for IA production by heterologous expression of cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus. In this study, IA was produced by an engineered Corynebacterium glutamicum ATCC 13032 expressing two different types of genes from two distinct pathways. The first involves the mammalian immunoresponsive gene1 (Irg1) derived from Mus musculus. The second (termed here the trans-pathway) involves two genes from the natural IA producer Ustilago maydis which are aconitate-delta-isomerase (Adi1) and trans-aconitate decarboxylase (Tad1) genes. The constructed strains developing the two distinct IA production pathways: C. glutamicum ATCC 13032 pCH-Irg1opt and C. glutamicum ATCC 13032 pCH-Tad1optadi1opt were used for production of IA from different carbon sources. The results reflect the possibility for IA production from C. glutamicum expressing the trans-pathway (Adi1/Tad1 genes) and cis-pathway (Irg1 gene) other than the well-known cis-pathway that depends mainly on cadA gene from A. terreus. The developed strain expressing trans-pathway from U. maydis; however, proved to be better at IA production with high titers of 12.25, 11.34, and 11.02 g/L, and a molar yield of 0.22, 0.42, and 0.43 mol/mol from glucose, maltose, and sucrose, respectively, via fed-batch fermentation. The present study suggests that trans-pathway is better than cis-pathway for IA production in engineered C. glutamicum.
Collapse
Affiliation(s)
- Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria St, Mansoura 35516, Egypt
| | - Dao Duy Hanh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
15
|
Diankristanti PA, Ng IS. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023:129280. [PMID: 37290713 DOI: 10.1016/j.biortech.2023.129280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
16
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
17
|
Alves J, Sousa-Silva M, Soares P, Sauer M, Casal M, Soares-Silva I. Structural characterization of the Aspergillus niger citrate transporter CexA uncovers the role of key residues S75, R192 and Q196. Comput Struct Biotechnol J 2023; 21:2884-2898. [PMID: 37216016 PMCID: PMC10196274 DOI: 10.1016/j.csbj.2023.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The Aspergillus niger CexA transporter belongs to the DHA1 (Drug-H+ antiporter) family. CexA homologs are exclusively found in eukaryotic genomes, and CexA is the sole citrate exporter to have been functionally characterized in this family so far. In the present work, we expressed CexA in Saccharomyces cerevisiae, demonstrating its ability to bind isocitric acid, and import citrate at pH 5.5 with low affinity. Citrate uptake was independent of the proton motive force and compatible with a facilitated diffusion mechanism. To unravel the structural features of this transporter, we then targeted 21 CexA residues for site-directed mutagenesis. Residues were identified by a combination of amino acid residue conservation among the DHA1 family, 3D structure prediction, and substrate molecular docking analysis. S. cerevisiae cells expressing this library of CexA mutant alleles were evaluated for their capacity to grow on carboxylic acid-containing media and transport of radiolabeled citrate. We also determined protein subcellular localization by GFP tagging, with seven amino acid substitutions affecting CexA protein expression at the plasma membrane. The substitutions P200A, Y307A, S315A, and R461A displayed loss-of-function phenotypes. The majority of the substitutions affected citrate binding and translocation. The S75 residue had no impact on citrate export but affected its import, as the substitution for alanine increased the affinity of the transporter for citrate. Conversely, expression of CexA mutant alleles in the Yarrowia lipolytica cex1Δ strain revealed the involvement of R192 and Q196 residues in citrate export. Globally, we uncovered a set of relevant amino acid residues involved in CexA expression, export capacity and import affinity.
Collapse
Affiliation(s)
- J. Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - P. Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Sauer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - M. Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - I. Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
18
|
Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. FERMENTATION 2023. [DOI: 10.3390/fermentation9010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Itaconic acid (ITA) is one of the top 12 platform chemicals. The global ITA market is expanding due to the rising demand for bio-based unsaturated polyester resin and its non-toxic qualities. Although bioconversion using microbes is the main approach in the current industrial production of ITA, ecological production of bio-based ITA faces several issues due to: low production efficiency, the difficulty to employ inexpensive raw materials, and high manufacturing costs. As metabolic engineering advances, the engineering of microorganisms offers a novel strategy for the promotion of ITA bio-production. In this review, the most recent developments in the production of ITA through fermentation and metabolic engineering are compiled from a variety of perspectives, including the identification of the ITA synthesis pathway, the metabolic engineering of natural ITA producers, the design and construction of the ITA synthesis pathway in model chassis, and the creation, as well as application, of new metabolic engineering strategies in ITA production. The challenges encountered in the bio-production of ITA in microbial cell factories are discussed, and some suggestions for future study are also proposed, which it is hoped offers insightful views to promote the cost-efficient and sustainable industrial production of ITA.
Collapse
|
19
|
de Witt J, Ernst P, Gätgens J, Noack S, Hiller D, Wynands B, Wierckx N. Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate. Metab Eng 2023; 75:205-216. [PMID: 36581064 PMCID: PMC9875883 DOI: 10.1016/j.ymben.2022.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.
Collapse
Affiliation(s)
- Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Davina Hiller
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany,Corresponding author.
| |
Collapse
|
20
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
21
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Fujie N, Ito M, Kishida M, Hirata Y, Kondo A, Tanaka T. Metabolic engineering of Schizosaccharomyces pombe for itaconic acid production. J Biotechnol 2022; 358:111-117. [PMID: 36122598 DOI: 10.1016/j.jbiotec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
The economical production of value-added chemicals from renewable biomass is a promising aspect of producing a sustainable economy. Itaconic acid (IA) is a high value-added compound that is expected to be an alternative to petroleum-based chemicals. In this study, we developed a metabolic engineering strategy for the large-scale production of IA from glucose using the fission yeast Schizosaccharomyces pombe. Heterologous expression of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus, which encodes cis-aconitate decarboxylase in the cytosol, led to the production of 0.132 g/L of IA. We demonstrated that mitochondrial localization of CAD enhanced the production of IA. To prevent the leakage of carbon flux from the TCA cycle, we generated a strain in which the endogenous malate exporter, citrate lyase, and citrate transporter genes were disrupted. A titer of 1.110 g/L of IA was obtained from a culture of this strain started with 50 g/L of glucose. By culturing the multiple mutant strain at increased cell density, we succeeded in enhancing the IA production to 1.555 g/L. The metabolic engineering strategies presented in this study have the potential to improve the titer of the biosynthesis of derivatives of intermediates of the TCA cycle.
Collapse
Affiliation(s)
- Naofumi Fujie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Miki Ito
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
23
|
Import and Export of Mannosylerythritol Lipids by Ustilago maydis. mBio 2022; 13:e0212322. [PMID: 36069442 PMCID: PMC9600162 DOI: 10.1128/mbio.02123-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Upon nitrogen starvation, the basidiomycete Ustilago maydis, which causes smut disease on corn, secretes amphipathic glycolipids, including mannosylerythritol lipids (MELs). MELs consist of a carbohydrate core whose mannosyl moiety is both acylated with fatty acids of different lengths and acetylated. Here, we report the transport of MELs into and out of the cell depending on the transport protein Mmf1, which belongs to the major facilitator superfamily. Analysis of mmf1 mutants and mutants lacking the acetyltransferase Mat1 revealed that Mmf1 is necessary for the export of acetylated MELs, while MELs without an acetyl group are secreted independently of this transporter. Upon deletion of mmf1, we detected novel MEL species lacking the acyl side chain at C-3′. With the help of feeding experiments, we demonstrate that MELs are taken up by U. maydis in an mmf1-independent manner. This leads to catabolism or rearrangement of acetyl and acyl side groups and subsequent secretion. The catabolism of MELs involves the presence of Mac2, an enzyme required for MEL biosynthesis. In cocultivation experiments, mutual exchange of MELs between different mutants was observed. Thus, we propose a novel function for fungal glycolipids as an external carbon storage.
Collapse
|
24
|
Wang Y, Guo Y, Cao W, Liu H. Synergistic effects on itaconic acid production in engineered Aspergillus niger expressing the two distinct biosynthesis clusters from Aspergillus terreus and Ustilago maydis. Microb Cell Fact 2022; 21:158. [PMID: 35953829 PMCID: PMC9367143 DOI: 10.1186/s12934-022-01881-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Itaconic acid (IA) is a versatile platform chemical widely used for the synthesis of various polymers and current methods for IA production based on Aspergillus terreus fermentation are limited in terms of process efficiency and productivity. To construct more efficient IA production strains, A. niger was used as a chassis for engineering IA production by assembling the key components of IA biosynthesis pathways from both A. terreus and Ustilago maydis. RESULTS Recombinant A. niger S1596 overexpressing the A. terreus IA biosynthesis genes cadA, mttA, mfsA produced IA of 4.32 g/L, while A. niger S2120 overexpressing the U. maydis IA gene cluster adi1, tad1, mtt1, itp1 achieved IA of 3.02 g/L. Integration of the two IA production pathways led to the construction of A. niger S2083 with IA titers of 5.58 g/L. Increasing cadA copy number in strain S2083 created strain S2209 with titers of 7.99 g/L and deleting ictA to block IA degradation in S2209 created strain S2288 with IA titers of 8.70 g/L. Overexpressing acoA to enhance the supply of IA precursor in strain S2288 generated strain S2444 with IA titers of 9.08 g/L in shake flask. CONCLUSION Recombinant A. niger overexpressing the U. maydis IA biosynthesis pathway was capable of IA accumulation. Combined expression of the two IA biosynthesis pathways from A. terreus and U. maydis in A. niger resulted in much higher IA titers. Furthermore, increasing cadA copy number, deleting ictA to block IA degradation and overexpressing acoA to enhance IA precursor supply all showed beneficial effects on IA accumulation.
Collapse
Affiliation(s)
- Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yufei Guo
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
25
|
Ma R, Lu X, Wu C, Zhang S, Zheng S, Ren K, Gu J, Wang H, Shen H. Performance design of a highly anti-fouling porous membrane with dual pH-responsiveness. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Rong L, Miao L, Wang S, Wang Y, Liu S, Lu Z, Zhao B, Zhang C, Xiao D, Pushpanathan K, Wong A, Yu A. Engineering Yarrowia lipolytica to Produce Itaconic Acid From Waste Cooking Oil. Front Bioeng Biotechnol 2022; 10:888869. [PMID: 35547171 PMCID: PMC9083544 DOI: 10.3389/fbioe.2022.888869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Itaconic acid (IA) is a high-value organic acid with a plethora of industrial applications. In this study, we seek to develop a microbial cell factory that could utilize waste cooking oil (WCO) as raw material for circular and cost-effective production of the abovementioned biochemical. Specifically, we expressed cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus in either the cytosol or peroxisome of Yarrowia lipolytica and assayed for production of IA on WCO. To further improve production yield, the 10 genes involved in the production pathway of acetyl-CoA, an intermediate metabolite necessary for the synthesis of cis-aconitic acid, were individually overexpressed and investigated for their impact on IA production. To minimize off-target flux channeling, we had also knocked out genes related to competing pathways in the peroxisome. Impressively, IA titer up to 54.55 g/L was achieved in our engineered Y. lipolytica in a 5 L bioreactor using WCO as the sole carbon source.
Collapse
Affiliation(s)
- Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Krithi Pushpanathan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Dover, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Dover, Singapore
- *Correspondence: Adison Wong, ; Aiqun Yu,
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Adison Wong, ; Aiqun Yu,
| |
Collapse
|
27
|
Ullmann L, Wibberg D, Busche T, Rückert C, Müsgens A, Kalinowski J, Blank LM. Seventeen Ustilaginaceae High-Quality Genome Sequences Allow Phylogenomic Analysis and Provide Insights into Secondary Metabolite Synthesis. J Fungi (Basel) 2022; 8:269. [PMID: 35330271 PMCID: PMC8951962 DOI: 10.3390/jof8030269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The family of Ustilaginaceae belongs to the order of Basidiomycetes. Despite their plant pathogenicity causing, e.g., corn smut disease, they are also known as natural producers of value-added chemicals such as extracellular glycolipids, organic acids, and polyols. Here, we present 17 high-quality draft genome sequences (N50 > 1 Mb) combining third-generation nanopore and second-generation Illumina sequencing. The data were analyzed with taxonomical genome-based bioinformatics methods such as Percentage of Conserved Proteins (POCP), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) analyses indicating that a reclassification of the Ustilaginaceae family might be required. Further, conserved core genes were determined to calculate a phylogenomic core genome tree of the Ustilaginaceae that also supported the results of the other phylogenomic analysis. In addition, to genomic comparisons, secondary metabolite clusters (e.g., itaconic acid, mannosylerythritol lipids, and ustilagic acid) of biotechnological interest were analyzed, whereas the sheer number of clusters did not differ much between species.
Collapse
Affiliation(s)
- Lena Ullmann
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (L.U.); (A.M.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (C.R.); (J.K.)
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (C.R.); (J.K.)
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (C.R.); (J.K.)
| | - Andreas Müsgens
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (L.U.); (A.M.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (C.R.); (J.K.)
| | - Lars M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (L.U.); (A.M.)
| |
Collapse
|
28
|
Nascimento MF, Marques N, Correia J, Faria NT, Mira NP, Ferreira FC. Integrated perspective on microbe-based production of itaconic acid: from metabolic and strain engineering to upstream and downstream strategies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production.
Collapse
|
30
|
Bruni GO, Klasson KT. Aconitic Acid Recovery from Renewable Feedstock and Review of Chemical and Biological Applications. Foods 2022; 11:foods11040573. [PMID: 35206048 PMCID: PMC8871043 DOI: 10.3390/foods11040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Aconitic acid (propene-1,2,3-tricarboxylic acid) is the most prevalent 6-carbon organic acid that accumulates in sugarcane and sweet sorghum. As a top value-added chemical, aconitic acid may function as a chemical precursor or intermediate for high-value downstream industrial and biological applications. These downstream applications include use as a bio-based plasticizer, cross-linker, and the formation of valuable and multi-functional polyesters that have also been used in tissue engineering. Aconitic acid also plays various biological roles within cells as an intermediate in the tricarboxylic acid cycle and in conferring unique survival advantages to some plants as an antifeedant, antifungal, and means of storing fixed pools of carbon. Aconitic acid has also been reported as a fermentation inhibitor, anti-inflammatory, and a potential nematicide. Since aconitic acid can be sustainably sourced from renewable, inexpensive sources such as sugarcane, molasses, and sweet sorghum syrup, there is enormous potential to provide multiple streams of additional income to the sugar industry through downstream industrial and biological applications that we discuss in this review.
Collapse
|
31
|
Solano-González S, Solano-Campos F. Production of mannosylerythritol lipids: biosynthesis, multi-omics approaches, and commercial exploitation. Mol Omics 2022; 18:699-715. [DOI: 10.1039/d2mo00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compilation of resources regarding MEL biosynthesis, key production parameters; available omics resources and current commercial applications, for smut fungi known to produce MELs.
Collapse
Affiliation(s)
- Stefany Solano-González
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Bioinformática Aplicada, Heredia, Costa Rica
| | - Frank Solano-Campos
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Biotecnología de Plantas, Heredia, Costa Rica
| |
Collapse
|
32
|
McNaughton AD, Bredeweg EL, Manzer J, Zucker J, Munoz Munoz N, Burnet MC, Nakayasu ES, Pomraning KR, Merkley ED, Dai Z, Chrisler WB, Baker SE, St. John PC, Kumar N. Bayesian Inference for Integrating Yarrowia lipolytica Multiomics Datasets with Metabolic Modeling. ACS Synth Biol 2021; 10:2968-2981. [PMID: 34636549 DOI: 10.1021/acssynbio.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Optimizing the metabolism of microbial cell factories for yields and titers is a critical step for economically viable production of bioproducts and biofuels. In this process, tuning the expression of individual enzymes to obtain the desired pathway flux is a challenging step, in which data from separate multiomics techniques must be integrated with existing biological knowledge to determine where changes should be made. Following a design-build-test-learn strategy, building on recent advances in Bayesian metabolic control analysis, we identify key enzymes in the oleaginous yeast Yarrowia lipolytica that correlate with the production of itaconate by integrating a metabolic model with multiomics measurements. To this extent, we quantify the uncertainty for a variety of key parameters, known as flux control coefficients (FCCs), needed to improve the bioproduction of target metabolites and statistically obtain key correlations between the measured enzymes and boundary flux. Based on the top five significant FCCs and five correlated enzymes, our results show phosphoglycerate mutase, acetyl-CoA synthetase (ACSm), carbonic anhydrase (HCO3E), pyrophosphatase (PPAm), and homoserine dehydrogenase (HSDxi) enzymes in rate-limiting reactions that can lead to increased itaconic acid production.
Collapse
Affiliation(s)
- Andrew D. McNaughton
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin L. Bredeweg
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James Manzer
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy Zucker
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nathalie Munoz Munoz
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Meagan C. Burnet
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ernesto S. Nakayasu
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D. Merkley
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ziyu Dai
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William B. Chrisler
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Scott E. Baker
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Peter C. St. John
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Neeraj Kumar
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
33
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
34
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
36
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
37
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
38
|
Elmore JR, Dexter GN, Salvachúa D, Martinez-Baird J, Hatmaker EA, Huenemann JD, Klingeman DM, Peabody GL, Peterson DJ, Singer C, Beckham GT, Guss AM. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat Commun 2021; 12:2261. [PMID: 33859194 PMCID: PMC8050072 DOI: 10.1038/s41467-021-22556-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.
Collapse
Affiliation(s)
- Joshua R. Elmore
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA ,grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Gara N. Dexter
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Davinia Salvachúa
- grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Jessica Martinez-Baird
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - E. Anne Hatmaker
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jay D. Huenemann
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA ,grid.411461.70000 0001 2315 1184Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN USA
| | - Dawn M. Klingeman
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - George L. Peabody
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Darren J. Peterson
- grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Christine Singer
- grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Gregg T. Beckham
- grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Adam M. Guss
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA ,grid.411461.70000 0001 2315 1184Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN USA
| |
Collapse
|
39
|
Huang X, Men P, Tang S, Lu X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 2021; 69:273-280. [PMID: 33713917 DOI: 10.1016/j.copbio.2021.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Aspergillus terreus is an important Aspergillus species, which has been applied in the industrial production of the bio-based chemical itaconic acid and the lipid-lowering drug lovastatin. The excellent fermentation capability has been demonstrated in these industrial applications. The genomic information revealed that the outstanding capacity of natural product synthesis by A. terreus remains to be further explored. With advances of the genome mining strategy, the products of several cryptic biosynthetic gene clusters have been discovered recently. In addition, a series of metabolic engineering studies have been performed in the industrial strains of lovastatin and itaconic acid to further improve the production processes. This review presents the current progress and the future outlook in the field of A. terreus biotechnology.
Collapse
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 1, Aoshanwei, Qingdao, China.
| |
Collapse
|
40
|
Li W, Shen X, Wang J, Sun X, Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol Adv 2021; 48:107710. [PMID: 33582180 DOI: 10.1016/j.biotechadv.2021.107710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
Dicarboxylic acids (DCAs) are important commodity chemicals which have been widely applied in polymer, food and pharmaceutical industries. Biosynthesis of DCAs from renewable carbon sources represents a promising alternative to chemical synthesis. Over the years, the recombinant strains have been constructed to produce an increasing number of DCAs. In this review, recent advances on the microbial synthesis of various DCAs have been summarized and categorized into three groups: the tricarboxylic acid cycle-derived, lysine metabolism-related, and aromatic compounds degradation-derived DCAs. We focused mainly on the metabolic engineering and synthetic biology strategies for improving the production efficiency, including metabolic flux analysis, fine-tuning of gene expression, cofactor balancing, metabolic compartmentalization, dynamic regulation and co-culture to regulate the production at multiple levels. The current challenges and perspectives have also been discussed.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
41
|
Becker F, Stehlik T, Linne U, Bölker M, Freitag J, Sandrock B. Engineering Ustilago maydis for production of tailor-made mannosylerythritol lipids. Metab Eng Commun 2021; 12:e00165. [PMID: 33659181 PMCID: PMC7896148 DOI: 10.1016/j.mec.2021.e00165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Mannosylerythritol lipids (MELs) are surface active glycolipids secreted by various fungi. MELs can be used as biosurfactants and are a biodegradable resource for the production of detergents or pharmaceuticals. Different fungal species synthesize a unique mixture of MELs differing in acetyl- and acyl-groups attached to the sugar moiety. Here, we report the construction of a toolbox for production of glycolipids with predictable fatty acid side chains in the basidiomycete Ustilago maydis. Genes coding for acyl-transferases involved in MEL production (Mac1 and Mac2) from different fungal species were combined to obtain altered MEL variants with distinct physical properties and altered antimicrobial activity. We also demonstrate that a U. maydis paralog of the acyltransferase Mac2 with a different substrate specificity can be employed for the biosynthesis of modified MEL variants. In summary, our data showcase how the fungal repertoire of Mac enzymes can be used to engineer tailor-made MELs according to specific biotechnological or pharmaceutical requirements. Biosynthetic enzymes for MELs from distinct fungal species retain their substrate specificity if expressed in U. maydis. The combination of acyltransferases from different fungi leads to the production of unique MEL variants. Novel MELs show altered physical properties and antimicrobial activity.
Collapse
Affiliation(s)
- Fabienne Becker
- Department of Biology, Philipps-University, Marburg, Germany
| | | | - Uwe Linne
- Department of Chemistry, Philipps-University, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Björn Sandrock
- Department of Biology, Philipps-University, Marburg, Germany
| |
Collapse
|
42
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Ullmann L, Phan ANT, Kaplan DKP, Blank LM. Ustilaginaceae Biocatalyst for Co-Metabolism of CO 2-Derived Substrates toward Carbon-Neutral Itaconate Production. J Fungi (Basel) 2021; 7:jof7020098. [PMID: 33573033 PMCID: PMC7911105 DOI: 10.3390/jof7020098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
The family Ustilaginaceae (belonging to the smut fungi) are known for their plant pathogenicity. Despite the fact that these plant diseases cause agricultural yield reduction, smut fungi attracted special attention in the field of industrial biotechnology. Ustilaginaceae show a versatile product spectrum such as organic acids (e.g., itaconate, malate, succinate), polyols (e.g., erythritol, mannitol), and extracellular glycolipids, which are considered value-added chemicals with potential applications in the pharmaceutical, food, and chemical industries. This study focused on itaconate as a platform chemical for the production of resins, plastics, adhesives, and biofuels. During this work, 72 different Ustilaginaceae strains from 36 species were investigated for their ability to (co-) consume the CO2-derived substrates acetate and formate, potentially contributing toward a carbon-neutral itaconate production. The fungal growth and product spectrum with special interest in itaconate was characterized. Ustilago maydis MB215 and Ustilago rabenhorstiana NBRC 8995 were identified as promising candidates for acetate metabolization whereas Ustilago cynodontis NBRC 7530 was identified as a potential production host using formate as a co-substrate enhancing the itaconate production. Selected strains with the best itaconate production were characterized in more detail in controlled-batch bioreactor experiments confirming the co-substrate utilization. Thus, a proof-of-principle study was performed resulting in the identification and characterization of three promising Ustilaginaceae biocatalyst candidates for carbon-neutral itaconate production contributing to the biotechnological relevance of Ustilaginaceae.
Collapse
|
44
|
Agrimi G, Steiger MG. Metabolite transport and its impact on metabolic engineering approaches. FEMS Microbiol Lett 2021; 368:6120592. [PMID: 33501487 DOI: 10.1093/femsle/fnaa211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Matthias G Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
45
|
An Unconventional Melanin Biosynthesis Pathway in Ustilago maydis. Appl Environ Microbiol 2021; 87:AEM.01510-20. [PMID: 33218994 DOI: 10.1128/aem.01510-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus responsible for corn smut disease. Although it is a very well-established model organism for the study of plant-microbe interactions, its potential to produce specialized metabolites, which might contribute to this interaction, has not been studied in detail. By analyzing the U. maydis genome, we identified a biosynthetic gene cluster whose activation led to the production of a black melanin pigment. Single deletion mutants of the cluster genes revealed that five encoded enzymes are required for the accumulation of the black pigment, including three polyketide synthases (pks3, pks4, and pks5), a cytochrome P450 monooxygenase (cyp4), and a protein with similarity to versicolorin B synthase (vbs1). Metabolic profiles of deletion mutants in this gene cluster suggested that Pks3 and Pks4 act in concert as heterodimers to generate orsellinic acid (OA), which is reduced to the corresponding aldehyde by Pks5. The OA-aldehyde can then react with triacetic acid lactone (TAL), also derived from Pks3/Pks4 heterodimers to form larger molecules, including novel coumarin derivatives. Our findings suggest that U. maydis synthesizes a novel type of melanin based on coumarin and pyran-2-one intermediates, while most fungal melanins are derived from 1,8-dihydroxynaphthalene (DHN) or l-3,4-dihydroxyphenylalanine (l-DOPA). Along with these observations, this work also provides insight into the mechanisms of polyketide synthases in this filamentous fungus.IMPORTANCE The fungus Ustilago maydis represents one of the major threats to maize plants since it is responsible for corn smut disease, which generates considerable economical losses around the world. Therefore, contributing to a better understanding of the biochemistry of defense mechanisms used by U. maydis to protect itself against harsh environments, such as the synthesis of melanin, could provide improved biological tools for tackling the problem and protect the crops. In addition, the fact that this fungus synthesizes melanin in an unconventional way, requiring more than one polyketide synthase for producing melanin precursors, gives a different perspective on the complexity of these multidomain enzymes and their evolution in the fungal kingdom.
Collapse
|
46
|
High level production of itaconic acid at low pH by Ustilago maydis with fed-batch fermentation. Bioprocess Biosyst Eng 2021; 44:749-758. [PMID: 33392747 DOI: 10.1007/s00449-020-02483-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The metabolically engineered plant pathogen Ustilago maydis MB215 Δcyp3 Petefria1 has been cultivated to produce more than 80 g/L itaconate in 16 L scale pH and temperature controlled fermentation, in fed-batch mode with two successive feedings. The effect of pH as well as successive rounds of feeding has been quantified via elemental balances. Volumetric itaconic acid productivity gradually decreased with successive glucose feedings with increasing itaconic titers, with nearly constant product yield. Extracellular pH was decreased from 6 down to 3.5 and the fermentation was characterized in specific uptake, production, and growth rates. Notable is that the biomass composition changes significantly from growth phase to itaconic acid production phase, carbon content increases from 42% to around 62%. Despite the gradual decrease in itaconic acid levels with decreasing pH (nearly 50% decrease in itaconic acid at pH 3.5, compared to pH 6), significant itaconate production is still observed at pH 4 (around 63 g/L). Biomass yield remained nearly constant until pH 4. Taken together, these results strongly illustrate the potential of engineered Ustilago maydis in itaconate production at commercial levels.
Collapse
|
47
|
Becker J, Hosseinpour Tehrani H, Ernst P, Blank LM, Wierckx N. An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield. J Fungi (Basel) 2020; 7:20. [PMID: 33396473 PMCID: PMC7824378 DOI: 10.3390/jof7010020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Ustilago maydis, a member of the Ustilaginaceae family, is a promising host for the production of several metabolites including itaconic acid. This dicarboxylate has great potential as a bio-based building block in the polymer industry, and is of special interest for pharmaceutical applications. Several itaconate overproducing Ustilago strains have been generated by metabolic and morphology engineering. This yielded stabilized unicellular morphology through fuz7 deletion, reduction of by-product formation through deletion of genes responsible for itaconate oxidation and (glyco)lipid production, and the overexpression of the regulator of the itaconate cluster ria1 and the mitochondrial tricarboxylate transporter encoded by mttA from Aspergillus terreus. In this study, itaconate production was further optimized by consolidating these different optimizations into one strain. The combined modifications resulted in itaconic acid production at theoretical maximal yield, which was achieved under biotechnologically relevant fed-batch fermentations with continuous feed.
Collapse
Affiliation(s)
- Johanna Becker
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.B.); (H.H.T.); (L.M.B.)
| | - Hamed Hosseinpour Tehrani
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.B.); (H.H.T.); (L.M.B.)
| | - Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Lars Mathias Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.B.); (H.H.T.); (L.M.B.)
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany;
| |
Collapse
|
48
|
Schlembach I, Hosseinpour Tehrani H, Blank LM, Büchs J, Wierckx N, Regestein L, Rosenbaum MA. Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:207. [PMID: 33317635 PMCID: PMC7737373 DOI: 10.1186/s13068-020-01835-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Itaconic acid is a bio-derived platform chemical with uses ranging from polymer synthesis to biofuel production. The efficient conversion of cellulosic waste streams into itaconic acid could thus enable the sustainable production of a variety of substitutes for fossil oil based products. However, the realization of such a process is currently hindered by an expensive conversion of cellulose into fermentable sugars. Here, we present the stepwise development of a fully consolidated bioprocess (CBP), which is capable of directly converting recalcitrant cellulose into itaconic acid without the need for separate cellulose hydrolysis including the application of commercial cellulases. The process is based on a synthetic microbial consortium of the cellulase producer Trichoderma reesei and the itaconic acid producing yeast Ustilago maydis. A method for process monitoring was developed to estimate cellulose consumption, itaconic acid formation as well as the actual itaconic acid production yield online during co-cultivation. RESULTS The efficiency of the process was compared to a simultaneous saccharification and fermentation setup (SSF). Because of the additional substrate consumption of T. reesei in the CBP, the itaconic acid yield was significantly lower in the CBP than in the SSF. In order to increase yield and productivity of itaconic acid in the CBP, the population dynamics was manipulated by varying the inoculation delay between T. reesei and U. maydis. Surprisingly, neither inoculation delay nor inoculation density significantly affected the population development or the CBP performance. Instead, the substrate availability was the most important parameter. U. maydis was only able to grow and to produce itaconic acid when the cellulose concentration and thus, the sugar supply rate, was high. Finally, the metabolic processes during fed-batch CBP were analyzed in depth by online respiration measurements. Thereby, substrate availability was again identified as key factor also controlling itaconic acid yield. In summary, an itaconic acid titer of 34 g/L with a total productivity of up to 0.07 g/L/h and a yield of 0.16 g/g could be reached during fed-batch cultivation. CONCLUSION This study demonstrates the feasibility of consortium-based CBP for itaconic acid production and also lays the fundamentals for the development and improvement of similar microbial consortia for cellulose-based organic acid production.
Collapse
Affiliation(s)
- Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Hamed Hosseinpour Tehrani
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT‑Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
| | - Miriam A. Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
49
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
50
|
van der Hoek SA, Borodina I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr Opin Biotechnol 2020; 66:186-194. [PMID: 32927362 PMCID: PMC7758712 DOI: 10.1016/j.copbio.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Engineering the transport of small molecules is an effective approach to improve the performance of microbial cell factories. Transporter engineering can improve the utilization of low-cost alternative substrates, reduce the loss of pathway intermediates, and increase the titer and production rate of the target product. However, transporters are not commonly engineered in strain development programs because the functions of most of the transport proteins are not known. In the recent years, a variety of methods have been developed for identification of transporters for specific substrates and for characterizing transport mechanisms. This review presents recent examples of successful transport engineering for cell factories and discusses the methods for transporter identification and characterization.
Collapse
Affiliation(s)
- Steven A van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|