1
|
Sutherland BJG, Thompson NF, Surry LB, Gujjula KR, Carrasco CD, Chadaram S, Lunda SL, Langdon CJ, Chan AM, Suttle CA, Green TJ. An amplicon panel for high-throughput and low-cost genotyping of Pacific oyster. G3 (BETHESDA, MD.) 2024; 14:jkae125. [PMID: 38869232 PMCID: PMC11373646 DOI: 10.1093/g3journal/jkae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 189). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0 and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Sutherland Bioinformatics, Lantzville, BC V0R 2H0, Canada
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Neil F Thompson
- United States Department of Agriculture, Hatfield Marine Science Center, Pacific Shellfish Research Unit, Agricultural Research Service, Newport, OR 97365, USA
| | - Liam B Surry
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | | | | | - Srinivas Chadaram
- ThermoFisher Scientific, 2130 Woodward Street, Austin, TX 78744, USA
| | - Spencer L Lunda
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| | - Christopher J Langdon
- Hatfield Marine Science Center, 2030 SE Marine Science Dr., Oregon State University, Coastal Oregon Marine Experiment Station, Newport, OR 97365, USA
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Botany, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J Green
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
2
|
Zhao H, Guo X, Wang W, Wang Z, Rawson P, Wilbur A, Hare M. Consequences of domestication in eastern oyster: Insights from whole genomic analyses. Evol Appl 2024; 17:e13710. [PMID: 38817396 PMCID: PMC11134191 DOI: 10.1111/eva.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
- Present address:
Center for Aquaculture TechnologySan DiegoCaliforniaUSA
| | - Ximing Guo
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Wenlu Wang
- Department of Computer SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTexasUSA
| | - Zhenwei Wang
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Paul Rawson
- School of Marine SciencesUniversity of MaineOronoMaineUSA
| | - Ami Wilbur
- Shellfish Research Hatchery, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Matthew Hare
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
3
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
4
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
5
|
Peñaloza C, Barria A, Papadopoulou A, Hooper C, Preston J, Green M, Helmer L, Kean-Hammerson J, Nascimento-Schulze JC, Minardi D, Gundappa MK, Macqueen DJ, Hamilton J, Houston RD, Bean TP. Genome-Wide Association and Genomic Prediction of Growth Traits in the European Flat Oyster ( Ostrea edulis). Front Genet 2022; 13:926638. [PMID: 35983410 PMCID: PMC9380691 DOI: 10.3389/fgene.2022.926638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed across Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to overexploitation and disease outbreaks. To restore the economic and ecological benefits of European flat oyster populations, extensive protection and restoration efforts are in place within Europe. In line with the increasing interest in supporting restoration and oyster farming through the breeding of stocks with enhanced performance, the present study aimed to evaluate the potential of genomic selection for improving growth traits in a European flat oyster population obtained from successive mass-spawning events. Four growth-related traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length (SL). The heritability of the growth traits was in the low-moderate range, with estimates of 0.45, 0.37, 0.22, and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a largely polygenic architecture for the four growth traits, with two distinct QTLs detected on chromosome 4. To investigate whether genomic selection can be implemented in flat oyster breeding at a reduced cost, the utility of low-density SNP panels was assessed. Genomic prediction accuracies using the full density panel were high (> 0.83 for all traits). The evaluation of the effect of reducing the number of markers used to predict genomic breeding values revealed that similar selection accuracies could be achieved for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in accuracies were observed at the lowest SNP density tested (i.e., 100 SNPs), likely due to a high relatedness between individuals being included in the training and validation sets during cross-validation. Overall, our results suggest that the genetic improvement of growth traits in oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising strategy for applying GS at a reduced cost, additional populations with different degrees of genetic relatedness should be assessed to derive estimates of prediction accuracies to be expected in practical breeding programmes.
Collapse
Affiliation(s)
- Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Agustin Barria
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Athina Papadopoulou
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Joanne Preston
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Matthew Green
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Luke Helmer
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Blue Marine Foundation, London, United Kingdom
- Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | | | - Jennifer C. Nascimento-Schulze
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Qi H, Li L, Zhang G. Construction of a chromosome-level genome and variation map for the Pacific oyster Crassostrea gigas. Mol Ecol Resour 2021; 21:1670-1685. [PMID: 33655634 DOI: 10.1111/1755-0998.13368] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The Pacific oyster (Crassostrea gigas) is a widely distributed marine bivalve of great ecological and economic importance. In this study, we provide a high-quality chromosome-level genome assembled using Pacific Bioscience long reads and Hi-C-based and linkage-map-based scaffolding technologies and a high-resolution variation map constructed using large-scale resequencing analysis. The 586.8 Mb genome consists of 10 pseudochromosome sequences ranging from 38.6 to 78.9 Mb, containing 301 contigs with an N50 size of 3.1 Mb. A total of 30,078 protein-coding genes were predicted, of which 22,757 (75.7%) were high-reliability annotations supported by a homologous match to a curated protein in the SWISS-PROT database or transcript expression. Although a medium level of repeat components (57.2%) was detected, the genomic content of the segmental duplications reached 26.2%, which is the highest among the reported genomes. By whole genome resequencing analysis of 495 Pacific oysters, a comprehensive variation map was built, comprised of 4.78 million single nucleotide polymorphisms, 0.60 million short insertions and deletions, and 49,333 copy number variation regions. The structural variations can lead to an average interindividual genomic divergence of 0.21, indicating their crucial role in shaping the Pacific oyster genome diversity. The large amount of mosaic distributed repeat elements, small variations, and copy number variations indicate that the Pacific oyster is a diploid organism with an extremely high genomic complexity at the intra- and interindividual level. The genome and variation maps can improve our understanding of oyster genome diversity and enrich the resources for oyster molecular evolution, comparative genomics, and genetic research.
Collapse
Affiliation(s)
- Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| |
Collapse
|
7
|
Smits M, Enez F, Ferraresso S, Dalla Rovere G, Vetois E, Auvray JF, Genestout L, Mahla R, Arcangeli G, Paillard C, Haffray P, Bargelloni L. Potential for Genetic Improvement of Resistance to Perkinsus olseni in the Manila Clam, Ruditapes philippinarum, Using DNA Parentage Assignment and Mass Spawning. Front Vet Sci 2020; 7:579840. [PMID: 33195590 PMCID: PMC7649815 DOI: 10.3389/fvets.2020.579840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
The Manila clam Ruditapes philippinarum, a major cultured shellfish species, is threatened by infection with the microparasite Perkinsus olseni, whose prevalence increases with high water temperatures. Under the current trend of climate change, the already severe effects of this parasitic infection might rapidly increase the frequency of mass mortality events. Treating infectious diseases in bivalves is notoriously problematic, therefore selective breeding for resistance represents a key strategy for mitigating the negative impact of pathogens. A crucial step in initiating selective breeding is the estimation of genetic parameters for traits of interest, which relies on the ability to record parentage and accurate phenotypes in a large number of individuals. Here, to estimate the heritability of resistance against P. olseni, a field experiment mirroring conditions in industrial clam production was set up, a genomic tool was developed for parentage assignment, and parasite load was determined through quantitative PCR. A mixed-family cohort of potentially 1,479 clam families was produced in a hatchery by mass spawning of 53 dams and 57 sires. The progenies were seeded in a commercial clam production area in the Venice lagoon, Italy, where high prevalence of P. olseni had previously been reported. Growth and parasite load were monitored every month and, after 1 year, more than 1,000 individuals were collected for DNA samples and phenotype recording. A pooled sequencing approach was carried out using DNA samples from the hatchery broodstock and from a Venice lagoon clam population, providing candidate markers used to develop a 245-SNP panel. Parentage assignment for 246 F1 individuals showed sire and dam representation were high (75 and 85%, respectively), indicating a very limited risk of inbreeding. Moderate heritability (0.23 ± 0.11-0.35 ± 0.13) was estimated for growth traits (shell length, shell weight, total weight), while parasite load showed high heritability, estimated at 0.51 ± 0.20. No significant genetic correlations were found between growth-associated traits and parasite load. Overall, the preliminary results provided by this study show high potential for selecting clams resistant to parasite load. Breeding for resistance may help limit the negative effects of climate change on clam production, as the prevalence of the parasite is predicted to increase under a future scenario of higher temperatures. Finally, the limited genetic correlation between resistance and growth suggests that breeding programs could incorporate dual selection without negative interactions.
Collapse
Affiliation(s)
- Morgan Smits
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Florian Enez
- Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Emilie Vetois
- Société Atlantique de Mariculture (SATMAR), Gatteville-Phare, France
| | | | | | - Rachid Mahla
- Labogena, Domaine de Vilvert, Jouy en Josas, France
| | - Giuseppe Arcangeli
- National Reference Centre for Fish, Crustacean and Mollusc Pathology, Italian Health Authority and Research Organization for Animal Health and Food Safety (IZSVe), Legnaro, Italy
| | - Christine Paillard
- Laboratory of Marine Environmental Sciences (LEMAR), Institut Universitaire Européen de la Mer, Plouzané, France
| | - Pierrick Haffray
- Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| |
Collapse
|
8
|
Development and Validation of an Open Access SNP Array for Nile Tilapia ( Oreochromis niloticus). G3-GENES GENOMES GENETICS 2020; 10:2777-2785. [PMID: 32532799 PMCID: PMC7407453 DOI: 10.1534/g3.120.401343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
Collapse
|
9
|
Perry A, Wachowiak W, Downing A, Talbot R, Cavers S. Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Mol Ecol Resour 2020; 20:1697-1705. [PMID: 32633888 DOI: 10.1111/1755-0998.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Pines are some of the most ecologically and economically important tree species in the world, and many have enormous natural distributions or have been extensively planted. However, a lack of rapid genotyping capability is hampering progress in understanding the molecular basis of genetic variation in these species. Here, we deliver an efficient tool for genotyping thousands of single nucleotide polymorphism (SNP) markers across the genome that can be applied to genetic studies in pines. Polymorphisms from resequenced candidate genes and transcriptome sequences of P. sylvestris, P. mugo, P. uncinata, P. uliginosa and P. radiata were used to design a 49,829 SNP array (Axiom_PineGAP, Thermo Fisher). Over a third (34.68%) of the unigenes identified from the P. sylvestris transcriptome were represented on the array, which was used to screen samples of four pine species. The conversion rate for the array on all samples was 42% (N = 20,795 SNPs) and was similar for SNPs sourced from resequenced candidate gene and transcriptome sequences. The broad representation of gene ontology terms by unigenes containing converted SNPs reflected their coverage across the full transcriptome. Over a quarter of successfully converted SNPs were polymorphic among all species, and the data were successful in discriminating among the species and some individual populations. The SNP array provides a valuable new tool to advance genetic studies in these species and demonstrates the effectiveness of the technology for rapid genotyping in species with large and complex genomes.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| | - Witold Wachowiak
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alison Downing
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| |
Collapse
|
10
|
Lapègue S, Heurtebise S, Cornette F, Guichoux E, Gagnaire PA. Genetic Characterization of Cupped Oyster Resources in Europe Using Informative Single Nucleotide Polymorphism (SNP) Panels. Genes (Basel) 2020; 11:E451. [PMID: 32326303 PMCID: PMC7230726 DOI: 10.3390/genes11040451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, was voluntarily introduced from Japan and British Columbia into Europe in the early 1970s, mainly to replace the Portuguese oyster, Crassostrea angulata, in the French shellfish industry, following a severe disease outbreak. Since then, the two species have been in contact in southern Europe and, therefore, have the potential to exchange genes. Recent evolutionary genomic works have provided empirical evidence that C. gigas and C. angulata exhibit partial reproductive isolation. Although hybridization occurs in nature, the rate of interspecific gene flow varies across the genome, resulting in highly heterogeneous genome divergence. Taking this biological property into account is important to characterize genetic ancestry and population structure in oysters. Here, we identified a subset of ancestry-informative makers from the most differentiated regions of the genome using existing genomic resources. We developed two different panels in order to (i) easily differentiate C. gigas and C. angulata, and (ii) describe the genetic diversity and structure of the cupped oyster with a particular focus on French Atlantic populations. Our results confirm high genetic homogeneity among Pacific cupped oyster populations in France and reveal several cases of introgressions between Portuguese and Japanese oysters in France and Portugal.
Collapse
Affiliation(s)
- Sylvie Lapègue
- Ifremer, SG2M-LGPMM, 17390 La Tremblade, France; (S.H.); (F.C.)
| | | | | | - Erwan Guichoux
- BIOGECO, INRAE, University Bordeaux, F-33610 Cestas, France;
| | | |
Collapse
|
11
|
Vendrami DLJ, Houston RD, Gharbi K, Telesca L, Gutierrez AP, Gurney‐Smith H, Hasegawa N, Boudry P, Hoffman JI. Detailed insights into pan-European population structure and inbreeding in wild and hatchery Pacific oysters ( Crassostrea gigas) revealed by genome-wide SNP data. Evol Appl 2019; 12:519-534. [PMID: 30847007 PMCID: PMC6383735 DOI: 10.1111/eva.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Cultivated bivalves are important not only because of their economic value, but also due to their impacts on natural ecosystems. The Pacific oyster (Crassostrea gigas) is the world's most heavily cultivated shellfish species and has been introduced to all continents except Antarctica for aquaculture. We therefore used a medium-density single nucleotide polymorphism (SNP) array to investigate the genetic structure of this species in Europe, where it was introduced during the 1960s and has since become a prolific invader of coastal ecosystems across the continent. We analyzed 21,499 polymorphic SNPs in 232 individuals from 23 localities spanning a latitudinal cline from Portugal to Norway and including the source populations of Japan and Canada. We confirmed the results of previous studies by finding clear support for a southern and a northern group, with the former being indistinguishable from the source populations indicating the absence of a pronounced founder effect. We furthermore conducted a large-scale comparison of oysters sampled from the wild and from hatcheries to reveal substantial genetic differences including significantly higher levels of inbreeding in some but not all of the sampled hatchery cohorts. These findings were confirmed by a smaller but representative SNP dataset generated using restriction site-associated DNA sequencing. We therefore conclude that genomic approaches can generate increasingly detailed insights into the genetics of wild and hatchery produced Pacific oysters.
Collapse
Affiliation(s)
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth LaboratoriesUniversity of EdinburghEdinburghUK
| | - Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic Survey, High CrossCambridgeUK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Helen Gurney‐Smith
- Department of Fisheries and AquacultureVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Natsuki Hasegawa
- National Research Institute of AquacultureJapan Fisheries Research AgencyMinami‐IseJapan
| | - Pierre Boudry
- IfremerLaboratoire des Sciences de l’Environnement Marin (UBO/CNRS/IRD/Ifremer)PlouzanéFrance
| | - Joseph I. Hoffman
- Department of Animal BehaviorBielefeld UniversityBielefeldGermany
- British Antarctic Survey, High CrossCambridgeUK
| |
Collapse
|
12
|
Perez-Enriquez R, Robledo D, Houston RD, Llera-Herrera R. SNP markers for the genetic characterization of Mexican shrimp broodstocks. Genomics 2018; 110:423-429. [PMID: 30308223 DOI: 10.1016/j.ygeno.2018.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
Selective breeding of shrimp has major potential to enhance production traits, including growth and disease resistance. Genetic characterization of broodstock populations is a key element of breeding programs, as it enables decisions on inbreeding restrictions, family structure, and the potential use of genomic selection. Single Nucleotide Polymorphisms (SNPs) are suitable genetic markers for this purpose. A set of SNPs was developed to characterize commercial breeding stocks in Mexico. Individuals from local and imported lines were selected for sequencing using the nextRAD technique, resulting in the identification of 2619 SNPs. Genetic structure analysis showed three to five genetic groups of Ecuadorian and Mexican origins. A subset of 1231 SNPs has potential for stock identification and management. Further, three SNPs were identified as candidate sex-linked markers. The role of SNPs possibly associated with genes related to traits of importance to shrimp farming, such as growth and immune response, should be further investigated.
Collapse
Affiliation(s)
- Ricardo Perez-Enriquez
- Aquaculture Genetics & Breeding Lab, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur 23096, Mexico.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Raúl Llera-Herrera
- CONACyT - Centro de Investigaciones en Alimentación y Desarrollo A.C. Sábalo-Cerritos s.n. Mazatlán, Sinaloa 82112, Mexico; Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, PO Box 811, CP 82040 Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
13
|
Gagnaire PA, Lamy JB, Cornette F, Heurtebise S, Dégremont L, Flahauw E, Boudry P, Bierne N, Lapègue S. Analysis of Genome-Wide Differentiation between Native and Introduced Populations of the Cupped Oysters Crassostrea gigas and Crassostrea angulata. Genome Biol Evol 2018; 10:2518-2534. [PMID: 30184067 PMCID: PMC6161763 DOI: 10.1093/gbe/evy194] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The Pacific cupped oyster is genetically subdivided into two sister taxa, Crassostrea gigas and Crassostrea angulata, which are in contact in the north-western Pacific. The nature and origin of their genetic and taxonomic differentiation remains controversial due the lack of known reproductive barriers and the high degree of morphologic similarity. In particular, whether the presence of ecological and/or intrinsic isolating mechanisms contributes to species divergence is unknown. The recent co-introduction of both taxa into Europe offers a unique opportunity to test how genetic differentiation is maintained under new environmental and demographic conditions. We generated a pseudochromosome assembly of the Pacific oyster genome using a combination of BAC-end sequencing and scaffold anchoring to a new high-density linkage map. We characterized genome-wide differentiation between C. angulata and C. gigas in both their native and introduced ranges, and showed that gene flow between species has been facilitated by their recent co-introductions in Europe. Nevertheless, patterns of genomic divergence between species remain highly similar in Asia and Europe, suggesting that the environmental transition caused by the co-introduction of the two species did not affect the genomic architecture of their partial reproductive isolation. Increased genetic differentiation was preferentially found in regions of low recombination. Using historical demographic inference, we show that the heterogeneity of differentiation across the genome is well explained by a scenario whereby recent gene flow has eroded past differentiation at different rates across the genome after a period of geographical isolation. Our results thus support the view that low-recombining regions help in maintaining intrinsic genetic differences between the two species.
Collapse
Affiliation(s)
| | - Jean-Baptiste Lamy
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Florence Cornette
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Serge Heurtebise
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Emilie Flahauw
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Pierre Boudry
- Ifremer, UMR LEMAR, Laboratoire des Sciences de l’Environnement Marin (UBO, CNRS, IRD, Ifremer), Plouzané, France
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution, ISEM-CNRS, UMR5554, Montpellier, France
| | - Sylvie Lapègue
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| |
Collapse
|
14
|
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. REVIEWS IN AQUACULTURE 2018; 10:670-682. [PMID: 30220910 PMCID: PMC6128402 DOI: 10.1111/raq.12193] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 05/18/2023]
Abstract
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Christos Palaiokostas
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPadovaItaly
| | - Paulino Martínez
- Department of ZoologyGenetics and Physical AnthropologyFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ross Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
15
|
Hollenbeck CM, Johnston IA. Genomic Tools and Selective Breeding in Molluscs. Front Genet 2018; 9:253. [PMID: 30073016 PMCID: PMC6058216 DOI: 10.3389/fgene.2018.00253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
The production of most farmed molluscs, including mussels, oysters, scallops, abalone, and clams, is heavily dependent on natural seed from the plankton. Closing the lifecycle of species in hatcheries can secure independence from wild stocks and enables long-term genetic improvement of broodstock through selective breeding. Genomic techniques have the potential to revolutionize hatchery-based selective breeding by improving our understanding of the characteristics of mollusc genetics that can pose a challenge for intensive aquaculture and by providing a new suite of tools for genetic improvement. Here we review characteristics of the life history and genetics of molluscs including high fecundity, self-fertilization, high genetic diversity, genetic load, high incidence of deleterious mutations and segregation distortion, and critically assess their impact on the design and effectiveness of selective breeding strategies. A survey of the results of current breeding programs in the literature show that selective breeding with inbreeding control is likely the best strategy for genetic improvement of most molluscs, and on average growth rate can be improved by 10% per generation and disease resistance by 15% per generation across the major farmed species by implementing individual or family-based selection. Rapid advances in sequencing technology have resulted in a wealth of genomic resources for key species with the potential to greatly improve hatchery-based selective breeding of molluscs. In this review, we catalog the range of genomic resources currently available for molluscs of aquaculture interest and discuss the bottlenecks, including lack of high-quality reference genomes and the relatively high cost of genotyping, as well as opportunities for applying genomics-based selection.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom.,Xelect Ltd, St Andrews, United Kingdom
| |
Collapse
|
16
|
A comparative integrated gene-based linkage and locus ordering by linkage disequilibrium map for the Pacific white shrimp, Litopenaeus vannamei. Sci Rep 2017; 7:10360. [PMID: 28871114 PMCID: PMC5583237 DOI: 10.1038/s41598-017-10515-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/09/2017] [Indexed: 11/23/2022] Open
Abstract
The Pacific whiteleg shrimp, Litopenaeus vannamei, is the most farmed aquaculture species worldwide with global production exceeding 3 million tonnes annually. Litopenaeus vannamei has been the focus of many selective breeding programs aiming to improve growth and disease resistance. However, these have been based primarily on phenotypic measurements and omit potential gains by integrating genetic selection into existing breeding programs. Such integration of genetic information has been hindered by the limited available genomic resources, background genetic parameters and knowledge on the genetic architecture of commercial traits for L. vannamei. This study describes the development of a comprehensive set of genomic gene-based resources including the identification and validation of 234,452 putative single nucleotide polymorphisms in-silico, of which 8,967 high value SNPs were incorporated into a commercially available Illumina Infinium ShrimpLD-24 v1.0 genotyping array. A framework genetic linkage map was constructed and combined with locus ordering by disequilibrium methodology to generate an integrated genetic map containing 4,817 SNPs, which spanned a total of 4552.5 cM and covered an estimated 98.12% of the genome. These gene-based genomic resources will not only be valuable for identifying regions underlying important L. vannamei traits, but also as a foundational resource in comparative and genome assembly activities.
Collapse
|
17
|
Gutierrez AP, Turner F, Gharbi K, Talbot R, Lowe NR, Peñaloza C, McCullough M, Prodöhl PA, Bean TP, Houston RD. Development of a Medium Density Combined-Species SNP Array for Pacific and European Oysters ( Crassostrea gigas and Ostrea edulis). G3 (BETHESDA, MD.) 2017; 7:2209-2218. [PMID: 28533337 PMCID: PMC5499128 DOI: 10.1534/g3.117.041780] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/06/2017] [Indexed: 01/01/2023]
Abstract
SNP arrays are enabling tools for high-resolution studies of the genetic basis of complex traits in farmed and wild animals. Oysters are of critical importance in many regions from both an ecological and economic perspective, and oyster aquaculture forms a key component of global food security. The aim of our study was to design a combined-species, medium density SNP array for Pacific oyster (Crassostrea gigas) and European flat oyster (Ostrea edulis), and to test the performance of this array on farmed and wild populations from multiple locations, with a focus on European populations. SNP discovery was carried out by whole-genome sequencing (WGS) of pooled genomic DNA samples from eight C. gigas populations, and restriction site-associated DNA sequencing (RAD-Seq) of 11 geographically diverse O. edulis populations. Nearly 12 million candidate SNPs were discovered and filtered based on several criteria, including preference for SNPs segregating in multiple populations and SNPs with monomorphic flanking regions. An Affymetrix Axiom Custom Array was created and tested on a diverse set of samples (n = 219) showing ∼27 K high quality SNPs for C. gigas and ∼11 K high quality SNPs for O. edulis segregating in these populations. A high proportion of SNPs were segregating in each of the populations, and the array was used to detect population structure and levels of linkage disequilibrium (LD). Further testing of the array on three C. gigas nuclear families (n = 165) revealed that the array can be used to clearly distinguish between both families based on identity-by-state (IBS) clustering parental assignment software. This medium density, combined-species array will be publicly available through Affymetrix, and will be applied for genome-wide association and evolutionary genetic studies, and for genomic selection in oyster breeding programs.
Collapse
Affiliation(s)
- Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Frances Turner
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Natalie R Lowe
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Mark McCullough
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT7 1NN, United Kingdom
| | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT7 1NN, United Kingdom
| | - Tim P Bean
- Centre for Environment Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Dorset DT4 8UB, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
18
|
Qi H, Song K, Li C, Wang W, Li B, Li L, Zhang G. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas). PLoS One 2017; 12:e0174007. [PMID: 28328985 PMCID: PMC5362100 DOI: 10.1371/journal.pone.0174007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics.
Collapse
Affiliation(s)
- Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Chunyan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- * E-mail: (LL); (GZ)
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| |
Collapse
|
19
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
20
|
Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW, Hoffman JI. A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol Ecol Resour 2016; 16:909-21. [DOI: 10.1111/1755-0998.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
Affiliation(s)
- E. Humble
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - A. Martinez-Barrio
- Science of Life Laboratories and Department of Cell and Molecular Biology; Uppsala University; Husargatan 3 75124 Uppsala Sweden
| | - J. Forcada
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - P. N. Trathan
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. A. S. Thorne
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. Hoffmann
- Max Planck Institute for Developmental Biology; Spemannstrasse 35 72076 Tübingen Germany
| | - J. B. W. Wolf
- Science of Life Laboratories and Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - J. I. Hoffman
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
21
|
Vandeputte M, Haffray P. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front Genet 2014; 5:432. [PMID: 25566319 PMCID: PMC4264515 DOI: 10.3389/fgene.2014.00432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/22/2014] [Indexed: 11/13/2022] Open
Abstract
Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in commercial conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment) more costly single nucleotide polymorphism markers should benefit from future developments in genomics and marker-assisted selection to combine parentage assignment and indirect prediction of breeding values.
Collapse
Affiliation(s)
- Marc Vandeputte
- INRA UMR1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique , Jouy en Josas, France ; Ifremer, Institut Français de Recherche pour l'Exploitation de la Mer , Palavas-les-Flots, France
| | - Pierrick Haffray
- Sysaaf, Syndicat des Sélectionneurs Avicoles et Aquacoles Français , Rennes, France
| |
Collapse
|
22
|
Cross I, Merlo MA, Rodríguez ME, Portela-Bens S, Rebordinos L. Adaptation to abiotic stress in the oyster Crassostrea angulata relays on genetic polymorphisms. FISH & SHELLFISH IMMUNOLOGY 2014; 41:618-624. [PMID: 25462456 DOI: 10.1016/j.fsi.2014.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Here we describe the whole genome re-sequencing of the Portuguese oyster Crassostrea angulata, an edible cupped oyster of major commercial importance with an important role as biosensor of coastal water pollution. We sequenced the genome of the C. angulata to 29.3-fold coverage using ABI SOLID system. Comparisons of the sequences with the reference assembly of the Pacific oyster (Crassostrea gigas), yielded 129 million SNPs, 151,620 from which were located in 20,908 genes from the C. gigas database. The analysis of Gene Ontology (GO) terms associated with gene regions containing SNPs, revealed that significant GO terms showing differences between the two oyster species, were related to activities of response to stress caused both by drying and by metal contamination. In the Biological Process domain, the GO terms ion transport, phosphorylation and proteolysis processes, among others, showed many polymorphic genes in C. angulata. These processes are related to combating genotoxic and hypo-osmotic stress in the oyster. It is noteworthy that more than 200 polymorphic genes were associated with DNA repair processes. These results reveal that most of the gene polymorphisms observed in C. angulata are associated with processes related to genome adaptation to abiotic stress in estuarine regions and support that genetic polymorphisms may be the base to the observed ability of C. angulata to retain the phenomenally high concentrations of toxic heavy metals. Our results also provide the framework for future investigations to establish the molecular basis of phenotypic variation of adaptive traits and should contribute to the management of the species' genetic resources.
Collapse
Affiliation(s)
- Ismael Cross
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, CACYTMAR, University of Cadiz, Campus Río San Pedro, 11510 Puerto Real, Cadiz, Spain.
| | | | | | | | | |
Collapse
|
23
|
Gonçalves da Silva A, Barendse W, Kijas JW, Barris WC, McWilliam S, Bunch RJ, McCullough R, Harrison B, Hoelzel AR, England PR. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates. Mol Ecol Resour 2014; 15:723-36. [PMID: 25388640 DOI: 10.1111/1755-0998.12343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep-sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize 'bycatch'-polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand-bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single-copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms.
Collapse
Affiliation(s)
- Anders Gonçalves da Silva
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tas., 7001, Australia.,School of Biological Sciences, Monash University, 18 Innovation Walk, Clayton, Vic, 3800, Australia
| | - William Barendse
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - James W Kijas
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - Wes C Barris
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - Sean McWilliam
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - Rowan J Bunch
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - Russell McCullough
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - Blair Harrison
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St Lucia, Qld, 4067, Australia
| | - A Rus Hoelzel
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | | |
Collapse
|
24
|
Li C, Gowan S, Anil A, Beck BH, Thongda W, Kucuktas H, Kaltenboeck L, Peatman E. Discovery and validation of gene-linked diagnostic SNP markers for assessing hybridization between Largemouth bass (Micropterus salmoides) and Florida bass (M. floridanus). Mol Ecol Resour 2014; 15:395-404. [DOI: 10.1111/1755-0998.12308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Li
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Spencer Gowan
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ammu Anil
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Benjamin H. Beck
- United States Department of Agriculture; Agricultural Research Service; Stuttgart National Aquaculture Research Center; Stuttgart AR 72160 USA
| | - Wilawan Thongda
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Huseyin Kucuktas
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ludmilla Kaltenboeck
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Eric Peatman
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| |
Collapse
|