1
|
Fahldieck M, Rulik B, Thormann J, Mengual X. A DNA barcode reference library for the Tipulidae (Insecta, Diptera) of Germany. Biodivers Data J 2024; 12:e127190. [PMID: 39360178 PMCID: PMC11445608 DOI: 10.3897/bdj.12.e127190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Tipulidae, commonly known as true crane flies, represent one of the most species-rich dipteran families, boasting approximately 4,500 known species globally. Their larvae serve as vital decomposers across diverse ecosystems, prompting their frequent and close observation in biomonitoring programs. However, traditional morphological identification methods are laborious and time-consuming, underscoring the need for a comprehensive DNA barcode reference library to speed up species determination. In this study, we present the outcomes of the German Barcode of Life initiative focused on Tipulidae. Our DNA barcode library comprises 824 high-quality cytochrome c oxidase I (COI) barcodes encompassing 76 crane fly species, counting for ca. 54% of the German tipulid fauna. Our results significantly increased the number of European tipulid species available in the Barcode of Life Data System (BOLD) by 14%. Additionally, the number of barcodes from European tipulid specimens more than doubled, with an increase of 118%, bolstering the DNA resource for future identification inquiries. Employing diverse species delimitation algorithms - including the multi-rate Poisson tree processes model (mPTP), Barcode Index Number assignments (BIN), Assemble Species by Automatic Partitioning (ASAP), and the TaxCI R-script - we successfully match 76-86% of the morphologically identified species. Further validation through neighbor-joining tree topology analysis and comparison with 712 additional European tipulid barcodes yield a remarkable 89% success rate for the species identification of German tipulids based on COI barcodes. This comprehensive DNA barcode dataset not only enhances species identification accuracy but also serves as a pivotal resource for ecological and biomonitoring studies, fostering a deeper understanding of crane fly diversity and distribution across terrestrial landscapes.
Collapse
Affiliation(s)
- Moritz Fahldieck
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Björn Rulik
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Jana Thormann
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Ximo Mengual
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| |
Collapse
|
2
|
Vuataz L, Reding JP, Reding A, Roesti C, Stoffel C, Vinçon G, Gattolliat JL. A comprehensive DNA barcoding reference database for Plecoptera of Switzerland. Sci Rep 2024; 14:6322. [PMID: 38491157 PMCID: PMC10943188 DOI: 10.1038/s41598-024-56930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
DNA barcoding is an essential tool in modern biodiversity sciences. Despite considerable work to barcode the tree of life, many groups, including insects, remain partially or totally unreferenced, preventing barcoding from reaching its full potential. Aquatic insects, especially the three orders Ephemeroptera, Plecoptera, and Trichoptera (EPT), are key freshwater quality indicators worldwide. Among them, Plecoptera (stoneflies), which are among the most sensitive aquatic insects to habitat modification, play a central role in river monitoring surveys. Here, we present an update of the Plecoptera reference database for (meta)barcoding in Switzerland, now covering all 118 species known from this country. Fresh specimens, mostly from rare or localized species, were collected, and 151 new CO1 barcodes were generated. These were merged with the 422 previously published sequences, resulting in a dataset of 573 barcoded specimens. Our CO1 dataset was delimited in 115 CO1 clusters based on a priori morphological identifications, of which 17% are newly reported for Switzerland, and 4% are newly reported globally. Among the 115 CO1 clusters, 85% showed complete congruence with morphology. Distance-based analysis indicated local barcoding gaps in 97% of the CO1 clusters. This study significantly improves the Swiss reference database for stoneflies, enhancing future species identification accuracy and biodiversity monitoring. Additionally, this work reveals cryptic diversity and incongruence between morphology and barcodes, both presenting valuable opportunities for future integrative taxonomic studies. Voucher specimens, DNA extractions and reference barcodes are available for future developments, including metabarcoding and environmental DNA surveys.
Collapse
Affiliation(s)
- Laurent Vuataz
- Département de zoologie, Palais de Rumine, Muséum cantonal des sciences naturelles, Place Riponne 6, 1005, Lausanne, Switzerland.
- Department of Ecology and Evolution, University of Lausanne (UNIL), 1015, Lausanne, Switzerland.
| | | | | | | | - Céline Stoffel
- Département de zoologie, Palais de Rumine, Muséum cantonal des sciences naturelles, Place Riponne 6, 1005, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | | | - Jean-Luc Gattolliat
- Département de zoologie, Palais de Rumine, Muséum cantonal des sciences naturelles, Place Riponne 6, 1005, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Höcherl A, Shaw MR, Boudreault C, Rabl D, Haszprunar G, Raupach MJ, Schmidt S, Baranov V, Fernández-Triana J. Scratching the tip of the iceberg: integrative taxonomy reveals 30 new species records of Microgastrinae (Braconidae) parasitoid wasps for Germany, including new Holarctic distributions. Zookeys 2024; 1188:305-386. [PMID: 38250474 PMCID: PMC10797786 DOI: 10.3897/zookeys.1188.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024] Open
Abstract
Substantial parts of the European and German insect fauna still remain largely unexplored, the so-called "dark taxa". In particular, midges (Diptera) and parasitoid wasps (Hymenoptera) are abundant and species-rich throughout Europe, yet are often neglected in biodiversity research. One such dark taxon is Microgastrinae wasps (Hymenoptera: Braconidae), a group of parasitoids of lepidopteran caterpillars with 252 species reported in Germany so far. As part of the German Barcode of Life Project GBOL III: Dark Taxa, reverse DNA barcoding and integrative taxonomic approaches were used to shed some light on the German Fauna of Microgastrinae wasps. In our workflow, DNA barcoding was used for molecular clustering of our specimens in a first step, morphological examination of the voucher specimens in a second step, and host data compared in a third step. Here, 30 species are reported for the first time in Germany, adding more than 10% to the known German fauna. Information for four species is provided in a new Holarctic context, reporting them for the Nearctic or, respectively, Palaearctic region, and 26 additional country records are added from sequenced material available in the collections accessible to us. Molecular clusters that show signs of discrepancies are discussed. Results show that we are just scratching the tip of the iceberg of the unexplored Microgastrinae diversity in Germany.
Collapse
Affiliation(s)
- Amelie Höcherl
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Mark R. Shaw
- National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF, UKNational Museums of ScotlandEdinburghUnited Kingdom
| | - Caroline Boudreault
- Canadian National Collection of Insects, Arachnids and Nematodes, 960 Carling Ave., Ottawa, K1A0C6, CanadaCanadian National Collection of Insects, Arachnids and NematodesOttawaCanada
| | - Dominik Rabl
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, Würzburg, 96181 Rauhenebrach, GermanyUniversity of WürzburgWürzburgGermany
| | - Gerhard Haszprunar
- Department Biology II, Ludwig-Maximilians-Universität München (LMU), Großhaderner Str. 2, Martinsried, 82152 Planegg, GermanyLudwig-Maximilians-Universität MünchenPlaneggGermany
| | - Michael J. Raupach
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Seville, SpainEstación Biológica de Doñana-CSICSevilleSpain
| | - José Fernández-Triana
- Canadian National Collection of Insects, Arachnids and Nematodes, 960 Carling Ave., Ottawa, K1A0C6, CanadaCanadian National Collection of Insects, Arachnids and NematodesOttawaCanada
| |
Collapse
|
4
|
Zhang P, Cai Y, Ma L, Chai J, Zhou Z. DNA barcoding of the genus Gampsocleis (Orthoptera, Tettigoniidae) from China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22070. [PMID: 38288484 DOI: 10.1002/arch.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
DNA barcoding is a useful addition to the traditional morphology-based taxonomy. A ca. 650 bp fragment of the 5' end of mitochondrial cytochrome c oxidase subunit I (hereafter COI-5P) DNA barcoding was sued as a practical tool for Gampsocleis species identification. DNA barcodes from 889 specimens belonging to 8 putative Gampsocleis species was analyzed, including 687 newly generated DNA barcodes. These barcode sequences were clustered/grouped into Operational Taxonomic Units (OTUs) using the criteria of five algorithms, namely Barcode Index Number (BIN) System, Assemble Species by Automatic Partitioning (ASAP), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP). The Taxon ID Tree grouped sequences of morphospecies and almost all MOTUs in distinct nonoverlapping clusters. Both long- and short-winged Gampsocleis species are reciprocally monophyletic in the Taxon ID Tree. In BOLD, 889 barcode sequences are assigned to 17 BINs. The algorithms ASAP, jMOTU, bPTP and GMYC clustered the barcode sequences into 6, 13, 10, and 23 MOTUs, respectively. BIN, ASAP, and bPTP algorithm placed three long-winged species, G. sedakovii, G. sinensis and G. ussuriensis within the same MOTU. All species delimitation algorithms split two short-winged species,G. fletcheri and G. gratiosa into at least two MOTUs each, except for ASAP algorithm. More detailed molecular and morphological integrative studies are required to clarify the status of these MOTUs in the future.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Yuting Cai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Lan Ma
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Jinyan Chai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
5
|
El Alami M, Vuataz L, El Yaagoubi S, Sartori M. Another new species of the genus Habrophlebia Eaton, 1881 (Ephemeroptera, Leptophlebiidae) from the Maghreb. Zookeys 2023; 1186:47-70. [PMID: 38115829 PMCID: PMC10729008 DOI: 10.3897/zookeys.1186.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
A new species belonging to the genus Habrophlebia Eaton, 1881 is described at the nymphal stage from the Rif Mountains of Morocco. This species presents unique features, such as the chorionic arrangement of the egg and the ornamentation of the posterior margin of abdominal tergites. It is compared to all west European Habrophlebia species and a table with discriminating characters is given. A phylogenetic reconstruction based on COI sequences fully supports the hypothesis of a new species in the Rif Mountains, with possible further distribution in southern Spain.
Collapse
Affiliation(s)
- Majida El Alami
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Laurent Vuataz
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| | - Sara El Yaagoubi
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Michel Sartori
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
6
|
Dambri BM, Godunko RJ, Benhadji N. Baetidae (Insecta: Ephemeroptera) of Aurès Mountains (Algeria): A New Species of the Baetis alpinus Species Group, with Notes on Baetis Laech, 1815 Biogeography within Maghreb. INSECTS 2023; 14:899. [PMID: 37999098 PMCID: PMC10672397 DOI: 10.3390/insects14110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
A new species, Baetis (Baetis) dihyaesp. nov., belonging to the Baetis alpinus species group, is described and illustrated based on larval material collected in the Aurès Mountains (northeastern Algeria) in 2020-2021. This new species is closely related to three European species, e.g., Baetis (B.) alpinus (Pictet, 1843); B. (B.) nubecularis Eaton, 1898; and B. (B.) pasquetorum Righetti & Thomas, 2002 by the combination of the following characteristics: (i) more than one short, stout bristle at the tip of segment II of the maxillary palp and (ii) a well-developed paracercus. However, the new species clearly differs from all congeners of the Baetis alpinus species group primarily by the (a) structure of mouthparts-with 14-18 long submarginal setae arranged in a single irregular row on the dorsal surface of the labrum; 2-6 short, stout bristles at the tip of segment II of the maxillary palp; and segment II of the labial palp without a considerably developed apico-internal lobe); (b) setation of abdominal terga, with a few triangular-shaped scales sparsely scattered near the posterior margin only; and (c) a well-developed paracercus, comprised of more than 50 segments. Primary data on the biology and distribution of this new species are provided, and molecular affinities are verified by the analysis of COI (barcode) sequences. Detailed notes on the distribution of mayfly species belonging to the Baetis alpinus species group common in Western Europe and the western part of North Africa are presented. The historical movement of Baetis representatives between Europe, North West Africa, and subsequently Algeria, with the land bridges 'Strait of Gibraltar' and 'Strait of Sicily' as colonization routes, is discussed in detail and identified in the present study as the Western Algeria colonization path and Eastern Algeria colonization path, respectively.
Collapse
Affiliation(s)
- Besma M. Dambri
- Department of Ecology and Environment, Faculty of Natural and Life Sciences, University of Batna 2, Fesdis 05078, Batna, Algeria;
| | - Roman J. Godunko
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic;
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90237 Lodz, Poland
- State Museum of Natural History, National Academy of Sciences of Ukraine, Teatralna 18, 79008 Lviv, Ukraine
| | - Nadhira Benhadji
- Institute of Technology and Life Sciences–National Research Institute, Falenty, Hrabska Avenue 3, 05090 Raszyn, Poland
| |
Collapse
|
7
|
El Yaagoubi S, Vuataz L, El Alami M, Gattolliat JL. A new species of the Baetisfuscatus group (Ephemeroptera, Baetidae) from Morocco. Zookeys 2023; 1180:27-50. [PMID: 37744949 PMCID: PMC10517345 DOI: 10.3897/zookeys.1180.109298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Baetisrifensissp. nov. is the first representative of the Baetisfuscatus group to be described from the Maghreb. It was collected from streams in the Rif region of northern Morocco. All species of the B.fuscatus group are morphologically very similar, with slight differences in colour. Thus, in addition to morphological description, species delimitation based on genetic evidence was carried out. The new species was compared with other members of the B.fuscatus group from the Palaearctic region.
Collapse
Affiliation(s)
- Sara El Yaagoubi
- Laboratoire Ecologie, Systématique, Conservation de la Biodiversité (LESCB), Unité de Recherche Labellisée CNRST N°18, Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, B.P.2121 93002 Tétouan, MoroccoUniversité Abdelmalek EssaâdiTetouanMorocco
| | - Laurent Vuataz
- Muséum Cantonal des Sciences Naturelles, Palais de Rumine, Place Riponne 6, CH-1005 Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Palais de RumineLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| | - Majida El Alami
- Laboratoire Ecologie, Systématique, Conservation de la Biodiversité (LESCB), Unité de Recherche Labellisée CNRST N°18, Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, B.P.2121 93002 Tétouan, MoroccoUniversité Abdelmalek EssaâdiTetouanMorocco
| | - Jean-Luc Gattolliat
- Muséum Cantonal des Sciences Naturelles, Palais de Rumine, Place Riponne 6, CH-1005 Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Palais de RumineLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
8
|
El Alami M, Vuataz L, El Yaagoubi S, Gattolliat JL. A new species of the genus Alainites Waltz & McCafferty, 1994 (Ephemeroptera, Baetidae) from the north of Morocco. Zookeys 2023; 1176:221-241. [PMID: 37681053 PMCID: PMC10481155 DOI: 10.3897/zookeys.1176.107829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
A new species of Alainites is described from northern of Morocco Alainitesalbaisp. nov. It can be separated from the other west Palearctic species by the gill number, the spination of the distal margin of tergites, the leg setation, and the paraproct shape and spination. This species is widespread in the study area but never abundant. It prefers small to medium streams with slow flow, and does not seem to be very sensitive to pollution and water logging activities.
Collapse
Affiliation(s)
- Majida El Alami
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESCB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Laurent Vuataz
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| | - Sara El Yaagoubi
- Université Abdelmalek Essaâdi, Faculté des Sciences, Département de Biologie, Laboratoire Ecologie, Systématique et Conservation de la Biodiversité (LESCB), Unité de Recherche Labellisée CNRST N°18. B.P.2121. Tétouan 93002, MoroccoUniversité Abdelmalek EssaâdiTétouanMorocco
| | - Jean-Luc Gattolliat
- Muséum Cantonal des Sciences Naturelles, Département de Zoologie, Palais de Rumine, Place Riponne 6, CH-1005, Lausanne, SwitzerlandMuséum Cantonal des Sciences Naturelles, Département de ZoologieLausanneSwitzerland
- University of Lausanne (UNIL), Department of Ecology and Evolution, CH-1015 Lausanne, SwitzerlandUniversity of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
9
|
Zhou N, Tang L, Xie P, Miao K, Yang C, Liu H, Ji Y. Genome skimming as an efficient tool for authenticating commercial products of the pharmaceutically important Paris yunnanensis (Melanthiaceae). BMC PLANT BIOLOGY 2023; 23:344. [PMID: 37380980 DOI: 10.1186/s12870-023-04365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Paris yunnanensis (Melanthiaceae) is a traditional Chinese medicinal plant of significant pharmaceutical importance. Due to previous taxonomic confusion, a congeneric species, Paris liiana, has been mistaken for P. yunnanensis and cultivated on a large scale, leading to the mixing of commercial products (i.e., seedlings and processed rhizomes) of P. yunnanensis with those of P. liiana. This may have adverse effects on quality control in the standardization of P. yunnanensis productions. As the lack of PCR amplifiable genomic DNA within processed rhizomes is an intractable obstacle to the authentication of P. yunnanensis products using PCR-based diagnostic tools, this study aimed to develop a PCR-free method to authenticate commercial P. yunnanensis products, by applying genome skimming to generate complete plastomes and nrDNA arrays for use as the molecular tags. RESULTS Based on a dense intraspecies sampling of P. liiana and P. yunnanensis, the robustness of the proposed authentication systems was evaluated by phylogenetic inferences and experimental authentication of commercial seedling and processed rhizome samples. The results indicate that the genetic criteria of both complete plastomes and nrDNA arrays were consistent with the species boundaries to achieve accurate discrimination of P. yunnanensis and P. liinna. Owing to its desirable accuracy and sensitivity, genome skimming can serve as an effective and sensitive tool for monitoring and controlling the trade of P. yunnanensis products. CONCLUSION This study provides a new way to solve the long-standing problem of the molecular authentication of processed plant products due to the lack of PCR amplifiable genomic DNA. The proposed authentication system will support quality control in the standardization of P. yunnanensis products in cultivation and drug production. This study also provides molecular evidence to clarify the long-standing taxonomic confusion regarding the species delimitation of P. yunnanensis, which will contribute to the rational exploration and conservation of the species.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilei Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pingxuan Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjin Yang
- Yunnan Baiyao Group, Chinese Medicinal Resources Co. LTD, Kunming, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Santos BF, Miller ME, Miklasevskaja M, McKeown JTA, Redmond NE, Coddington JA, Bird J, Miller SE, Smith A, Brady SG, Buffington ML, Chamorro ML, Dikow T, Gates MW, Goldstein P, Konstantinov A, Kula R, Silverson ND, Solis MA, deWaard SL, Naik S, Nikolova N, Pentinsaari M, Prosser SWJ, Sones JE, Zakharov EV, deWaard JR. Enhancing DNA barcode reference libraries by harvesting terrestrial arthropods at the Smithsonian's National Museum of Natural History. Biodivers Data J 2023; 11:e100904. [PMID: 38327288 PMCID: PMC10848724 DOI: 10.3897/bdj.11.e100904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 02/09/2024] Open
Abstract
The use of DNA barcoding has revolutionised biodiversity science, but its application depends on the existence of comprehensive and reliable reference libraries. For many poorly known taxa, such reference sequences are missing even at higher-level taxonomic scales. We harvested the collections of the Smithsonian's National Museum of Natural History (USNM) to generate DNA barcoding sequences for genera of terrestrial arthropods previously not recorded in one or more major public sequence databases. Our workflow used a mix of Sanger and Next-Generation Sequencing (NGS) approaches to maximise sequence recovery while ensuring affordable cost. In total, COI sequences were obtained for 5,686 specimens belonging to 3,737 determined species in 3,886 genera and 205 families distributed in 137 countries. Success rates varied widely according to collection data and focal taxon. NGS helped recover sequences of specimens that failed a previous run of Sanger sequencing. Success rates and the optimal balance between Sanger and NGS are the most important drivers to maximise output and minimise cost in future projects. The corresponding sequence and taxonomic data can be accessed through the Barcode of Life Data System, GenBank, the Global Biodiversity Information Facility, the Global Genome Biodiversity Network Data Portal and the NMNH data portal.
Collapse
Affiliation(s)
- Bernardo F. Santos
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, FranceInstitut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Meredith E. Miller
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Margarita Miklasevskaja
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Jaclyn T. A. McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Niamh E. Redmond
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Jonathan A. Coddington
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Jessica Bird
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Ashton Smith
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Seán G. Brady
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Matthew L. Buffington
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - M. Lourdes Chamorro
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Torsten Dikow
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Michael W. Gates
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Paul Goldstein
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Alexander Konstantinov
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Robert Kula
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Nicholas D. Silverson
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - M. Alma Solis
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Washington, United States of AmericaSystematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of AgricultureWashingtonUnited States of America
| | - Stephanie L. deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Suresh Naik
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
- Department of Integrative Biology, University of Guelph, Guelph, CanadaDepartment of Integrative Biology, University of GuelphGuelphCanada
| | - Nadya Nikolova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Mikko Pentinsaari
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Sean W. J. Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Jayme E. Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Evgeny V. Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
- Department of Integrative Biology, University of Guelph, Guelph, CanadaDepartment of Integrative Biology, University of GuelphGuelphCanada
| | - Jeremy R. deWaard
- National Museum of Natural History, Smithsonian Institution, Washington, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
- School of Environmental Sciences, University of Guelph, Guelph, CanadaSchool of Environmental Sciences, University of GuelphGuelphCanada
| |
Collapse
|
11
|
Pauperio J, Gonzalez LM, Martinez J, González MA, Martins FMS, Veríssimo J, Puppo P, Pinto J, Chaves C, Pinho CJ, Grosso-Silva JM, Quaglietta L, Silva TLL, Sousa P, Alves PC, Fonseca N, Beja P, Ferreira S. The InBIO barcoding initiative database: DNA barcodes of Iberian Trichoptera, documenting biodiversity for freshwater biomonitoring in a Mediterranean hotspot. Biodivers Data J 2023; 11:e97484. [PMID: 38327295 PMCID: PMC10848855 DOI: 10.3897/bdj.11.e97484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background The Trichoptera are an important component of freshwater ecosystems. In the Iberian Peninsula, 380 taxa of caddisflies are known, with nearly 1/3 of the total species being endemic in the region. A reference collection of morphologically identified Trichoptera specimens, representing 142 Iberian taxa, was constructed. The InBIO Barcoding Initiative (IBI) Trichoptera 01 dataset contains records of 438 sequenced specimens. The species of this dataset correspond to about 37% of Iberian Trichoptera species diversity. Specimens were collected between 1975 and 2018 and are deposited in the IBI collection at the CIBIO (Research Center in Biodiversity and Genetic Resources, Portugal) or in the collection Marcos A. González at the University of Santiago de Compostela (Spain). New information Twenty-nine species, from nine different families, were new additions to the Barcode of Life Data System (BOLD). A success identification rate of over 80% was achieved when comparing morphological identifications and DNA barcodes for the species analysed. This encouraging step advances incorporation of informed Environmental DNA tools in biomonitoring schemes, given the shortcomings of morphological identifications of larvae and adult Caddisflies in such studies. DNA barcoding was not successful in identifying species in six Trichoptera genera: Hydropsyche (Hydropsychidae), Athripsodes (Leptoceridae), Wormaldia (Philopotamidae), Polycentropus (Polycentropodidae) Rhyacophila (Rhyacophilidae) and Sericostoma (Sericostomatidae). The high levels of intraspecific genetic variability found, combined with a lack of a barcode gap and a challenging morphological identification, rendered these species as needing additional studies to resolve their taxonomy.
Collapse
Affiliation(s)
- Joana Pauperio
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United KingdomEuropean Molecular Biology Laboratory, European Bioinformatics InstituteHinxton, CambridgeUnited Kingdom
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Luis Martin Gonzalez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de Compostela, Santiago de Compostela, SpainDepartamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Jesus Martinez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de Compostela, Santiago de Compostela, SpainDepartamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Marcos A González
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de Compostela, Santiago de Compostela, SpainDepartamento de Zoología, Genética y Antropología Física, Facultad de Biología. Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Filipa MS Martins
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Joana Veríssimo
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, PortugalDepartamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007PortoPortugal
| | - Pamela Puppo
- Marshall University, Department of Biological Sciences, Huntington, United States of AmericaMarshall University, Department of Biological SciencesHuntingtonUnited States of America
| | - Joana Pinto
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Cátia Chaves
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Catarina J. Pinho
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, PortugalDepartamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007PortoPortugal
| | - José Manuel Grosso-Silva
- Museu de História Natural e da Ciência da Universidade do Porto, Porto, PortugalMuseu de História Natural e da Ciência da Universidade do PortoPortoPortugal
| | - Lorenzo Quaglietta
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de LisboaLisboaPortugal
| | - Teresa Luísa L Silva
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Pedro Sousa
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Paulo Celio Alves
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, Mértola, PortugalEBM, Estação Biológica de Mértola, Praça Luís de CamõesMértolaPortugal
| | - Nuno Fonseca
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
| | - Pedro Beja
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de LisboaLisboaPortugal
| | - Sónia Ferreira
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 VairãoVila do CondePortugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, Mértola, PortugalEBM, Estação Biológica de Mértola, Praça Luís de CamõesMértolaPortugal
| |
Collapse
|
12
|
Martynov AV, Palatov DM, Godunko RJ. The Tribe Hyrtanellini Allen, 1980 (Ephemeroptera: Ephemerellidae) of Western and Central Asia with Description of a New Species. INSECTS 2023; 14:87. [PMID: 36662016 PMCID: PMC9862290 DOI: 10.3390/insects14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A new species, Serratella leonidi Martynov & Palatov, sp. nov., is described from Tajikistan based on immature stage. Based on larval material from Iran including the topotypes, Serratella elissa Jacobus, Zhou & McCafferty, 2009 is complementary described, and its generic placement is clarified. The delimitation of three genera that are members of the tribe Hyrtanellini Allen, 1980, namely Serratella Edmunds, 1959, Torleya Lestage, 1917 and Quatica Jacobus & McCafferty, 2008 is briefly discussed. The phylogenetic reconstruction of Hyrtanellini based on the COI gene showed the relations of representatives of these genera on the one hand, and distinct delimitation of Serratella leonidi sp. nov. and S. elissa on the other. A list of species from Western and Central Asia attributed to Hyrtanellini, their currently known distribution and a key for the determination of the larvae are proposed.
Collapse
Affiliation(s)
- Alexander V. Martynov
- National Museum of Natural History, National Academy of Sciences of Ukraine, Bohdan Khmelnytsky Str., 01601 Kyiv, Ukraine
| | | | - Roman J. Godunko
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90237 Łódź, Poland
| |
Collapse
|
13
|
Xing Z, Gao H, Wang D, Shang Y, Tuliebieke T, Jiang J, Li C, Wang H, Li Z, Jia L, Wu Y, Wang D, Yang W, Chang Y, Zhang X, Xu L, Jiang C, Huang L, Tian X. A novel biological sources consistency evaluation method reveals high level of biodiversity within wild natural medicine: A case study of Amynthas earthworms as “Guang Dilong”. Acta Pharm Sin B 2022; 13:1755-1770. [PMID: 37139429 PMCID: PMC10150161 DOI: 10.1016/j.apsb.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.
Collapse
Affiliation(s)
- Zhimei Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tenukeguli Tuliebieke
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxiao Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenguo Li
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Lifu Jia
- Guizhou Ruihe Pharmaceutical Co. Ltd., Guizhou 550000, China
| | - Yongsheng Wu
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Dandan Wang
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Liuwei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Chao Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
14
|
Godunko RJ, Alba-Tercedor J, Grabowski M, Rewicz T, Staniczek AH. Cenozoic origins of the genus Calliarcys (Insecta, Ephemeroptera) revealed by Micro-CT, with DNA barcode gap analysis of Leptophlebiinae and Habrophlebiinae. Sci Rep 2022; 12:15228. [PMID: 36075938 PMCID: PMC9458648 DOI: 10.1038/s41598-022-18234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Mayflies (Ephemeroptera) are among the oldest pterygote insects, with the earliest fossils dating back to the Late Carboniferous. Within mayflies, Leptophlebiidae are a highly diverse and widespread group, with approximately 140 genera and 640 species. Whereas taxonomy, systematics, and phylogeny of extant Leptophlebiidae are in the focus of extensive studies, little is known about leptophlebiid fossil taxa. Because fossil remains of Ephemeroptera in sedimentary rocks are relatively rare, inclusions of mayflies in amber are a unique source of information on their evolution and diversity in the past. Leptophlebiidae found in Cenozoic resins mostly belong to the subfamilies Leptophlebiinae (in Eocene Baltic amber) and Atalophlebiinae (in Miocene Dominican and Mexican ambers). In the present contribution, we confirm the first finding of the genus Calliarcys from Eocene Baltic amber by using Micro-CT, which allowed confirming its generic placement by visualizing diagnostic key characters otherwise hidden by a cloud of turbidity. Additionally, we present first molecular data on the extant species Calliarcys humilis Eaton, 1881 from the Iberian Peninsula and the barcode gap analysis for Leptophlebiinae and Habrophlebiinae.
Collapse
Affiliation(s)
- Roman J Godunko
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90237, Łódź, Poland. .,State Museum of Natural History, NAS Ukraine, Teatralna 18, Lviv, 79008, Ukraine.
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida de Fuente Nueva s/n, 18071, Granada, Spain
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90237, Łódź, Poland
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90237, Łódź, Poland
| | - Arnold H Staniczek
- Department of Entomology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany
| |
Collapse
|
15
|
Kaczmarek M, Entling MH, Hoffmann C. Using Malaise Traps and Metabarcoding for Biodiversity Assessment in Vineyards: Effects of Weather and Trapping Effort. INSECTS 2022; 13:insects13060507. [PMID: 35735844 PMCID: PMC9224819 DOI: 10.3390/insects13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Metabarcoding is a powerful tool for ecological studies and monitoring that might provide a solution to the time-consuming taxonomic identification of the vast diversity of insects. Here, we assess how ambient weather conditions during Malaise trap exposure and the effort of trapping affect biomass and taxa richness in vineyards. Biomass varied by more than twofold with weather conditions. It increased with warmer and drier weather but was not significantly related with wind or precipitation. Taxa richness showed a saturating relationship with increasing trapping duration and was influenced by environmental and seasonal effects. Taxa accumulation was high, increasing fourfold from three days of monthly trap exposure compared to continuous trapping and nearly sixfold from sampling at a single site compared to 32 sites. The limited saturation was mainly due to a large number of singletons, such as rare species, in the metabarcoding dataset. Metabarcoding can be key for long-term insect monitoring. We conclude that single traps operated for up to ten days per month are suitable to monitor the presence of common species. However, more intensive trapping is necessary for a good representation of rare species in biodiversity monitoring. The data collected here can potentially guide the design of monitoring studies.
Collapse
Affiliation(s)
- Marvin Kaczmarek
- Julius Kühn Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany;
- Institute for Environmental Sciences—iES Landau, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany;
- Correspondence:
| | - Martin H. Entling
- Institute for Environmental Sciences—iES Landau, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany;
| | - Christoph Hoffmann
- Julius Kühn Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany;
| |
Collapse
|
16
|
Hlebec D, Sivec I, Podnar M, Kučinić M. DNA barcoding for biodiversity assessment: Croatian stoneflies (Insecta: Plecoptera). PeerJ 2022; 10:e13213. [PMID: 35469200 PMCID: PMC9034701 DOI: 10.7717/peerj.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background The hemi-metabolous aquatic order Plecoptera (stoneflies) constitutes an indispensable part of terrestrial and aquatic food webs due to their specific life cycle and habitat requirements. Stoneflies are considered one of the most sensitive groups to environmental changes in freshwater ecosystems and anthropogenic changes have caused range contraction of many species. Given the critical threat to stoneflies, the study of their distribution, morphological variability and genetic diversity should be one of the priorities in conservation biology. However, some aspects about stoneflies, especially a fully resolved phylogeny and their patterns of distribution are not well known. A study that includes comprehensive field research and combines morphological and molecular identification of stoneflies has not been conducted in Croatia so far. Thus, the major aim of this study was to regenerate a comprehensive and taxonomically well-curated DNA barcode database for Croatian stoneflies, to highlight the morphological variability obtained for several species and to elucidate results in light of recent taxonomy. Methods A morphological examination of adult specimens was made using basic characteristics for distinguishing species: terminalia in males and females, head and pronotum patterns, penial morphology, and egg structures. DNA barcoding was applied to many specimens to help circumscribe known species, identify cryptic or yet undescribed species, and to construct a preliminary phylogeny for Croatian stoneflies. Results Sequences (658 bp in length) of 74 morphospecies from all families present in Croatia were recovered from 87% of the analysed specimens (355 of 410), with one partial sequence of 605 bp in length for Capnopsis schilleri balcanica Zwick, 1984. A total of 84% morphological species could be unambiguously identified using COI sequences. Species delineation methods confirmed the existence of five deeply divergent genetic lineages, with monophyletic origin, which also differ morphologically from their congeners and represent distinct entities. BIN (Barcode Index Number) assignment and species delineation methods clustered COI sequences into different numbers of operational taxonomic units (OTUs). ASAP delimited 76 putative species and achieved a maximum match score with morphology (97%). ABGD resulted in 62 and mPTP in 61 OTUs, indicating a more conservative approach. Most BINs were congruent with traditionally recognized species. Deep intraspecific genetic divergences in some clades highlighted the need for taxonomic revision in several species-complexes and species-groups. Research has yielded the first molecular characterization of nine species, with most having restricted distributions and confirmed the existence of several species which had been declared extinct regionally.
Collapse
Affiliation(s)
- Dora Hlebec
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia,Zoological Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany,Croatian Biospeleological Society, Zagreb, Croatia
| | - Ignac Sivec
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | | | - Mladen Kučinić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Hlebec D, Sivec I, Podnar M, Skejo J, Kučinić M. Morphological and molecular characterisation of the Popijač's Yellow Sally, Isoperlapopijaci sp. nov., a new stenoendemic stonefly species from Croatia (Plecoptera, Perlodidae). Zookeys 2022; 1078:85-106. [PMID: 35068954 PMCID: PMC8702536 DOI: 10.3897/zookeys.1078.66382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
A new species of the Yellow Sally genus (Isoperla Banks, 1906) is described, based on morphological (males and females adults, larval and egg) and molecular (the barcode region of the cytochrome c oxidase subunit I gene (COI)) features. Popijač’s Yellow Sally, I.popijaci Hlebec & Sivec, sp. nov. inhabits two karstic sources of the Krasulja rivulet in Croatia. Male and female of the new species are characterised by colouration patterns of the head and pronotum; the dimensions of the female subgenital plate; the medial penial armature and oval-shaped egg without collar and anchor. The larvae differ from their congeners by the uniquely coloured head and pronotum. Based on morphological characteristics I.popijacisp. nov. belongs to the I.tripartita species group. Phylogenetic and taxonomic relationships were reconstructed using three methods of phylogenetic inference and three species delimitation methods. As I.popijacisp. nov. occurs at a narrow area of the Krasulja rivulet in Krbava field, the study puts emphasis on the conservation and hotspot importance of the temporary rivers in the Dinaric karst. Furthermore, the study accentuates the necessity for further research on the genetic diversity of Plecoptera in Croatia.
Collapse
Affiliation(s)
- Dora Hlebec
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia University of Zagreb Zagreb Croatia
| | - Ignac Sivec
- Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia Slovenian Museum of Natural History Ljubljana Slovenia
| | - Martina Podnar
- Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia Croatian Natural History Museum Zagreb Croatia
| | - Josip Skejo
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia University of Zagreb Zagreb Croatia
| | - Mladen Kučinić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia University of Zagreb Zagreb Croatia
| |
Collapse
|
18
|
Schmid-Egger C, Schmidt S. Unexpected diversity in Central European Vespoidea (Hymenoptera, Mutillidae, Myrmosidae, Sapygidae, Scoliidae, Tiphiidae, Thynnidae, Vespidae), with description of two species of Smicromyrme Thomson, 1870. Zookeys 2021; 1062:49-72. [PMID: 34720617 PMCID: PMC8530993 DOI: 10.3897/zookeys.1062.70763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
The present study presents DNA barcoding results for 134 species of Central European Vespoidea, families Mutillidae, Myrmosidae, Sapygidae, Scoliidae, Tiphiidae, Thynnidae, and Vespidae, including DNA barcodes for 100 of the 114 German species. DNA barcoding resulted in unexpected diversity in several families, each with two or more genetic clusters identified by Barcode Index Numbers (BINs). Smicromyrmeburgeri Schmid-Egger, sp. nov. and S.langobardensis Schmid-Egger, sp. nov. are described as new from Germany and Italy, respectively. A neotype is designated for Smicromyrmerufipes (Fabricius, 1878). The results of DNA barcoding are discussed in respect to detecting cryptic species and refining species limits.
Collapse
Affiliation(s)
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Munich, Germany SNSB-Zoologische Staatssammlung München Munich Germany
| |
Collapse
|
19
|
Lin X, Jiang K, Liu W, Liu W, Bu W, Wang X, Mo L. Toward a global DNA barcode reference library of the intolerant nonbiting midge genus Rheocricotopus Brundin, 1956. Ecol Evol 2021; 11:12161-12172. [PMID: 34522368 PMCID: PMC8427567 DOI: 10.1002/ece3.7979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Environmental DNA metabarcoding is becoming a predominant tool in biodiversity assessment, as this time- and cost-efficient tactics have the ability to increase monitoring accuracy. As a worldwide distributed genus, Rheocricotopus Brundin, 1956 still does not possess a complete and comprehensive global DNA barcode reference library for biodiversity monitoring. In the present study, we compiled a cytochrome c oxidase subunit 1 (COI) DNA barcode library of Rheocricotopus with 434 barcodes around the world, including 121 newly generated DNA barcodes of 32 morphospecies and 313 public barcodes. Automatic Barcode Gap Discovery (ABGD) was applied on the 434 COI barcodes to provide a comparison between the operational taxonomic units (OTU) number calculated from the Barcode Index Number (BIN) with the "Barcode Gap Analysis" and neighbor-joining (NJ) tree analysis. Consequently, these 434 COI barcodes were clustered into 78 BINs, including 42 new BINs. ABGD yielded 51 OTUs with a prior intraspecific divergence of Pmax = 7.17%, while NJ tree revealed 52 well-separated clades. Conservatively, 14 unknown species and one potential synonym were uncovered with reference to COI DNA barcodes. Besides, based on our ecological analysis, we discovered that annual mean temperature and annual precipitation could be considered as key factors associated with distribution of certain members from this genus. Our global DNA barcode reference library of Rheocricotopus provides one fundamental database for accurate species delimitation in Chironomidae taxonomy and facilitates the biodiversity monitoring of aquatic biota.
Collapse
Affiliation(s)
- Xiao‐Long Lin
- College of Life SciencesNankai UniversityTianjinChina
| | - Kun Jiang
- College of Life SciencesNankai UniversityTianjinChina
| | - Wen‐Bin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal DiversityTianjin Normal UniversityTianjinChina
| | - Wei Liu
- College of Life SciencesNankai UniversityTianjinChina
| | - Wen‐Jun Bu
- College of Life SciencesNankai UniversityTianjinChina
| | - Xin‐Hua Wang
- College of Life SciencesNankai UniversityTianjinChina
| | - Lidong Mo
- Crowther LabInstitute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| |
Collapse
|
20
|
Lukic D, Eberle J, Thormann J, Holzschuh C, Ahrens D. Excluding spatial sampling bias does not eliminate oversplitting in DNA-based species delimitation analyses. Ecol Evol 2021; 11:10327-10337. [PMID: 34367578 PMCID: PMC8328443 DOI: 10.1002/ece3.7836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affects the accuracy and performance of DNA barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical dataset sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivorous chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analyzed for a total of 186 individuals of 56 morphospecies. Tree-based and distance-based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. Poisson tree process (PTP) and statistical parsimony network analysis (TCS) prevailingly over-splitted morphospecies, while 3% clustering and Automatic Barcode Gap Discovery (ABGD) also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs have to be explained by historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.
Collapse
Affiliation(s)
- Daniel Lukic
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| | - Jonas Eberle
- Zoologische EvolutionsbiologieParis‐Lodron‐UniversitätSalzburgAustria
| | - Jana Thormann
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| | | | - Dirk Ahrens
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| |
Collapse
|
21
|
Takayanagi T, Yoshizawa K. The first record of Caenis rivulorum (Ephemeroptera: Caenidae) from Japan. Biodivers Data J 2021; 9:e67413. [PMID: 34305421 PMCID: PMC8282597 DOI: 10.3897/bdj.9.e67413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background Caenisrivulorum Eaton, 1884 is widely distributed and has been reported from a wide range in the Palearctic Region. New information We report this species from Japan for the first time, from five localities of Hokkaido, based on morphology and molecular data.
Collapse
Affiliation(s)
- Tatsushi Takayanagi
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan Systematic Entomology, Graduate School of Agriculture, Hokkaido University Sapporo Japan
| | - Kazunori Yoshizawa
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan Systematic Entomology, Graduate School of Agriculture, Hokkaido University Sapporo Japan
| |
Collapse
|
22
|
Ge Y, Xia C, Wang J, Zhang X, Ma X, Zhou Q. The efficacy of DNA barcoding in the classification, genetic differentiation, and biodiversity assessment of benthic macroinvertebrates. Ecol Evol 2021; 11:5669-5681. [PMID: 34026038 PMCID: PMC8131818 DOI: 10.1002/ece3.7470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Macroinvertebrates have been recognized as key ecological indicators of aquatic environment and are the most commonly used approaches for water quality assessment. However, species identification of macroinvertebrates (especially of aquatic insects) proves to be very difficult due to the lack of taxonomic expertise in some regions and can become time-consuming. In this study, we evaluated the feasibility of DNA barcoding for the classification of benthic macroinvertebrates and investigated the genetic differentiation in seven orders (Insecta: Ephemeroptera, Plecoptera, Trichoptera, Diptera, Hemiptera, Coleoptera, and Odonata) from four large transboundary rivers of northwest China and further explored its potential application to biodiversity assessment. A total of 1,144 COI sequences, belonging to 176 species, 112 genera, and 53 families were obtained and analyzed. The barcoding gap analysis showed that COI gene fragment yielded significant intra- and interspecific divergences and obvious barcoding gaps. NJ phylogenetic trees showed that all species group into monophyletic species clusters whether from the same population or not, except two species (Polypedilum. laetum and Polypedilum. bullum). The distance-based (ABGD) and tree-based (PTP and MPTP) methods were utilized for grouping specimens into Operational Taxonomic Units (OTUs) and delimiting species. The ABGD, PTP, and MPTP analysis were divided into 177 (p = .0599), 197, and 195 OTUs, respectively. The BIN analysis generated 186 different BINs. Overall, our study showed that DNA barcoding offers an effective framework for macroinvertebrate species identification and sheds new light on the biodiversity assessment of local macroinvertebrates. Also, the construction of DNA barcode reference library of benthic macroinvertebrates in Eurasian transboundary rivers provides a solid backup for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future.
Collapse
Affiliation(s)
- Yihao Ge
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chengxing Xia
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Jun Wang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Xiujie Zhang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Xufa Ma
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| |
Collapse
|
23
|
Behrens-Chapuis S, Herder F, Geiger MF. Adding DNA barcoding to stream monitoring protocols - What's the additional value and congruence between morphological and molecular identification approaches? PLoS One 2021; 16:e0244598. [PMID: 33395693 PMCID: PMC7781668 DOI: 10.1371/journal.pone.0244598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Although aquatic macroinvertebrates and freshwater fishes are important indicators for freshwater quality assessments, the morphological identification to species-level is often impossible and thus especially in many invertebrate taxa not mandatory during Water Framework Directive monitoring, a pragmatism that potentially leads to information loss. Here, we focus on the freshwater fauna of the River Sieg (Germany) to test congruence and additional value in taxa detection and taxonomic resolution of DNA barcoding vs. morphology-based identification in monitoring routines. Prior generated morphological identifications of juvenile fishes and aquatic macroinvertebrates were directly compared to species assignments using the identification engine of the Barcode of Life Data System. In 18% of the invertebrates morphology allowed only assignments to higher systematic entities, but DNA barcoding lead to species-level assignment. Dissimilarities between the two approaches occurred in 7% of the invertebrates and in 1% of the fishes. The 18 fish species were assigned to 20 molecular barcode index numbers, the 104 aquatic invertebrate taxa to 113 molecular entities. Although the cost-benefit analysis of both methods showed that DNA barcoding is still more expensive (5.30–8.60€ per sample) and time consuming (12.5h), the results emphasize the potential to increase taxonomic resolution and gain a more complete profile of biodiversity, especially in invertebrates. The provided reference DNA barcodes help building the foundation for metabarcoding approaches, which provide faster sample processing and more cost-efficient ecological status determination.
Collapse
Affiliation(s)
| | - Fabian Herder
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | |
Collapse
|
24
|
Beermann AJ, Werner MT, Elbrecht V, Zizka VMA, Leese F. DNA metabarcoding improves the detection of multiple stressor responses of stream invertebrates to increased salinity, fine sediment deposition and reduced flow velocity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141969. [PMID: 33182191 DOI: 10.1016/j.scitotenv.2020.141969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Worldwide, multiple stressors affect stream ecosystems and frequently lead to complex and non-linear biological responses. These combined stressor effects on ecologically diverse and functionally important macroinvertebrate communities are often difficult to assess, in particular species-specific responses across many species and effects of different stressors and stressor levels in concert. A central limitation in many studies is the taxonomic resolution applied for specimen identification. DNA metabarcoding can resolve taxonomy and provide greater insights into multiple stressor effects. This was detailed by results of a recent multiple stressor mesocosm experiment, where only for the dipteran family Chironomidae 183 Operational Taxonomic Units (OTUs) could be distinguished. Numerous OTUs showed very different response patterns to multiple stressors. In this study, we applied DNA metabarcoding to assess multiple stressor effects on all non-chironomid invertebrates from the same experiment. In the experiment, we applied three stressors (increased salinity, deposited fine sediment, reduced flow velocity) in a full-factorial design. We compared stressor responses inferred through DNA metabarcoding of the mitochondrial COI gene to responses based on morphotaxonomic taxa lists. We identified 435 OTUs, of which 122 OTUs were assigned to EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa. The most common 35 OTUs alone showed 15 different response patterns to the experimental manipulation, ranging from insensitivity to any applied stressor to sensitivity to single and multiple stressors. These response patterns even comprised differences within one family. The species-specific taxonomic resolution and the inferred response patterns to stressors highlights the potential of DNA metabarcoding in the context of multiple stressor research, even for well-known taxa such as EPT species.
Collapse
Affiliation(s)
- Arne J Beermann
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany.
| | - Marie-Thérése Werner
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM), Zoological Research Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany
| | - Vera M A Zizka
- Centre for Biodiversity Monitoring (ZBM), Zoological Research Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| |
Collapse
|
25
|
Lin X, Mo L, Bu W, Wang X. The first comprehensive DNA barcode reference library of Chinese
Tanytarsus
(Diptera: Chironomidae) for environmental DNA metabarcoding. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiao‐Long Lin
- College of Life Sciences Nankai University Tianjin China
- Department of Natural History NTNU University Museum Norwegian University of Science and Technology Trondheim Norway
| | - Lidong Mo
- Institute of Integrative Biology ETH Zurich (Swiss Federal Institute of Technology) Zurich Switzerland
| | - Wen‐Jun Bu
- College of Life Sciences Nankai University Tianjin China
| | - Xin‐Hua Wang
- College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
26
|
Raupach MJ, Hannig K, Morinière J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Pterostichus Bonelli, 1810 and allied taxa (Insecta, Coleoptera, Carabidae). Zookeys 2020; 980:93-117. [PMID: 33192140 PMCID: PMC7642132 DOI: 10.3897/zookeys.980.55979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/12/2022] Open
Abstract
Species of the ground beetle genus Pterostichus Bonelli, 1810 are some of the most common carabids in Europe. This publication provides a first comprehensive DNA barcode library for this genus and allied taxa including Abax Bonelli, 1810, Molops Bonelli, 1810, Poecilus Bonelli, 1810, and Stomis Clairville, 1806 for Germany and Central Europe in general. DNA barcodes were analyzed from 609 individuals that represent 51 species, including sequences from previous studies as well as more than 198 newly generated sequences. The results showed a 1:1 correspondence between BIN and traditionally recognized species for 44 species (86%), whereas two (4%) species were characterized by two BINs. Three BINs were found for one species (2%), while one BIN for two species was revealed for two species pairs (8%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for four species pairs. Haplotype sharing was found for two closely related species pairs: Pterostichusadstrictus Eschscholtz, 1823/Pterostichusoblongopunctatus (Fabricius, 1787) and Pterostichusnigrita Paykull, 1790/Pterostichusrhaeticus Heer, 1837. In contrast to this, high intraspecific sequence divergences with values above 2.2% were shown for three species (Molopspiceus (Panzer, 1793), Pterostichuspanzeri (Panzer, 1805), Pterostichusstrenuus (Panzer, 1793)). Summarizing the results, the present DNA barcode library does not only allow the identification of most of the analyzed species, but also provides valuable information for alpha-taxonomy as well as for ecological and evolutionary research. This library represents another step in building a comprehensive DNA barcode library of ground beetles as part of modern biodiversity research.
Collapse
Affiliation(s)
- Michael J Raupach
- Sektion Hemiptera, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| | | | - Jérome Morinière
- AIM - Advanced Identification Methods GmbH, Spinnereistraße 11, 04179 Leipzig
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|
27
|
Ficetola GF, Boyer F, Valentini A, Bonin A, Meyer A, Dejean T, Gaboriaud C, Usseglio-Polatera P, Taberlet P. Comparison of markers for the monitoring of freshwater benthic biodiversity through DNA metabarcoding. Mol Ecol 2020; 30:3189-3202. [PMID: 32920861 DOI: 10.1111/mec.15632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Abstract
Metabarcoding of bulk or environmental DNA has great potential for biomonitoring of freshwater environments. However, successful application of metabarcoding to biodiversity monitoring requires universal primers with high taxonomic coverage that amplify highly variable, short metabarcodes with high taxonomic resolution. Moreover, reliable and extensive reference databases are essential to match the outcome of metabarcoding analyses with available taxonomy and biomonitoring indices. Benthic invertebrates, particularly insects, are key taxa for freshwater bioassessment. Nevertheless, few studies have so far assessed markers for metabarcoding of freshwater macrobenthos. Here we combined in silico and laboratory analyses to test the performance of different markers amplifying regions in the 18S rDNA (Euka02), 16S rDNA (Inse01) and COI (BF1_BR2-COI) genes, and developed an extensive database of benthic macroinvertebrates of France and Europe, with a particular focus on key insect orders (Ephemeroptera, Plecoptera and Trichoptera). Analyses on 1,514 individuals representing different taxa of benthic macroinvertebrates showed very different amplification success across primer combinations. The Euka02 marker showed the highest universality, while the Inse01 marker showed excellent performance for the amplification of insects. BF1_BR2-COI showed the highest resolution, while the resolution of Euka02 was often limited. By combining our data with GenBank information, we developed a curated database including sequences representing 822 genera. The heterogeneous performance of the different primers highlights the complexity in identifying the best markers, and advocates for the integration of multiple metabarcodes for a more comprehensive and accurate understanding of ecological impacts on freshwater biodiversity.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Grenoble, France.,Department of Environmental Sciences and Policy, University of Milano, Milano, Italy
| | - Frédéric Boyer
- LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Grenoble, France
| | | | - Aurélie Bonin
- LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Grenoble, France.,Department of Environmental Sciences and Policy, University of Milano, Milano, Italy
| | - Albin Meyer
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | | - Pierre Taberlet
- LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Grenoble, France.,UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| |
Collapse
|
28
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
29
|
Laini A, Beermann AJ, Bolpagni R, Burgazzi G, Elbrecht V, Zizka VMA, Leese F, Viaroli P. Exploring the potential of metabarcoding to disentangle macroinvertebrate community dynamics in intermittent streams. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.51433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Taxonomic sufficiency represents the level of taxonomic detail needed to detect ecological patterns to a level that match the requirement of a study. Most bioassessments apply the taxonomic sufficiency concept and assign specimens to the family or genus level given time constraints and the difficulty to correctly identify species. This holds particularly true for stream invertebrates because small and morphologically similar larvae are hard to distinguish. Low taxonomic resolution may hinder detecting true community dynamics, which thus leads to incorrect inferences about community assembly processes. DNA metabarcoding is a new, affordable and cost-effective tool for the identification of multiple species from bulk samples of organisms. As it provides high taxonomic resolution, it can be used to compare results obtained from different identification levels. Measuring the effect of taxonomic resolution on the detection of community dynamics is especially interesting in extreme ecosystems like intermittent streams to test if species at intermittent sites are subsets of those from perennial sources or if independently recruiting taxa exist. Here we aimed to compare the performance of morphological identification and metabarcoding to detect macroinvertebrate community dynamics in the Trebbia River (Italy). Macroinvertebrates were collected from four perennial and two intermittent sites two months after flow resumption and before the next dry phase. The identification level ranged from family to haplotype. Metabarcoding and morphological identifications found similar alpha diversity patterns when looking at family and mixed taxonomic levels. Increasing taxonomic resolution with metabarcoding revealed a strong partitioning of beta diversity in nestedness and turnover components. At flow resumption, beta diversity at intermittent sites was dominated by nestedness when family-level information was employed, while turnover was evidenced as the most important component when using Operational Taxonomic Units (OTUs) or haplotypes. The increased taxonomic resolution with metabarcoding allowed us to detect species adapted to deal with intermittency, like the chironomid Cricotopus bicinctus and the ephemeropteran Cloeon dipterum. Our study thus shows that family and mixed taxonomic level are not sufficient to detect all aspects of macroinvertebrate community dynamics. High taxonomic resolution is especially important for intermittent streams where accurate information about species-specific habitat preference is needed to interpret diversity patterns induced by drying and the nestedness/turnover components of beta diversity are of interest to understand community assembly processes.
Collapse
|
30
|
Ferreira S, Tierno de Figueroa JM, Martins FMS, Verissimo J, Quaglietta L, Grosso-Silva JM, Lopes PB, Sousa P, Paupério J, Fonseca NA, Beja P. The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera. Biodivers Data J 2020; 8:e55137. [PMID: 32821214 PMCID: PMC7403161 DOI: 10.3897/bdj.8.e55137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The use of DNA barcoding allows unprecedented advances in biodiversity assessments and monitoring schemes of freshwater ecosystems; nevertheless, it requires the construction of comprehensive reference collections of DNA sequences that represent the existing biodiversity. Plecoptera are considered particularly good ecological indicators and one of the most endangered groups of insects, but very limited information on their DNA barcodes is available in public databases. Currently, less than 50% of the Iberian species are represented in BOLD. NEW INFORMATION The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera dataset contains records of 71 specimens of Plecoptera. All specimens have been morphologically identified to species level and belong to 29 species in total. This dataset contributes to the knowledge on the DNA barcodes and distribution of Plecoptera from the Iberian Peninsula and it is one of the IBI database public releases that makes available genetic and distribution data for a series of taxa.The species represented in this dataset correspond to an addition to public databases of 17 species and 21 BINs. Fifty-eight specimens were collected in Portugal and 18 in Spain during the period of 2004 to 2018. All specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources and their DNA barcodes are publicly available in the Barcode of Life Data System (BOLD) online database. The distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).
Collapse
Affiliation(s)
- Sonia Ferreira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
| | | | - Filipa MS Martins
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, PortugalDepartamento de Biologia, Faculdade de Ciências, Universidade do PortoPortoPortugal
| | - Joana Verissimo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, PortugalDepartamento de Biologia, Faculdade de Ciências, Universidade do PortoPortoPortugal
| | - Lorenzo Quaglietta
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Lisboa, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de AgronomiaLisboaPortugal
| | - José Manuel Grosso-Silva
- Museu de História Natural e da Ciência da Universidade do Porto, Porto, PortugalMuseu de História Natural e da Ciência da Universidade do PortoPortoPortugal
| | - Pedro B Lopes
- Rua do Torgal nº16, Trigais - Covilhã, 6215-295 Erada, Covilhã, PortugalRua do Torgal nº16, Trigais - Covilhã, 6215-295 EradaCovilhãPortugal
| | - Pedro Sousa
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
| | - Joana Paupério
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
| | - Nuno A Fonseca
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
| | - Pedro Beja
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Lisboa, PortugalCIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de AgronomiaLisboaPortugal
| |
Collapse
|
31
|
Hardulak LA, Morinière J, Hausmann A, Hendrich L, Schmidt S, Doczkal D, Müller J, Hebert PDN, Haszprunar G. DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species. Mol Ecol Resour 2020; 20:1542-1557. [PMID: 32559020 DOI: 10.1111/1755-0998.13212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
DNA metabarcoding was utilized for a large-scale, multiyear assessment of biodiversity in Malaise trap collections from the Bavarian Forest National Park (Germany, Bavaria). Principal component analysis of read count-based biodiversities revealed clustering in concordance with whether collection sites were located inside or outside of the National Park. Jaccard distance matrices of the presences of barcode index numbers (BINs) at collection sites in the two survey years (2016 and 2018) were significantly correlated. Overall similar patterns in the presence of total arthropod BINs, as well as BINs belonging to four major arthropod orders across the study area, were observed in both survey years, and are also comparable with results of a previous study based on DNA barcoding of Sanger-sequenced specimens. A custom reference sequence library was assembled from publicly available data to screen for pest or invasive arthropods among the specimens or from the preservative ethanol. A single 98.6% match to the invasive bark beetle Ips duplicatus was detected in an ethanol sample. This species has not previously been detected in the National Park.
Collapse
Affiliation(s)
- Laura A Hardulak
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Axel Hausmann
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Lars Hendrich
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Dieter Doczkal
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Jörg Müller
- National Park Bavarian Forest, Grafenau, Germany.,Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Rauhenebrach, Germany
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
32
|
Hausmann A, Segerer AH, Greifenstein T, Knubben J, Morinière J, Bozicevic V, Doczkal D, Günter A, Ulrich W, Habel JC. Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol Evol 2020; 10:4009-4020. [PMID: 32489627 PMCID: PMC7244892 DOI: 10.1002/ece3.6166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The number of insect species and insect abundances decreased severely during the past decades over major parts of Central Europe. Previous studies documented declines of species richness, abundances, shifts in species composition, and decreasing biomass of flying insects. In this study, we present a standardized approach to quantitatively and qualitatively assess insect diversity, biomass, and the abundance of taxa, in parallel. We applied two methods: Malaise traps, and automated and active light trapping. Sampling was conducted from April to October 2018 in southern Germany, at four sites representing conventional and organic farming. Bulk samples obtained from Malaise traps were further analyzed using DNA metabarcoding. Larger moths (Macroheterocera) collected with light trapping were further classified according to their degree of endangerment. Our methods provide valuable quantitative and qualitative data. Our results indicate more biomass and higher species richness, as well as twice the number of Red List lepidopterans in organic farmland than in conventional farmland. This combination of sampling methods with subsequent DNA metabarcoding and assignments of individuals according depending on ecological characteristics and the degree of endangerment allows to evaluate the status of landscapes and represents a suitable setup for large-scale long-term insect monitoring across Central Europe, and elsewhere.
Collapse
Affiliation(s)
| | | | | | | | - Jerôme Morinière
- Bavarian Natural History CollectionsMunichGermany
- Advanced Identification Methods GmbH (AIM)MunichGermany
| | | | | | | | - Werner Ulrich
- Department of Ecology and BiogeographyNicolaus Copernicus University TorunToruńPoland
| | - Jan Christian Habel
- Evolutionary ZoologyDepartment of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
33
|
Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Sci Rep 2019; 9:14064. [PMID: 31575968 PMCID: PMC6773776 DOI: 10.1038/s41598-019-50571-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Isogenus nubecula is a critically endangered Plecoptera species. Considered extinct in the UK, I. nubecula was recently rediscovered (in one location of the River Dee, Wales), after 22 years of absence. In a similar way to many other species of Perlodidae, I. nubecula could be utilised as a bio-indicator, for assessing water quality and health status of a given freshwater system. However, conventional monitoring of invertebrates via kick-sampling, is invasive and expensive (time consuming). Further, such methods require a high level of taxonomic expertise. Here, we compared the traditional kick-sampling method with the use of eDNA detection using qPCR and ddPCR-analyses. In spring 2018, we sampled eDNA from twelve locations on the River Dee. I. nubecula was detected using kick-sampling in five of these locations, three locations using both eDNA detection and kick-sampling and one location using eDNA detection alone – resulting in a total of six known and distinct populations of this critically endangered species. Interestingly, despite the eDNA assay being validated in vitro and in silico, and results indicating high sensitivity, qPCR analysis of the eDNA samples proved to be ineffective. In contrast, ddPCR analyses resulted in a clear detection of I. nubecula at four locations suggesting that inhibition most likely explains the large discrepancy between the obtained qPCR and ddPCR results. It is therefore important to explore inhibition effects on any new eDNA assay. We also highlight that ddPCR may well be the best option for the detection of aquatic organisms which are either rare or likely to shed low levels of eDNA into their environment.
Collapse
|
34
|
Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Geiger MF, Grabowski M, Rimet F, Rulik B, Strand M, Szucsich N, Weigand AM, Willassen E, Wyler SA, Bouchez A, Borja A, Čiamporová-Zaťovičová Z, Ferreira S, Dijkstra KDB, Eisendle U, Freyhof J, Gadawski P, Graf W, Haegerbaeumer A, van der Hoorn BB, Japoshvili B, Keresztes L, Keskin E, Leese F, Macher JN, Mamos T, Paz G, Pešić V, Pfannkuchen DM, Pfannkuchen MA, Price BW, Rinkevich B, Teixeira MAL, Várbíró G, Ekrem T. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:499-524. [PMID: 31077928 DOI: 10.1016/j.scitotenv.2019.04.247] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 05/21/2023]
Abstract
Effective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). We analysed gaps in the two most important reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a focus on the taxa most frequently used in WFD and MSFD. Our analyses show that coverage varies strongly among taxonomic groups, and among geographic regions. In general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, caddisflies and vascular plants) are well represented in the barcode libraries, while others have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also found that species monitored in several countries often are represented by barcodes in reference libraries, while species monitored in a single country frequently lack sequence records. A large proportion of species (up to 50%) in several taxonomic groups are only represented by private data in BOLD. Our results have implications for the future strategy to fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the monitoring of European aquatic biota under the WFD and MSFD. For example, missing species relevant to monitoring in multiple countries should be prioritized for future collaborative programs. We also discuss why a strategy for quality control and quality assurance of barcode reference libraries is needed and recommend future steps to ensure full utilisation of metabarcoding in aquatic biomonitoring.
Collapse
Affiliation(s)
- Hannah Weigand
- Musée National d'Histoire Naturelle, 25 Rue Münster, 2160 Luxembourg, Luxembourg.
| | - Arne J Beermann
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Universitaetsstr. 5, 45141 Essen, Germany.
| | - Fedor Čiampor
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Zoology Lab, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710--057 Braga, Portugal.
| | - Zoltán Csabai
- University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6, H7624 Pécs, Hungary.
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710--057 Braga, Portugal.
| | - Matthias F Geiger
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160, 53113 Bonn, Germany.
| | - Michał Grabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland.
| | - Frédéric Rimet
- INRA, Université Savoie Mont Blanc, UMR Carrtel, FR-74200 Thonon-les-Bains, France.
| | - Björn Rulik
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160, 53113 Bonn, Germany.
| | - Malin Strand
- Swedish University of Agricultural Sciences, Swedish Species Information Centre, Uppsala, Sweden.
| | | | - Alexander M Weigand
- Musée National d'Histoire Naturelle, 25 Rue Münster, 2160 Luxembourg, Luxembourg; University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Universitaetsstr. 5, 45141 Essen, Germany.
| | - Endre Willassen
- University of Bergen, University Museum of Bergen, NO-5007 Bergen, Norway.
| | - Sofia A Wyler
- info fauna - Centre Suisse de Cartographie de la Faune (CSCF), Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland.
| | - Agnès Bouchez
- INRA, Université Savoie Mont Blanc, UMR Carrtel, FR-74200 Thonon-les-Bains, France.
| | - Angel Borja
- AZTI - Marine Research Division, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain.
| | - Zuzana Čiamporová-Zaťovičová
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Zoology Lab, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Sónia Ferreira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | | | - Ursula Eisendle
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Jörg Freyhof
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany.
| | - Piotr Gadawski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland.
| | - Wolfram Graf
- University of Natural Resources and Life Sciences, Vienna, Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), Gregor-Mendel-Straße 33/DG, 1180 Vienna, Austria.
| | - Arne Haegerbaeumer
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | | | - Bella Japoshvili
- Ilia State University, Institute of Zoology, ⅗ Cholokashvili ave, 0179 Tbilisi, Georgia.
| | - Lujza Keresztes
- Babeș-Bolyai University, Faculty of Biology and Geology, Center of Systems Biology, Biodiversity and Bioresources, Cliniclor 5-7, 400006 Cluj Napoca, Romania
| | - Emre Keskin
- Ankara University, Agricultural Faculty, Department of Fisheries and Aquaculture, Evolutionary Genetics Laboratory (eGL), Ankara, Turkey.
| | - Florian Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Universitaetsstr. 5, 45141 Essen, Germany.
| | - Jan N Macher
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands.
| | - Tomasz Mamos
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| | - Vladimir Pešić
- University of Montenegro, Department of Biology, Cetinjski put bb., 20000 Podgorica, Montenegro
| | | | | | | | - Buki Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| | - Marcos A L Teixeira
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710--057 Braga, Portugal
| | - Gábor Várbíró
- MTA Centre for Ecological Research, Danube Research Institute, Department of Tisza River Research, Bem square 18/C, H4026 Debrecen, Hungary.
| | - Torbjørn Ekrem
- Norwegian University of Science and Technology, NTNU University Museum, Department of Natural History, NO-7491 Trondheim, Norway.
| |
Collapse
|
35
|
Huemer P, Wieser C, Stark W, Hebert PDN, Wiesmair B. DNA barcode library of megadiverse Austrian Noctuoidea (Lepidoptera) - a nearly perfect match of Linnean taxonomy. Biodivers Data J 2019; 7:e37734. [PMID: 31423084 PMCID: PMC6694074 DOI: 10.3897/bdj.7.e37734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
The aim of the study was to establish a nationwide barcode library for the most diverse group of Austrian Lepidoptera, the Noctuoidea, with 5 families (Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae) and around 690 species. Altogether, 3431 DNA barcode sequences from COI gene (cytochrome c oxidase 1) belonging to 671 species were gathered, with 3223 sequences >500 bp. The intraspecific divergence with a mean of only 0.17% is low in most species whereas interspecific distances to the Nearest Neighbour are significantly higher with an average of 4.95%. Diagnostic DNA barcodes were obtained for 658 species. Only 13 species (1.9% of the Austrian Noctuoidea) cannot be reliably identified from their DNA barcode (Setina aurita/Setina irrorella, Conisania leineri/Conisania poelli, Photedes captiuncula/Photedes minima, Euxoa obelisca/Euxoa vitta/Euxoa tritici, Mesapamaea secalella/Mesapamea secalis, Amphipoea fucosa/Amphipoea lucens). A similarly high identification performance was achieved by the Barcode Index (BIN) system. 671 species of Austrian Noctuoidea, representing 3202 records with BINs, are assigned to a total of 678 BINs. The vast majority of 649 species is placed into a single BIN, with only 13 species recognised as BIN-sharing (including the barcode sharing species above). Twenty-one species were assigned to more than one BIN and have to be checked for cryptic diversity in the future.
Collapse
Affiliation(s)
- Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| | - Christian Wieser
- Landesmuseum Kärnten, Klagenfurt am Wörthersee, Austria Landesmuseum Kärnten Klagenfurt am Wörthersee Austria
| | | | - Paul D N Hebert
- Biodiversity Institute of Ontario, Guelph, Canada Biodiversity Institute of Ontario Guelph Canada
| | - Benjamin Wiesmair
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| |
Collapse
|
36
|
Ashfaq M, Blagoev G, Tahir HM, Khan AM, Mukhtar MK, Akhtar S, Butt A, Mansoor S, Hebert PDN. Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS One 2019; 14:e0217086. [PMID: 31116764 PMCID: PMC6530854 DOI: 10.1371/journal.pone.0217086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/04/2019] [Indexed: 01/16/2023] Open
Abstract
Morphological study of 1,795 spiders from sites across Pakistan placed these specimens in 27 families and 202 putative species. COI sequences >400 bp recovered from 1,782 specimens were analyzed using neighbor-joining trees, Bayesian inference, barcode gap, and Barcode Index Numbers (BINs). Specimens of 109 morphological species were assigned to 123 BINs with ten species showing BIN splits, while 93 interim species included representatives of 98 BINs. Maximum conspecific divergences ranged from 0-5.3% while congeneric distances varied from 2.8-23.2%. Excepting one species pair (Oxyopes azhari-Oxyopes oryzae), the maximum intraspecific distance was always less than the nearest-neighbor (NN) distance. Intraspecific divergence values were not significantly correlated with geographic distance. Most (75%) BINs detected in this study were new to science, while those shared with other nations mainly derived from India. The discovery of many new, potentially endemic species and the low level of BIN overlap with other nations highlight the importance of constructing regional DNA barcode reference libraries.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Gergin Blagoev
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Arif M. Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | - Saleem Akhtar
- Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Abida Butt
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, Hausmann A, Hendrich L, Regalado L, Rulik B, Schmidt S, Wägele JW, Hebert PDN. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol Ecol Resour 2019; 19:900-928. [PMID: 30977972 PMCID: PMC6851627 DOI: 10.1111/1755-0998.13022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022]
Abstract
This study summarizes results of a DNA barcoding campaign on German Diptera, involving analysis of 45,040 specimens. The resultant DNA barcode library includes records for 2,453 named species comprising a total of 5,200 barcode index numbers (BINs), including 2,700 COI haplotype clusters without species‐level assignment, so called “dark taxa.” Overall, 88 out of 117 families (75%) recorded from Germany were covered, representing more than 50% of the 9,544 known species of German Diptera. Until now, most of these families, especially the most diverse, have been taxonomically inaccessible. By contrast, within a few years this study provided an intermediate taxonomic system for half of the German Dipteran fauna, which will provide a useful foundation for subsequent detailed, integrative taxonomic studies. Using DNA extracts derived from bulk collections made by Malaise traps, we further demonstrate that species delineation using BINs and operational taxonomic units (OTUs) constitutes an effective method for biodiversity studies using DNA metabarcoding. As the reference libraries continue to grow, and gaps in the species catalogue are filled, BIN lists assembled by metabarcoding will provide greater taxonomic resolution. The present study has three main goals: (a) to provide a DNA barcode library for 5,200 BINs of Diptera; (b) to demonstrate, based on the example of bulk extractions from a Malaise trap experiment, that DNA barcode clusters, labelled with globally unique identifiers (such as OTUs and/or BINs), provide a pragmatic, accurate solution to the “taxonomic impediment”; and (c) to demonstrate that interim names based on BINs and OTUs obtained through metabarcoding provide an effective method for studies on species‐rich groups that are usually neglected in biodiversity research projects because of their unresolved taxonomy.
Collapse
Affiliation(s)
| | | | | | - Matthias F Geiger
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | | | | | | | | | | | - Björn Rulik
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | | | - Johann-Wolfgang Wägele
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Young MK, Smith RJ, Pilgrim KL, Fairchild MP, Schwartz MK. Integrative taxonomy refutes a species hypothesis: The asymmetric hybrid origin of Arsapnia arapahoe (Plecoptera, Capniidae). Ecol Evol 2019; 9:1364-1377. [PMID: 30805166 PMCID: PMC6374720 DOI: 10.1002/ece3.4852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
Abstract
Molecular tools are commonly directed at refining taxonomies and the species that constitute their fundamental units. This has been especially insightful for groups for which species hypotheses are ambiguous and have largely been based on morphological differences between certain life stages or sexes, and has added importance when taxa are a focus of conservation efforts. Here, we examine the taxonomic status of Arsapnia arapahoe, a winter stonefly in the family Capniidae that is a species of conservation concern because of its limited abundance and restricted range in northern Colorado, USA. Phylogenetic analyses of sequences of mitochondrial and nuclear genes of this and other capniid stoneflies from this region and elsewhere in western North America indicated extensive haplotype sharing, limited genetic differences, and a lack of reciprocal monophyly between A. arapahoe and the sympatric A. decepta, despite distinctive and consistent morphological differences in the sexual apparatus of males of both species. Analyses of autosomal and sex-linked single nucleotide polymorphisms detected using genotyping by sequencing indicated that all individuals of A. arapahoe consisted of F1 hybrids between female A. decepta and males of another sympatric stonefly, Capnia gracilaria. Rather than constitute a self-sustaining evolutionary lineage, A. arapahoe appears to represent the product of nonintrogressive hybridization in the limited area of syntopy between two widely distributed taxa. This offers a cautionary tale for taxonomists and conservation biologists working on the less-studied components of the global fauna.
Collapse
Affiliation(s)
- Michael K. Young
- U.S. Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontana
| | - Rebecca J. Smith
- U.S. Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontana
| | - Kristine L. Pilgrim
- U.S. Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontana
| | | | - Michael K. Schwartz
- U.S. Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontana
| |
Collapse
|
39
|
Ekrem T, Stur E, Orton MG, Adamowicz SJ. DNA barcode data reveal biogeographic trends in Arctic non-biting midges. Genome 2018; 61:787-796. [DOI: 10.1139/gen-2018-0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chironomid flies (non-biting midges) are among the most abundant and diverse animals in Arctic regions, but detailed analyses of species distributions and biogeographical patterns are hampered by challenging taxonomy and reliance on morphology for species-level identification. Here we take advantage of available DNA barcode data of Arctic Chironomidae in BOLD to analyse similarities in species distributions across a northern Nearctic – West Palearctic gradient. Using more than 260 000 barcodes representing 4666 BINs (Barcode Index Numbers) and 826 named species (some with interim names) from a combination of public and novel data, we show that the Greenland chironomid fauna shows affinities to both the Nearctic and the West Palearctic regions. While raw taxon counts indicate a strong Greenland – North American affinity, comparisons using Chao’s dissimilarity metric support a slightly higher similarity between Greenland and West Palearctic chironomid communities. Results were relatively consistent across different definitions of species taxonomic units, including morphologically determined species, BINs, and superBINs based on a ∼4.5% threshold. While most taxa found in Greenland are shared with at least one other region, reflecting circum-Arctic dispersal, our results also reveal that Greenland harbours a small endemic biodiversity. Our exploratory study showcases how DNA barcoding efforts using standardized gene regions contribute to an understanding of broad-scale patterns in biogeography by enabling joint analysis of public DNA sequence data derived from diverse prior studies.
Collapse
Affiliation(s)
- Torbjørn Ekrem
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elisabeth Stur
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Matthew G. Orton
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah J. Adamowicz
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
40
|
Hawlitschek O, Fernández-González A, Balmori-de la Puente A, Castresana J. A pipeline for metabarcoding and diet analysis from fecal samples developed for a small semi-aquatic mammal. PLoS One 2018; 13:e0201763. [PMID: 30106960 PMCID: PMC6091967 DOI: 10.1371/journal.pone.0201763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Metabarcoding allows the genetic analysis of pooled samples of various sources. It is becoming popular in the study of animal diet, especially because it allows the analysis of the composition of feces without the need of handling animals. In this work, we studied the diet of the Pyrenean desman (Galemys pyrenaicus), a small semi-aquatic mammal endemic to the Iberian Peninsula and the Pyrenees, by sequencing COI minibarcodes from feces using next-generation sequencing techniques. For the identification of assembled sequences, we employed a tree-based identification method that used a reference tree of sequences of freshwater organisms. The comparison of freshly collected fecal samples and older samples showed that fresh samples produced significantly more sequencing reads. They also rendered more operational taxonomical units (OTUs), but not significantly. Our analyses of 41 samples identified 224 OTUs corresponding to species of the reference tree. Ephemeroptera, Diptera excl. Chironomidae, and Chironomidae were the most highly represented groups in terms of reads as well as samples. Other groups of freshwater organisms detected were Plecoptera, Trichoptera, Neuropteroida, Coleoptera, Crustacea, and Annelida. Our results are largely in line with previous morphological and genetic studies on the diet of the Pyrenean desman, but allowed the identification of a higher diversity of OTUs in each sample. Additionally, the bioinformatic pipeline we developed for deep sequencing of fecal samples will enable the quantitative analysis of the diet of this and other species, which can be highly useful to determine their ecological requirements.
Collapse
Affiliation(s)
- Oliver Hawlitschek
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
- Zoologische Staatssammlung München (ZSM-SNSB), München, Germany
- * E-mail:
| | | | - Alfonso Balmori-de la Puente
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
| | - Jose Castresana
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
| |
Collapse
|
41
|
Zembrzuski DC, Anderson FE. Clarifying the phylogenetic relationships and taxonomy of Stenonema, Stenacron and Maccaffertium, three common eastern North American mayfly genera. Mol Phylogenet Evol 2018; 128:212-220. [PMID: 30099062 DOI: 10.1016/j.ympev.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/01/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Stenonema, Stenacron, and Maccaffertium are three closely related genera of mayflies (Ephemeroptera:Heptageniidae) commonly found across North America. Due to their primarily aquatic life history and sensitivity to aquatic pollutants, these mayflies are often used as water quality indicators. However, there is little morphological variation within these genera, leading to difficulties in identification and rampant taxonomic confusion, limiting their utility as bioindicators. In an attempt to resolve the phylogenetic relationships of Stenonema, Stenacron, and Maccaffertium, and to clarify their higher-level classifications, we sequenced regions of two mitochondrial genes (cytochrome oxidase subunit 1 (cox1) and 16S ribosomal RNA (rrnl)) and two nuclear genes (Wingless (Wg) and histone H3) from 60 individuals representing most of the described species in these genera and included data from representatives of three heptageniid genera (Kageronia, Macdunnoa and Pseudiron) proposed in previous studies to be closely related to our focal taxa as well as two more distantly related heptageniid genera (Epeorus and Heptagenia) to root the phylogenies. Maximum likelihood and Bayesian analysis were conducted on single-gene and concatenated multi-gene data sets and species tree methods were utilized to resolve relationships. These analyses resolved Stenacron as a monophyletic group sister to a clade comprising Macdunnoa, Maccaffertium and Stenonema. Maccaffertium was found to be paraphyletic, with Stenonema femoratum resolved within Maccaffertium as sister to M. mexicanum. Many relationships remained unresolved or varied across analyses, making revision of the classification based on phylogenetic considerations challenging. To minimize confusion while naming clades and acknowledging uncertainty in our phylogenetic conclusions, we redefine Stenonema to include Maccaffertium and propose three subgenera-Stenonema, Maccaffertium and Lewisa- for key well-supported clades.
Collapse
Affiliation(s)
- Deanna C Zembrzuski
- Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Frank E Anderson
- Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
42
|
Chimeno C, Morinière J, Podhorna J, Hardulak L, Hausmann A, Reckel F, Grunwald JE, Penning R, Haszprunar G. DNA Barcoding in Forensic Entomology - Establishing a DNA Reference Library of Potentially Forensic Relevant Arthropod Species. J Forensic Sci 2018; 64:593-601. [PMID: 29995972 DOI: 10.1111/1556-4029.13869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
Throughout the years, DNA barcoding has gained in importance in forensic entomology as it leads to fast and reliable species determination. High-quality results, however, can only be achieved with a comprehensive DNA barcode reference database at hand. In collaboration with the Bavarian State Criminal Police Office, we have initiated at the Bavarian State Collection of Zoology the establishment of a reference library containing arthropods of potential forensic relevance to be used for DNA barcoding applications. CO1-5P' DNA barcode sequences of hundreds of arthropods were obtained via DNA extraction, PCR and Sanger Sequencing, leading to the establishment of a database containing 502 high-quality sequences which provide coverage for 88 arthropod species. Furthermore, we demonstrate an application example of this library using it as a backbone to a high throughput sequencing analysis of arthropod bulk samples collected from human corpses, which enabled the identification of 31 different arthropod Barcode Index Numbers.
Collapse
Affiliation(s)
- Caroline Chimeno
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Jérôme Morinière
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Jana Podhorna
- Mendel University in Brno (MEDELU), Zemedelska 1, Brno, 613 00, Czech Republic
| | - Laura Hardulak
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Axel Hausmann
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Frank Reckel
- Abteilung II, Bayerisches Landeskriminalamt, Maillingerstraße 15, 80636, München, Germany
| | - Jan E Grunwald
- Abteilung II, Bayerisches Landeskriminalamt, Maillingerstraße 15, 80636, München, Germany
| | - Randolph Penning
- Institute of Legal Medicine, Ludwig-Maximilians Universität, München, Germany
| | - Gerhard Haszprunar
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| |
Collapse
|
43
|
Théry T, Kanturski M, Favret C. Molecular data and species diagnosis in Essigella Del Guercio, 1909 (Sternorrhyncha, Aphididae, Lachninae). Zookeys 2018:103-122. [PMID: 29910664 PMCID: PMC6002416 DOI: 10.3897/zookeys.765.24144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/28/2018] [Indexed: 11/12/2022] Open
Abstract
Morphological and molecular data are used to describe three new species of Essigella (Sternorrhyncha: Aphididae: Lachninae): Essigelladomenechisp. n., Essigellagagnonaesp. n., and Essigellasorensenisp. n.; and to re-establish as valid Essigellapatchae Hottes, 1957, stat. n., until now considered a synonym of E.pini Wilson, 1919. The catalogue of Essigella species is updated. This study highlights the need and utility to use discreet DNA characters in aphid species diagnoses.
Collapse
Affiliation(s)
- Thomas Théry
- University of Montreal, Department of Biological Sciences, Biodiversity Centre, 4101 E. Sherbrooke Street, Montreal QC, H1X 2B2 Canada
| | - Mariusz Kanturski
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Colin Favret
- University of Montreal, Department of Biological Sciences, Biodiversity Centre, 4101 E. Sherbrooke Street, Montreal QC, H1X 2B2 Canada
| |
Collapse
|
44
|
Liu J, Milne RI, Möller M, Zhu GF, Ye LJ, Luo YH, Yang JB, Wambulwa MC, Wang CN, Li DZ, Gao LM. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol Ecol Resour 2018; 18:1115-1131. [PMID: 29786943 DOI: 10.1111/1755-0998.12903] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022]
Abstract
Rapid and accurate identification of endangered species is a critical component of biosurveillance and conservation management, and potentially policing illegal trades. However, this is often not possible using traditional taxonomy, especially where only small or preprocessed parts of plants are available. Reliable identification can be achieved via a comprehensive DNA barcode reference library, accompanied by precise distribution data. However, these require extensive sampling at spatial and taxonomic scales, which has rarely been achieved for cosmopolitan taxa. Here, we construct a comprehensive DNA barcode reference library and generate distribution maps using species distribution modelling (SDM), for all 15 Taxus species worldwide. We find that trnL-trnF is the ideal barcode for Taxus: It can distinguish all Taxus species and in combination with ITS identify hybrids. Among five analysis methods tested, NJ was the most effective. Among 4,151 individuals screened for trnL-trnF, 73 haplotypes were detected, all species-specific and some population private. Taxonomical, geographical and genetic dimensions of sampling strategy were all found to affect the comprehensiveness of the resulting DNA barcode library. Maps from SDM showed that most species had allopatric distributions, except T. mairei in the Sino-Himalayan region. Using the barcode library and distribution map data, two unknown forensic samples were identified to species (and in one case, population) level and another was determined as a putative interspecific hybrid. This integrated species identification system for Taxus can be used for biosurveillance, conservation management and to monitor and prosecute illegal trade. Similar identification systems are recommended for other IUCN- and CITES-listed taxa.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Guang-Fu Zhu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin-Jiang Ye
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Huang Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Moses C Wambulwa
- Biochemistry Department, South Eastern Kenya University, Kitui, Kenya
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
45
|
Raupach MJ, Hannig K, Moriniére J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli, 1810 (Insecta, Coleoptera, Carabidae). Zookeys 2018; 759:57-80. [PMID: 29853775 PMCID: PMC5968077 DOI: 10.3897/zookeys.759.24129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Amara Bonelli, 1810 is a very speciose and taxonomically difficult genus of the Carabidae. The identification of many of the species is accomplished with considerable difficulty, in particular for females and immature stages. In this study the effectiveness of DNA barcoding, the most popular method for molecular species identification, was examined to discriminate various species of this genus from Central Europe. DNA barcodes from 690 individuals and 47 species were analysed, including sequences from previous studies and more than 350 newly generated DNA barcodes. Our analysis revealed unique BINs for 38 species (81%). Interspecific K2P distances below 2.2% were found for three species pairs and one species trio, including haplotype sharing between Amara alpina/Amara torrida and Amara communis/Amara convexior/Amara makolskii. This study represents another step in generating an extensive reference library of DNA barcodes for carabids, highly valuable bioindicators for characterizing disturbances in various habitats.
Collapse
Affiliation(s)
- Michael J. Raupach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26111 Oldenburg, Germany
| | | | - Jérôme Moriniére
- Taxonomic coordinator – German Barcode of Life (GBOL), Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|
46
|
Havemann N, Gossner MM, Hendrich L, Morinière J, Niedringhaus R, Schäfer P, Raupach MJ. From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha, Nepomorpha) of Germany based on DNA barcodes. PeerJ 2018; 6:e4577. [PMID: 29736329 PMCID: PMC5936072 DOI: 10.7717/peerj.4577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may be found in almost every freshwater environment and have very specific habitat requirements, making them excellent bioindicator organisms for water quality. However, a correct determination by morphology is challenging in many species groups due to high morphological variability and polymorphisms within, but low variability between species. Furthermore, it is very difficult or even impossible to identify the immature life stages or females of some species, e.g., of the corixid genus Sigara. In this study we tested the effectiveness of a DNA barcode library to discriminate species of the Gerromorpha and Nepomorpha of Germany. We analyzed about 700 specimens of 67 species, with 63 species sampled in Germany, covering more than 90% of all recorded species. Our library included various morphological similar taxa, e.g., species within the genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five species (82%) were unambiguously assigned to a single Barcode Index Number (BIN) by their barcode sequences, whereas BIN sharing was observed for 10 species. Furthermore, we found monophyletic lineages for 52 analyzed species. Our data revealed interspecific K2P distances with below 2.2% for 18 species. Intraspecific distances above 2.2% were shown for 11 species. We found evidence for hybridization between various corixid species (Sigara, Callicorixa), but our molecular data also revealed exceptionally high intraspecific distances as a consequence of distinct mitochondrial lineages for Cymatia coleoptrata and the pygmy backswimmer Plea minutissima. Our study clearly demonstrates the usefulness of DNA barcodes for the identification of the aquatic Heteroptera of Germany and adjacent regions. In this context, our data set represents an essential baseline for a reference library for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future. The existing data also opens new questions regarding the causes of observed low inter- and high intraspecific genetic variation and furthermore highlight the necessity of taxonomic revisions for various taxa, combining both molecular and morphological data.
Collapse
Affiliation(s)
- Nadine Havemann
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Lars Hendrich
- Sektion Insecta varia, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Jèrôme Morinière
- Taxonomic coordinator-German Barcode of Life (GBOL), SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Rolf Niedringhaus
- Department of Biology, Earth and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter Schäfer
- B.U.G.S. (Biologische Umwelt-Gutachten Schäfer), Telgte, North-Rhine Westphalia, Germany
| | - Michael J Raupach
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| |
Collapse
|
47
|
Bista I, Carvalho GR, Tang M, Walsh K, Zhou X, Hajibabaei M, Shokralla S, Seymour M, Bradley D, Liu S, Christmas M, Creer S. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol Ecol Resour 2018; 18:1020-1034. [PMID: 29667329 DOI: 10.1111/1755-0998.12888] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023]
Abstract
New applications of DNA and RNA sequencing are expanding the field of biodiversity discovery and ecological monitoring, yet questions remain regarding precision and efficiency. Due to primer bias, the ability of metabarcoding to accurately depict biomass of different taxa from bulk communities remains unclear, while PCR-free whole mitochondrial genome (mitogenome) sequencing may provide a more reliable alternative. Here, we used a set of documented mock communities comprising 13 species of freshwater macroinvertebrates of estimated individual biomass, to compare the detection efficiency of COI metabarcoding (three different amplicons) and shotgun mitogenome sequencing. Additionally, we used individual COI barcoding and de novo mitochondrial genome sequencing, to provide reference sequences for OTU assignment and metagenome mapping (mitogenome skimming), respectively. We found that, even though both methods occasionally failed to recover very low abundance species, metabarcoding was less consistent, by failing to recover some species with higher abundances, probably due to primer bias. Shotgun sequencing results provided highly significant correlations between read number and biomass in all but one species. Conversely, the read-biomass relationships obtained from metabarcoding varied across amplicons. Specifically, we found significant relationships for eight of 13 (amplicons B1FR-450 bp, FF130R-130 bp) or four of 13 (amplicon FFFR, 658 bp) species. Combining the results of all three COI amplicons (multiamplicon approach) improved the read-biomass correlations for some of the species. Overall, mitogenomic sequencing yielded more informative predictions of biomass content from bulk macroinvertebrate communities than metabarcoding. However, for large-scale ecological studies, metabarcoding currently remains the most commonly used approach for diversity assessment.
Collapse
Affiliation(s)
- Iliana Bista
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Gary R Carvalho
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| | - Min Tang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kerry Walsh
- Environment Agency, Horizon House, Bristol, UK
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Shadi Shokralla
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Mathew Seymour
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| | | | - Shanlin Liu
- Natural History Museum of Denmark, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | | | - Simon Creer
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| |
Collapse
|
48
|
Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 2018; 27:613-635. [DOI: 10.1111/mec.14486] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Cene Fišer
- SubBio Lab; Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Christopher T. Robinson
- Department of Aquatic Ecology; Eawag; Dübendorf Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
| | - Florian Malard
- Université Lyon; Université Claude Bernard Lyon 1; CNRS; ENTPE; UMR5023 LEHNA Villeurbanne France
| |
Collapse
|