1
|
Zhong X, Wu X, Zhou Y, Wu R, Yang J, Yin H, Meng H, Xie W, Liu G, Wang C, Bai P, Zhang W. PET imaging assist investigation of HDAC6 expression change in MDD and evaluating antidepressant efficacy of a newly developed HDAC6 inhibitor. Eur J Med Chem 2024; 280:116908. [PMID: 39366254 DOI: 10.1016/j.ejmech.2024.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
The histone deacetylase 6 (HDAC6) is closely related to the pathogenesis of depression in epigenetic regulation. However, it remains unclear how HDAC6 expression changes in depression pathophysiology and whether it is a target for antidepressant treatment. Herein, we investigate the expression change of HDAC6 in major depressive disorder (MDD) and evaluate the efficacy of a novel HDAC6 inhibitor, PB200, using positron emission tomography (PET) imaging. PET imaging studies with an HDAC6 PET probe [18F]Bavarostat allied with in vitro experiments demonstrated significantly increased HDAC6 expression in the brains of MDD mice. To investigate if pharmacological inhibition of HDAC6 can exert antidepressant effects, a series of naphthyridine-based HDAC6 inhibitors were designed and synthesized, among which PB200 demonstrated high selectivity and inhibitory activity against HDAC6, favorable metabolic stability, and excellent brain uptake. Moreover, PB200 exhibited significant antidepressant effects by restoring abnormal HDAC6 expression level and alleviating neuroinflammation. These results imply that targeting HDAC6 shows promise as a therapeutic strategy for depression, and PB200 is a potential therapeutic option for treating MDD.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Honghai Yin
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui Meng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiyao Xie
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Luong PQ, Lee GB, Kim JI. Inhibition of HDAC6 mitigates high-fat diet-induced kidney inflammation and hypertension via reduced infiltration of macrophages. Biochem Biophys Res Commun 2024; 735:150800. [PMID: 39406024 DOI: 10.1016/j.bbrc.2024.150800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Obesity-mediated hypertension is a worldwide problem. Recent research has indicated that chronic inflammation is associated with the pathogenesis of obese hypertension. Activated immune cells infiltrate target organs, such as arteries, kidneys, and brain, causing end-organ damage and hypertension. Histone deacetylase 6 (HDAC6) regulates the inflammatory cell activity mediating the production of inflammatory cytokines and may play a role in the crosstalk between inflammation and hypertension. In this study, we investigated the roles of HDAC6 in high-fat diet (HFD)-induced kidney inflammation and hypertension. Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD for 15 weeks. HFD-induced hypertension with increased HDAC6 activities in the kidney and bone marrow-derived macrophages (BMDM). When HFD group reached the hypertensive phase, each group of mice was intraperitoneally injected with vehicle or selective HDAC6 inhibitor Tubacin (1 mg/kg/day) for 14 days. Tubacin treatment lowered blood pressure (BP) of HFD-fed mice to the normal level with successful inhibition of HDAC6 activity. Immunohistochemical staining of F4/80, which is known as a macrophage marker, revealed that HFD promoted macrophage infiltration into the kidney. Consequently, pro-inflammatory factors TNFα and IL-6 gene expressions in the kidney were increased by HFD. Tubacin canceled HFD-induced macrophage infiltration and inflammation in the kidney. HDAC6 gene silencing and Tubacin treatment in Raw 264.7 cells also blocked the chemoattractant-stimulated cell migration in vitro. The results reveal the novel role of HDAC6 in BMDM migration, kidney inflammation, and high BP induced by HFD providing HDAC6 inhibitors as a therapeutic option for obesity-mediated hypertension.
Collapse
Affiliation(s)
- Phuong Quynh Luong
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Gwan Beom Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea.
| |
Collapse
|
3
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Jasim SA, Altalbawy FMA, Abohassan M, Oghenemaro EF, Bishoyi AK, Singh RP, Kaur P, Sivaprasad GV, Mohammed JS, Hulail HM. Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge. Cell Biochem Biophys 2024:10.1007/s12013-024-01587-0. [PMID: 39419931 DOI: 10.1007/s12013-024-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The histone acetyl transferases (HATs) and histone deacetylases (HDACs), which are mostly recognized for their involvement in regulating chromatin remodeling via histone acetylation/deacetylation, have been shown to also change several non-histone proteins to regulate other cellular processes. Acetylation affects the activity or function of cytokine receptors, nuclear hormone receptors, intracellular signaling molecules, and transcription factors in connection to inflammation. Some small-molecule HDAC inhibitors are utilized as anticancer medications in clinical settings due to their capability to regulate cellular growth arrest, differentiation, and death. Here, we summarize our present knowledge of the innate and adaptive immunological pathways that classical HDAC enzymes control. The aim is to justify the targeted (or non-targeted) use of inhibitors against certain HDAC enzymes in inflammatory diseases such as arthritis, inflammatory bowel diseases (IBD), airways inflammation and neurological diseases.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Ravindra Pal Singh
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Galla MS, Sharma N, Mishra P, Shankaraiah N. Recent insights of PROTAC developments in inflammation-mediated and autoimmune targets: a critical review. RSC Med Chem 2024; 15:2585-2600. [PMID: 39149114 PMCID: PMC11324044 DOI: 10.1039/d4md00142g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 08/17/2024] Open
Abstract
According to the mounting evidence in the literature, pro-inflammatory mediators/targets activate multiple signalling pathways to trigger illnesses that are ultimately responsible for acute pain, chronic inflammatory diseases, and several auto-immune disorders. Conventional drugs have been ruled out since proteolysis-targeting chimeras (PROTACs) are poised to overcome the limitations of traditional therapies. These heterobifunctional molecules help to degrade the targeted proteins of interest through ubiquitination. This review encompasses current and future aspects of PROTACs in inflammation-mediated and autoimmune targets. Different key points are highlighted and discussed, such as why PROTACs are preferred in this disease area, drawbacks and lessons learnt from the past, the role of linkers in establishing crucial degradation, in vitro findings, pharmacokinetics, in silico parameters, limitations of PROTACs in clinical settings, and future outcomes.
Collapse
Affiliation(s)
- Mary Sravani Galla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nitika Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Priyanka Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
7
|
Zhang C, Liu X, Gu C, Su Y, Lv J, Liu Y, Gao Y, Chen H, Xu N, Xiao J, Xu Z, Su W. Histone deacetylases facilitate Th17-cell differentiation and pathogenicity in autoimmune uveitis via CDK6/ID2 axis. J Adv Res 2024:S2090-1232(24)00313-8. [PMID: 39107200 DOI: 10.1016/j.jare.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Autoimmune uveitis (AU) is a prevalent ocular autoimmune disease leading to significant visual impairment. However, underlying pathogenesis of AU required to develop more efficient therapy remain unclear. METHODS We isolated peripheral blood mononuclear cells (PBMCs) from AU patients and performed single-cell RNA sequencing (scRNA-seq). Besides, experimental autoimmune uveitis (EAU) model was established and treated with histone deacetylase inhibitor (HDACi) Belinostat or vehicle. We extracted immune cells from Blank, EAU, and HDACi-treated EAU mice and used scRNA-seq, flow cytometry, siRNA, specific inhibitors, and adoptive transfer experiments to explore the role of HDACs and its downstream potential molecular mechanisms in the immune response of EAU and AU. RESULTS We found highly expressed histone deacetylases (HDACs) family in AU patients and identified it as a key factor related to CD4+ effector T cell differentiation in the pathogenesis of AU. Our further studies showed that targeted inhibition of HDACs effectively alleviated EAU, restored its Th17/Treg balance, and reduced inflammatory gene expression, especially in CD4+ T cells. Post-HDACs inhibition, Treg proportions increased with enhanced immunomodulatory effects. Importantly, HDACs exhibited a positive promoting role on Th17 cells. Based on scRNA-seq screening and application of knock-down siRNAs and specific inhibitors in vitro and vivo, we identified CDK6 as a key downstream molecule regulated by HDAC1/3/6 through acetyl-histone H3/p53/p21 axis, which is involved in Th17 pathogenicity and EAU development. Additionally, HDACs-regulated CDK6 formed a positive loop with ID2, inducing PIM1 upregulation, promoting Th17 cell differentiation and pathogenicity, and correlates with AU progression. CONCLUSION Based on the screening of clinical samples and downstream molecular functional validation experiments, we revealed a driving role for HDACs and the HDACs-regulated CDK6/ID2 axis in Th17 cell differentiation and pathogenicity in AU, proposing a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hui Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nanwei Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wenru Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
8
|
Husain S, Obert E, Singh S, Schnabolk G. Inhibition of HDAC1 and 3 in the Presence of Systemic Inflammation Reduces Retinal Degeneration in a Model of Dry Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2024; 40:397-406. [PMID: 38608232 DOI: 10.1089/jop.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Purpose: Previously, we identified increased retinal degeneration and cytokine response in a mouse model of dry age-related macular degeneration (AMD) in the presence of systemic inflammation from rheumatoid arthritis (RA). Histone deacetylases (HDACs) regulate cytokine production by reducing acetylation and are found to be dysregulated in inflammatory diseases, including RA and AMD. Therefore, this current study investigates the effect of HDAC inhibition on AMD progression in the presence of systemic inflammation. Methods: Collagen induced arthritis (CIA) was induced in C57BL6J mice, followed by sodium iodate (NaIO3)-induced retinal degeneration. Mice were treated with a selective HDAC class I inhibitor, MS-275, and retinal structure [optical coherence tomography (OCT)], function (electroretinography), and molecular changes quantitative real-time polymerase chain reaction (RT-qPCR, Western Blot) were assessed. Results: NaIO3 retinal damage was diminished in CIA mice treated with MS-275 (P ≤ 0.05). While no significant difference was observed in retinal pigment epithelium (RPE) function, a trend in increased c-wave amplitude was detected in CIA + NaIO3 mice treated with MS-275. Finally, we identified decreased Hdac1, Hdac3, and Cxcl9 expression in CIA + NaIO3 mouse RPE/choroid when treated with MS-275 (P ≤ 0.05). Conclusions: Our data demonstrate that HDAC inhibition can reduce the additive effect of NaIO3-induced retinal degeneration in the presence of systemic inflammation by CIA as measured by OCT analysis. In addition, HDAC inhibition in CIA + NaIO3 treated mice resulted in reduced cytokine production. These findings are highly innovative and provide additional support to the therapeutic potential of HDAC inhibitors for dry AMD treatment.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudha Singh
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Banerjee S, Jana S, Jha T, Ghosh B, Adhikari N. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches. Comput Biol Chem 2024; 110:108051. [PMID: 38520883 DOI: 10.1016/j.compbiolchem.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandeep Jana
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
10
|
Nie J, Wu H, Luan Y, Wu J. The Development of HDAC and Tubulin Dual-Targeting Inhibitors for Cancer Therapy. Mini Rev Med Chem 2024; 24:480-490. [PMID: 37461341 DOI: 10.2174/1389557523666230717110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2024]
Abstract
Histone deacetylases (HDACs) are a class of enzymes that are responsible for the removal of acetyl groups from the ε-N-acetyl lysine of histones, allowing histones to wrap DNA more tightly. HDACs play an essential role in many biological processes, such as gene regulation, transcription, cell proliferation, angiogenesis, migration, differentiation and metastasis, which make it an excellent target for anticancer drug discovery. The search for histone deacetylase inhibitors (HDACis) has been intensified, with numerous HDACis being discovered, and five of them have reached the market. However, currently available HDAC always suffers from several shortcomings, such as limited efficacy, drug resistance, and toxicity. Accordingly, dual-targeting HDACis have attracted much attention from academia to industry, and great advances have been achieved in this area. In this review, we summarize the progress on inhibitors with the capacity to concurrently inhibit tubulin polymerization and HDAC activity and their application in cancer treatment.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Huina Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
11
|
Mane RR, Kale PP. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:689-706. [PMID: 36409592 DOI: 10.1515/jcim-2022-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Various studies have shown that cytokines are important regulators in rheumatoid arthritis (RA). In synovial inflammation alteration of the enzyme HDAC, IMPDH enzyme, mTOR pathway, and JAK pathway increase cytokine level. These increased cytokine levels are responsible for the inflammation in RA. Inflammation is a physiological and normal reaction of the immune system against dangerous stimuli such as injury and infection. The cytokine-based approach improves the treatment of RA. To reach this goal, various researchers and scientists are working more aggressively by using a combination approach. The present review of combination therapy provides essential evidence about the possible synergistic effect of combinatorial agents. We have focused on the effects of HDAC inhibitor with IMPDH inhibitor and mTOR inhibitor with JAK inhibitor in combination for the treatment of RA. Combining various targeted strategies can be helpful for the treatment of RA.
Collapse
Affiliation(s)
- Reshma Rajendra Mane
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Yu WC, Yeh TY, Ye CH, Chong PCT, Ho YH, So DK, Yap KY, Peng GR, Shao CH, Jagtap AD, Chern JW, Lin CS, Lin SP, Lin SL, Yu SH, Yu CW. Discovery of HDAC6, HDAC8, and 6/8 Inhibitors and Development of Cell-Based Drug Screening Models for the Treatment of TGF-β-Induced Idiopathic Pulmonary Fibrosis. J Med Chem 2023; 66:10528-10557. [PMID: 37463500 DOI: 10.1021/acs.jmedchem.3c00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-β-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-β-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Yeh
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | | | - Yi-Hsun Ho
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Dorothy Kazuno So
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Hsuan Shao
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ajit Dhananjay Jagtap
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ji-Wang Chern
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Center of Systems Biology, National Taiwan University, Taipei 106, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chao-Wu Yu
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
13
|
Liu G, Mondal P, Sang N, Li Z, Ding W, Yang L, Liu Y, Birar VC, Gomm A, Tanzi RE, Zhang C, Shen S, Wang C, Lu X, Bai P. Design, synthesis, and anti-inflammatory activity characterization of novel brain-permeable HDAC6 inhibitors. Eur J Med Chem 2023; 254:115327. [PMID: 37098307 DOI: 10.1016/j.ejmech.2023.115327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.
Collapse
Affiliation(s)
- Gang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Na Sang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zihua Li
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Vishal C Birar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Ping Bai
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
15
|
Mao D, Jiang H, Zhang F, Yang H, Fang X, Zhang Q, Zhao G. HDAC2 exacerbates rheumatoid arthritis progression via the IL-17-CCL7 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37021908 DOI: 10.1002/tox.23802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Histone deacetylases (HDACs) have been reported to regulate the immune response in rheumatoid arthritis (RA). The current study aimed to explore key HDACs and their molecular mechanism in RA. First, the expression of HDAC1, HDAC2, HDAC3 and HDAC8 in RA synovial tissue was determined by qRT-PCR. The effects of HDAC2 on the proliferation, migration, invasion, and apoptosis of fibroblast-like synoviocytes (FLS) in vitro were studied. Furthermore, collagen-induced arthritis (CIA) rat models were established to evaluate the severity of arthritis in joints, and the levels of inflammatory factors were examined by immunohistochemistry staining, ELISA, and qRT-PCR. Transcriptome sequencing was used to screen differentially expressed genes (DEGs) with HDAC2 silencing in the synovial tissue of CIA rat, and downstream signaling pathways were predicted by enrichment analysis. The results showed that HDAC2 was highly expressed in the synovial tissue of RA patients and CIA rats. Overexpressed HDAC2 promoted FLS proliferation, migration, and invasion and inhibited FLS apoptosis in vitro, resulting in secretion of inflammatory factors and RA exacerbation in vivo. There were 176 DEGs, including 57 downregulated and 119 upregulated genes, after silencing HDAC2 in CIA rats. DEGs were primarily enriched in Platinum drug resistance, IL-17 as well as the PI3K-Akt signaling pathways. CCL7, which was implicated in the IL-17 signaling pathway, was downregulated after HDAC2 silencing. Furthermore, CCL7 overexpression aggravated the development of RA, which was demonstrated to be effectively attenuated by HDAC2 suppression. In conclusion, this study demonstrated that HDAC2 exacerbated the progression of RA by regulating the IL-17-CCL7 signaling pathway, suggesting that HDAC2 may be a promising therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Hong Jiang
- Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215031, China
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Fei Zhang
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Haoyu Yang
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Xiaodong Fang
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Qian Zhang
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| |
Collapse
|
16
|
Lee JH, Kim HS, Jang SW, Lee GR. Histone deacetylase 6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation. Sci Rep 2022; 12:22550. [PMID: 36581745 PMCID: PMC9800578 DOI: 10.1038/s41598-022-27230-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by preventing abnormal or excessive immune responses. Histone deacetylase 6 (HDAC6) regulates expression of Foxp3, and thus, Treg cell differentiation; however, its role in Treg cell differentiation is unclear and somewhat controversial. Here, we investigated the role of HDAC6 in TGF-β-induced murine Treg cells. HDAC6 expression was higher in Treg cells than in other T helper cell subsets. Pharmacological inhibitors of HDAC6 selectively inhibited Treg cell differentiation and suppressive function. A specific HDAC6 inhibitor induced changes in global gene expression by Treg cells. Of these changes, genes related to cell division were prominently affected. In summary, HDAC6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation.
Collapse
Affiliation(s)
- Ji Hyeon Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Hyeong Su Kim
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Sung Woong Jang
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Gap Ryol Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| |
Collapse
|
17
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
18
|
Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms232213892. [PMID: 36430378 PMCID: PMC9695510 DOI: 10.3390/ijms232213892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingolipid molecules have recently attracted attention as signaling molecules in allergic inflammation diseases. Sphingosine-1-phosphate (S1P) is synthesized by two isoforms of sphingosine kinases (SPHK 1 and SPHK2) and is known to be involved in various cellular processes. S1P levels reportedly increase in allergic inflammatory diseases, such as asthma and anaphylaxis. FcεRI signaling is necessary for allergic inflammation as it can activate the SPHKs and increase the S1P level; once S1P is secreted, it can bind to the S1P receptors (S1PRs). The role of S1P signaling in various allergic diseases is discussed. Increased levels of S1P are positively associated with asthma and anaphylaxis. S1P can either induce or suppress allergic skin diseases in a context-dependent manner. The crosstalk between FcεRI and S1P/SPHK/S1PRs is discussed. The roles of the microRNAs that regulate the expression of the components of S1P signaling in allergic inflammatory diseases are also discussed. Various reports suggest the role of S1P in FcεRI-mediated mast cell (MC) activation. Thus, S1P/SPHK/S1PRs signaling can be the target for developing anti-allergy drugs.
Collapse
|
19
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis. Eur J Pharmacol 2022; 936:175349. [DOI: 10.1016/j.ejphar.2022.175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
|
21
|
Zhang Y, Zhang Q, Li H, Cong H, Qu Y. In vitro and in vivo anti−Toxoplasma activities of HDAC inhibitor Panobinostat on experimental acute ocular toxoplasmosis. Front Cell Infect Microbiol 2022; 12:1002817. [PMID: 36171756 PMCID: PMC9510647 DOI: 10.3389/fcimb.2022.1002817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Ocular toxoplasmosis (OT) is retinochoroiditis caused by Toxoplasma gondii infection, which poses a huge threat to vision. However, most traditional oral drugs for this disease have multiple side effects and have difficulty crossing the blood-retinal barrier, so the new alternative strategy is required to be developed urgently. Histone deacetylases (HDAC) inhibitors, initially applied to cancer, have attracted considerable attention as potential anti-Toxoplasma gondii drugs. Here, the efficacy of a novel HDAC inhibitor, Panobinostat (LBH589), against T. gondii has been investigated. In vitro, LBH589 inhibited the proliferation and activity of T. gondii in a dose-dependent manner with low toxicity to retinal pigment epithelial (RPE) cells. In vivo, optical coherence tomography (OCT) examination and histopathological studies showed that the inflammatory cell infiltration and the damage to retinal architecture were drastically reduced in C57BL/6 mice upon treatment with intravitreal injection of LBH589. Furthermore, we have found the mRNA expression levels of inflammatory cytokines were significantly decreased in LBH589–treated group. Collectively, our study demonstrates that LBH589 holds great promise as a preclinical candidate for control and cure of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qingqing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Hua Cong, ; Yi Qu,
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Hua Cong, ; Yi Qu,
| |
Collapse
|
22
|
HDAC6 Inhibition Alleviates Anesthesia and Surgery-Induced Less Medial Prefrontal-Dorsal Hippocampus Connectivity and Cognitive Impairment in Aged Rats. Mol Neurobiol 2022; 59:6158-6169. [PMID: 35882756 DOI: 10.1007/s12035-022-02959-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
To investigate the underlying mechanisms of postoperative cognitive dysfunction and the impairment of medial prefrontal cortex-hippocampus connectivity. Postoperative cognitive dysfunction frequently affects elderly following surgery. The role of inter-brain-region connectivity abnormality after anesthesia and surgery on postoperative cognitive dysfunction development remains unclear. Medial prefrontal cortex-hippocampus connectivity of aged and adult rats was evaluated by injecting neurotracer biotinylated dextranamine (BDA) into bilateral hippocampus 3 days before partial hepatectomy, and biotinylated dextranamine positive cells of medial prefrontal cortex 2 days after hepatectomy were counted. HDAC6 shRNA was injected into medial prefrontal cortex and hippocampus bilaterally before hepatectomy or an HDAC6 activity inhibitor Tubastatin A was administered systemically after hepatectomy. Neuroinflammation and HDAC6 down-target ac-tubulin in medial prefrontal cortex and hippocampus were detected. Learning and memory of rats were evaluated by Barnes Maze task during 2-5 days after surgery and delayed matching-to-place water maze task during 10-23 days after surgery. Compared to the age-matched normal controls, anesthesia and surgery significantly decreased BDA-positive neurons in medial prefrontal cortex of aged rats, but not young adult rats. Local HDAC6 knockdown and systemic HDAC6 inhibition both increased BDA-positive neurons number of medial prefrontal cortex, alleviated learning and memory impairment in the Barnes Maze task and water maze task, decreased HDAC6 expression, inflammatory cytokines, astrocyte and microglial activation, and increased ac-tubulin expression in aged rats which received surgery. Our data indicated that anesthesia and surgery impaired medial prefrontal cortex-hippocampus connectivity and cognition which was associated with HDAC6 overexpression.
Collapse
|
23
|
Zhou S, Huang J, Li K, DU S, Yang B, Guo Z. Genistein attenuates LPS -induced inflammatory injury of rat dorsal root ganglion neuron via down -regulating HDAC6. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:707-716. [PMID: 35837770 PMCID: PMC10930022 DOI: 10.11817/j.issn.1672-7347.2022.210428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Neuropathic pain (NP) is a chronic pain caused by somatosensory neuropathy or disease, and genistein (Gen) might be a potential drug for the treatment of NP. Therefore, this study aims to investigate the effect of Gen on lipopolysaccharide (LPS)-induced inflammatory injury of dorsal root ganglion neuron (DRGn) in rats and the possible molecular mechanism. METHODS The DRGn of 1-day-old juvenile rats were taken for isolation and culture. The DRGn in logarithmic growth phase were divided into a control group, a LPS group, a tubastatin hydrochloride (TSA)+LPS group, a Gen1+LPS group, a Gen2+LPS group, a Gen2+LPS+TSA group, a Gen2+pcDNA-histone deacetylase 6 (HDAC6)+LPS group, and a Gen2+pcDNA3.1+LPS group. The LPS group was treated with 1 μg/mL LPS for 24 h; the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group were treated with 5 μmol/L TSA, 5 μmol/L Gen, 10 μmol/L Gen respectively for 0.5 h, and then added 1 μg/mL LPS for 24 h; the Gen2+TSA+LPS group was treated with 10 μmol/L Gen and 5 μmol/L TSA for 0.5 h and then added 1 μg/mL LPS for 24 h; the Gen2+pcDNA-HDAC6+LPS group and the Gen2+pcDNA3.1+LPS group received 100 nmol/L pcDNA-HDAC6 and pcDNA3.1 plasmids respectively, and 24 h after transfection, 10 μmol/L Gen was pretreated for 0.5 h, and then added 1 μg/mL LPS for 24 h. Real-time RT-PCR was used to detect the HDAC6 mRNA expression in DRGn; CCK-8 method was used to detect cell viability of DRGn; flow cytometry was used to detect cell apoptosis of DRGn; ELISA was used to detect the levels of IL-1β, IL-6, and TNF-α in DRGn culture supernatant; Western blotting was used to detect the protein expression of HDAC6, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 in DRGn. RESULTS Compared with the control group, the expression levels of HDAC6 mRNA and protein, the expression levels of TLR4 and MyD88 protein in DRGn of LPS group rats were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, and the activity of DRGn was significantly decreased, the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05). Compared with the LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group and the Gen2+TSA+LPS group were significantly down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly decreased, the activity of DRGn was significantly increased, the apoptosis rate was significantly decreased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly decreased (all P<0.05), and the above changes were most obvious in the Gen2+TSA+LPS group. Compared with the Gen2+LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the Gen2+pcDNA-HDAC6+LPS group were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, the activity of DRGn was significantly decreased, and the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05). CONCLUSIONS Gen can alleviate LPS-induced DRGn inflammatory injury in rats, which might be related to down-regulating the expression of HDAC6 and further inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Songlin Zhou
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002.
| | - Junqing Huang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002.
| | - Ke Li
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002
| | - Shuaigang DU
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002
| | - Bin Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002
| | - Zhonghua Guo
- First Department of Osteopathy I, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002, China
| |
Collapse
|
24
|
Li J, Yu M, Fu S, Liu D, Tan Y. Role of Selective Histone Deacetylase 6 Inhibitor ACY-1215 in Cancer and Other Human Diseases. Front Pharmacol 2022; 13:907981. [PMID: 35652048 PMCID: PMC9149003 DOI: 10.3389/fphar.2022.907981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The deacetylation process regulated by histone deacetylases (HDACs) plays an important role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6 has become a promising treatment strategy in recent years. ACY-1215 is the first orally available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being continuously verified. This review summarizes the research progress of ACY-1215 in cancer and other human diseases, as well as the underlying mechanism, in order to guide the future clinical trials of ACY-1215 and more in-depth mechanism researches.
Collapse
Affiliation(s)
- Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| |
Collapse
|
25
|
Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J Med Chem 2022; 65:3080-3097. [PMID: 35148101 PMCID: PMC8883472 DOI: 10.1021/acs.jmedchem.1c02067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Compelling new support
has been provided for histone deacetylase
isoform 6 (HDAC6) as a common thread in the generation of the dysregulated
proinflammatory and fibrotic phenotype in cystic fibrosis (CF). HDAC6
also plays a crucial role in bacterial clearance or killing as a direct
consequence of its effects on CF immune responses. Inhibiting HDAC6
functions thus eventually represents an innovative and effective strategy
to tackle multiple aspects of CF-associated lung disease. In this
Perspective, we not only showcase the latest evidence linking HDAC(6)
activity and expression with CF phenotype but also track the new dawn
of HDAC(6) modulators in CF and explore potentialities and future
perspectives in the field.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Emilia Cassese
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
26
|
Cao Z, Gu Z, Lin S, Chen D, Wang J, Zhao Y, Li Y, Liu T, Li Y, Wang Y, Lin H, He B. Attenuation of NLRP3 Inflammasome Activation by Indirubin-Derived PROTAC Targeting HDAC6. ACS Chem Biol 2021; 16:2746-2751. [PMID: 34860497 DOI: 10.1021/acschembio.1c00681] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a potential therapeutic target for treating several diseases. A recent study revealed that HDAC6 is important for NLRP3 inflammasome activation, suggesting that targeting HDAC6 could be useful for treating many inflammatory disorders. Using the proteolysis targeting chimera (PROTAC) strategy, we herein report an HDAC6 degrader with low cytotoxicity by tethering a selective HDAC6 inhibitor derived from a natural product, indirubin, with pomalidomide, a CRBN E3 ligand. Our HDAC6 degrader efficiently and selectively decreased HDAC6 levels in several cell lines, including activated THP-1 cells. Application of this HDAC6 degrader attenuated NLRP3 inflammasome activation in LPS-induced mice, which for the first time demonstrates that HDAC6 PROTAC could be a novel strategy to treat NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yi Wang
- College of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
27
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
28
|
Kwon Y, Choi Y, Kim M, Jeong MS, Jung HS, Jeoung D. HDAC6 and CXCL13 Mediate Atopic Dermatitis by Regulating Cellular Interactions and Expression Levels of miR-9 and SIRT1. Front Pharmacol 2021; 12:691279. [PMID: 34588978 PMCID: PMC8473914 DOI: 10.3389/fphar.2021.691279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) has been known to regulate inflammatory diseases. The role of HDAC6 in allergic skin inflammation has not been studied. We studied the role of HDAC6 in atopic dermatitis (AD) and the mechanisms associated with it. The decreased expression or chemical inhibition of HDAC6 suppressed AD by decreasing autophagic flux and cellular features of AD. AD increased expression levels of the Th1 and Th2 cytokines, but decreased expression levels of forkhead box P3 (FoxP3) and interleukin-10 (IL-10) in an HDAC6-dependent manner. CXC chemokine ligand 13 (CXCL13), which was increased in an HDAC6-depenednt manner, mediated AD. MiR-9, negatively regulated by HDAC6, suppressed AD by directly regulating the expression of sirtuin 1 (SIRT1). The downregulation or inhibition of SIRT1 suppressed AD. Experiments employing culture medium and transwell suggested that cellular interactions involving mast cells, keratinocytes, and dermal fibroblast cells could promote AD; HDAC6 and CXCL13 were found to be necessary for these cellular interactions. Mouse recombinant CXCL13 protein increased HDAC6 expression in skin mast cells and dermal fibroblast cells. CXCL13 protein was found to be present in the exosomes of DNCB-treated skin mast cells. Exosomes of DNCB-treated skin mast cells enhanced invasion potentials of keratinocytes and dermal fibroblast cells and increased expression levels of HDAC6, SIRT1 and CXCL13 in keratinocytes and dermal fibroblast cells. These results indicate that HDAC6 and CXCL13 may serve as targets for the developing anti-atopic drugs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Yunji Choi
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
29
|
Affiliation(s)
- Kazuhiro Ito
- Imperial College, National Heart & Lung Institute,, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
30
|
Wong XK, Yeong KY. A Patent Review on the Current Developments of Benzoxazoles in Drug Discovery. ChemMedChem 2021; 16:3237-3262. [PMID: 34289258 DOI: 10.1002/cmdc.202100370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Indexed: 12/11/2022]
Abstract
The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
31
|
Kurohara T, Tanaka K, Takahashi D, Ueda S, Yamashita Y, Takada Y, Takeshima H, Yu S, Itoh Y, Hase K, Suzuki T. Identification of Novel Histone Deacetylase 6-Selective Inhibitors Bearing 3,3,3-Trifluorolactic Amide (TFLAM) Motif as a Zinc Binding Group. Chembiochem 2021; 22:3158-3163. [PMID: 34224197 DOI: 10.1002/cbic.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibition of histone deacetylase 6 (HDAC6) is an effective therapeutic strategy for cancer and immunological diseases. Most of the previously reported HDAC6 inhibitors have a hydroxamate group as a zinc binding group (ZBG), which coordinates to the catalytic zinc ion of HDAC6. The hydroxamate group is liable to metabolically generate mutagenetic hydroxylamine; therefore, non-hydroxamate HDAC6 inhibitors would be advantageous. In this study, to identify novel non-hydroxamate HDAC6-selective inhibitors, screening of a chemical library and the subsequent structural optimization were performed, which led to the identification of HDAC6-selective inhibitors with 3,3,3-trifluorolactic amide (TFLAM) as a novel ZBG. The identified inhibitor showed potent and selective HDAC6-inhibitory activity in cells and induced regulatory T (Treg) cell differentiation.
Collapse
Affiliation(s)
- Takashi Kurohara
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Keita Tanaka
- Bio Science and Engineering Laboratory, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011, Japan
| | - Satoshi Ueda
- Bio Science and Engineering Laboratory, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Yasunobu Yamashita
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Hirokazu Takeshima
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Shengwang Yu
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| |
Collapse
|
32
|
Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J Pers Med 2021; 11:336. [PMID: 33922725 PMCID: PMC8145108 DOI: 10.3390/jpm11050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R. Harker
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - David F. Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
33
|
Overcome the tumor immunotherapy resistance by combination of the HDAC6 inhibitors with antitumor immunomodulatory agents. Bioorg Chem 2021; 109:104754. [PMID: 33677416 DOI: 10.1016/j.bioorg.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Tumor immunotherapy is currently subject of intense scientific and clinical developments. In previous decade, therapists used natural immune system from the human body to treat several diseases. Although tumor immune disease is a big challenge, combinatorial therapeutic strategy has been succeeded to show the clinical significance. In this context, we discuss the HDAC6 and tumor immune diseases relationship. Also, we summarized the current state of knowledge that based on the combination treatments of the HDAC6 inhibitors (HDAC6is) with antitumor immunomodulatory agents. We observed that, the combination therapies slow down the tumor immune diseases by blocking the aggresome and proteasome pathway. The combination therapy was able to reduce M2 macrophage and increasing PD-L1 blockade sensitivity. Most importantly, multiple combinations of HDAC6is with other agents may consider as potential strategies to treat tumor immune diseases, by reducing the side effects and improve efficacy for the future clinical development.
Collapse
|
34
|
Pseudomonas aeruginosa Stimulates Inflammation and Enhances Kaposi's Sarcoma Herpesvirus-Induced Cell Proliferation and Cellular Transformation through both Lipopolysaccharide and Flagellin. mBio 2020; 11:mBio.02843-20. [PMID: 33173008 PMCID: PMC7667028 DOI: 10.1128/mbio.02843-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation triggered by innate immunity promotes carcinogenesis in cancer. Kaposi's sarcoma (KS), a hyperproliferative and inflammatory tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection, is the most common cancer in AIDS patients. KSHV infection sensitizes cells to pathogen-associated molecular patterns (PAMPs). We examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation and efficiency of colony formation in soft agar of KSHV-transformed rat primary mesenchymal precursor (KMM) cells but had no significant effect on the untransformed (MM) cells. P. aeruginosa stimulation also increased cell proliferation of KSHV-infected human B cells, BJAB, but not the uninfected cells. Mechanistically, P. aeruginosa stimulation resulted in increased inflammatory cytokines and activation of p38, ERK1/2, and JNK mitogen-activated protein kinase (MAPK) pathways in KMM cells while having no obvious effect on MM cells. P. aeruginosa induction of inflammation and MAPKs was observed with and without inhibition of the Toll-like receptor 4 (TLR4) pathway, while a flagellin-deleted mutant of P. aeruginosa required a functional TLR4 pathway to induce inflammation and MAPKs. Furthermore, treatment with either lipopolysaccharide (LPS) or flagellin alone was sufficient to induce inflammatory cytokines, activate MAPKs, and increase cell proliferation and efficiency of colony formation in soft agar of KMM cells. These results demonstrate that both LPS and flagellin are PAMPs that contribute to P. aeruginosa induction of inflammation in KSHV-transformed cells. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.IMPORTANCE Kaposi's sarcoma (KS), caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV), is one of the most common cancers in AIDS patients. KS is a highly inflammatory tumor, but how KSHV infection induces inflammation remains unclear. We have previously shown that KSHV infection upregulates Toll-like receptor 4 (TLR4), sensitizing cells to lipopolysaccharide (LPS) and Escherichia coli In the current study, we examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation, inflammatory cytokines, and activation of growth and survival pathways in KSHV-transformed cells through two pathogen-associated molecular patterns, LPS and flagellin. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.
Collapse
|
35
|
Dawood M, Elbadawi M, Böckers M, Bringmann G, Efferth T. Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 inhibitors with cytotoxicity against leukemia cells. Biomed Pharmacother 2020; 129:110454. [PMID: 32768947 DOI: 10.1016/j.biopha.2020.110454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
HDAC6 is a crucial epigenetic modifier that plays a vital role in tumor progression and carcinogenesis due to its multiple biological functions. It is a unique member of class-II HDAC enzymes. It possesses two catalytic domains, which function independently of the overall enzyme activity. Up to date, there are only a few selective HDAC6 inhibitors with anti-cancer activity. In this study, 175,204 ligands obtained from the ZINC15 and OTAVAchemical databases were used for virtual drug screening against HDAC6. Molecular docking studies were performed for 100 selected compounds. Furthermore, the top 10 compounds obtained from docking were tested for their efficacy to inhibit the function of HDAC6. Five compounds (N-(9-oxo-9H-fluoren-3-yl)benzamide, 2-hydroxy-5-[(5-oxo-6-phenyl-4,5-dihydro-1,2,4-triazin-3-yl)amino]benzoic acid, 5-(4-bromonaphthalene-1-sulfonamido)-2-hydroxybenzoic acid, 2-(naphthalen-2-yl)-N-(1H-1,2,3,4-tetrazol-5-yl)cyclopropane-1-carboxamide, and 4-oxa-5,6 diazapentacyclo[10.7.1.0³,⁷.0⁸,²⁰.0¹⁴,¹⁹]icosa-1,3(7),5,8(20),9,11,14,16,18-nonaen-13-one) inhibited enzymatic activity by more than 50 % compared to DMSO as the control. Two candidates, (N-(9-oxo-9H-fluoren-3-yl)benzamide and 5-(4-bromonaphthalene-1-sulfonamido)-2-hydroxybenzoic acid), were identified with considerable cytotoxicity towards drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Microscale thermophoresis revealed the binding of N-(9-oxo-9H-fluoren-3-yl)benzamide and 5-(4-bromonaphthalene-1-sulfonamido)-2-hydroxybenzoic acid to purified HDAC6 protein. Both compounds induced apoptosis in a dose-dependent manner as analyzed by flow cytometry. In conclusion, we demonstrate for the first time that these two compounds bind to HDAC6, inhibit its function, and exert cytotoxic activity by apoptosis induction.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Madeleine Böckers
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
36
|
Yang J, Li D, Zhou J. Histone Deacetylase 6 as a Therapeutic Target in B cell-associated Hematological Malignancies. Front Pharmacol 2020; 11:971. [PMID: 32676030 PMCID: PMC7333221 DOI: 10.3389/fphar.2020.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes play a critical role in humoral immunity. Abnormal B cell development and function cause a variety of hematological malignancies such as myeloma, B cell lymphoma, and leukemia. Histone deacetylase 6 (HDAC6) inhibitors alone or in combination with other drugs have shown efficacy in several hematological malignancies, including those resistant to targeted therapies. Mechanistically, HDAC6 inhibitors promote malignant tumor cell apoptosis by inhibiting protein degradation, reinvigorating anti-tumor immunity, and inhibiting cell survival signaling pathways. Due to their specificity, HDAC6 inhibitors represent a very promising and feasible new development pipeline for high-efficacy drugs with limited side effects. This article reviews recent progress in the mechanisms of action of HDAC6 inhibitors for the treatment of B cell-associated hematological malignancies, such as multiple myeloma and B cell non-Hodgkin lymphoma, which are often resistant to targeted therapies.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
Yang K, Wu H, Zhang Z, Leisten ED, Nie X, Liu B, Wen Z, Zhang J, Cunningham MD, Tang W. Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. ACS Med Chem Lett 2020; 11:575-581. [PMID: 32292566 DOI: 10.1021/acsmedchemlett.0c00046] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple cellular processes such as aggresome formation, protein stability, and cell motility. Numerous HDAC6-selective inhibitors have been developed as cellular chemical tools to elucidate the function of HDAC6. Since HDAC6 has multiple domains that cannot be studied by HDAC6-selective inhibitors, CRISPR-CAS9 and siRNA/shRNA have been employed to elucidate the nonenzymatic functions of HDAC6. However, these genetic methods have many limitations. Proteolysis targeting chimera (PROTAC) is an emerging technology for the development of small molecules that can quickly remove the entire protein in cells. We previously developed multifunctional HDAC6 degraders that can recruit cereblon (CRBN) E3 ubiquitin ligase. These HDAC6 degraders can degrade not only HDAC6 but also neo-substrates of CRBN. They are excellent candidates for the development of anticancer therapeutics, but the multifunctional nature of the CRBN-based HDAC6 degraders has limited their utility as specific chemical probes for the study of HDAC6-related cellular pathways. Herein we report the development of the first cell-permeable HDAC6-selective degraders employing Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which does not have any known neo-substrates. The DC50's of the most potent compound 3j are 7.1 nM and 4.3 nM in human MM1S and mouse 4935 cell lines, respectively. The D max's of 3j in these two cell lines are 90% and 57%, respectively.
Collapse
Affiliation(s)
- Ka Yang
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Wu
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Zhongrui Zhang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Eric D. Leisten
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Xueqing Nie
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Binkai Liu
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Michael D. Cunningham
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
38
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
39
|
Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H, Zhang B. Pharmacological Inhibition of HDAC6 Attenuates NLRP3 Inflammatory Response and Protects Dopaminergic Neurons in Experimental Models of Parkinson's Disease. Front Aging Neurosci 2020; 12:78. [PMID: 32296327 PMCID: PMC7137996 DOI: 10.3389/fnagi.2020.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Aim To investigate the role of histone deacetylase 6 (HDAC6) deacetylation activity in nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammatory response and explore the effects of pharmacological inhibition of HDAC6 with tubastatin A (TBA) on dopaminergic injury. Methods Using 6-OHDA-induced Parkinson's disease (PD) models, we examined the effects of TBA on NLRP3 activation and cell injury in SH-SY5Y cells. We also investigated the effects of TBA on NLRP3 inflammatory responses and dopaminergic injury in the nigrostriatal system in mice and analyzed the acetylation levels of peroxiredoxin2 (Prx2) and oxidative stress. Results TBA inhibited 6-OHDA-induced NLRP3 activation, as demonstrated by decreased expressions of NLRP3 and matured caspase-1 and IL-1β, and also alleviated glial proliferation and dopaminergic neuronal degeneration. Notably, TBA recovered acetylation levels of Prx2 and reduced oxidative stress. Conclusion Our findings indicate that pharmacological inhibition of HDAC6 with TBA attenuates NLRP3 inflammation and protects dopaminergic neurons, probably through Prx2 acetylation. This study suggests that the deacetylase catalytic domain of HDAC6 is a potential target for PD treatment.
Collapse
Affiliation(s)
- Shaoqi Yan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wencheng Jian
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yue Qin
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bin Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
40
|
Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac Cancer 2020. [PMID: 31975505 DOI: 10.1111/tca.v11.310.1111/1759-7714.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes the first line of defense of the airway and lungs against inhaled pollutants and pathogens. The concerted beating of multiciliated cells drives mucociliary clearance. Abnormalities in both the structure and function of airway cilia have been implicated in obstructive lung diseases. Emerging evidence reveals a close correlation between lung diseases and environmental stimuli such as sulfur dioxide and tobacco particles. However, the underlying mechanism remains to be described. In this review, we emphasize the importance of airway cilia in mucociliary clearance and discuss how environmental pollutants affect the structure and function of airway cilia, thus shedding light on the function of airway cilia in preventing obstructive lung diseases and revealing the negative effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer 2020; 11:519-525. [PMID: 32017415 PMCID: PMC7049484 DOI: 10.1111/1759-7714.13344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cell junctions serve as a protective barrier for cells and provide an important channel for information transmission between cells and the surrounding environment. Viruses are parasites that invade and commandeer components of host cells in order to survive and replicate, and they have evolved various mechanisms to alter cell junctions to facilitate viral infection. In this review, we examined the current state of knowledge on the action of viruses on host cell junctions. The existing evidence suggests that targeting the molecules involved in the virus-cell junction interaction can prevent the spread of viral diseases.
Collapse
Affiliation(s)
- Dan Dong
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
42
|
Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac Cancer 2020; 11:505-510. [PMID: 31975505 PMCID: PMC7049516 DOI: 10.1111/1759-7714.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 01/11/2023] Open
Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes the first line of defense of the airway and lungs against inhaled pollutants and pathogens. The concerted beating of multiciliated cells drives mucociliary clearance. Abnormalities in both the structure and function of airway cilia have been implicated in obstructive lung diseases. Emerging evidence reveals a close correlation between lung diseases and environmental stimuli such as sulfur dioxide and tobacco particles. However, the underlying mechanism remains to be described. In this review, we emphasize the importance of airway cilia in mucociliary clearance and discuss how environmental pollutants affect the structure and function of airway cilia, thus shedding light on the function of airway cilia in preventing obstructive lung diseases and revealing the negative effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
43
|
Generation of a homozygous HDAC6 knockout human embryonic stem cell line by CRISPR/Cas9 editing. Stem Cell Res 2019; 41:101610. [DOI: 10.1016/j.scr.2019.101610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
|
44
|
Vergani B, Sandrone G, Marchini M, Ripamonti C, Cellupica E, Galbiati E, Caprini G, Pavich G, Porro G, Rocchio I, Lattanzio M, Pezzuto M, Skorupska M, Cordella P, Pagani P, Pozzi P, Pomarico R, Modena D, Leoni F, Perego R, Fossati G, Steinkühler C, Stevenazzi A. Novel Benzohydroxamate-Based Potent and Selective Histone Deacetylase 6 (HDAC6) Inhibitors Bearing a Pentaheterocyclic Scaffold: Design, Synthesis, and Biological Evaluation. J Med Chem 2019; 62:10711-10739. [DOI: 10.1021/acs.jmedchem.9b01194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Vergani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giovanni Sandrone
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Mattia Marchini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Chiara Ripamonti
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Edoardo Cellupica
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Elisabetta Galbiati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Caprini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianfranco Pavich
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giulia Porro
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Ilaria Rocchio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Maria Lattanzio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Marcello Pezzuto
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Malgorzata Skorupska
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paola Cordella
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paolo Pagani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Pietro Pozzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Roberta Pomarico
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Daniela Modena
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Flavio Leoni
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Raffaella Perego
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Christian Steinkühler
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Andrea Stevenazzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| |
Collapse
|