1
|
Kempton JA, Wynn J, Bond S, Evry J, Fayet AL, Gillies N, Guilford T, Kavelaars M, Juarez-Martinez I, Padget O, Rutz C, Shoji A, Syposz M, Taylor GK. Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea. SCIENCE ADVANCES 2022; 8:eabo0200. [PMID: 35648862 PMCID: PMC9159700 DOI: 10.1126/sciadv.abo0200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birds' undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.
Collapse
Affiliation(s)
| | - Joe Wynn
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Institut für Vogelforschung, 26386 Wilhelmshaven, Germany
| | - Sarah Bond
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - James Evry
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Costello Medical, Cambridge CB1 2JH, UK
| | - Annette L. Fayet
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Norwegian Institute for Nature Research, PO Box 5685 Torgarden, 7485 Trondheim, Norway
| | - Natasha Gillies
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Tim Guilford
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Marwa Kavelaars
- Behavioral Ecology and Ecophysiology, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Oliver Padget
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Christian Rutz
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Akiko Shoji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Martyna Syposz
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
2
|
Eisenring E, Eens M, Pradervand J, Jacot A, Baert J, Ulenaers E, Lathouwers M, Evens R. Quantifying song behavior in a free-living, light-weight, mobile bird using accelerometers. Ecol Evol 2022; 12:e8446. [PMID: 35127007 PMCID: PMC8803288 DOI: 10.1002/ece3.8446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
To acquire a fundamental understanding of animal communication, continuous observations in a natural setting and at an individual level are required. Whereas the use of animal-borne acoustic recorders in vocal studies remains challenging, light-weight accelerometers can potentially register individuals' vocal output when this coincides with body vibrations. We collected one-dimensional accelerometer data using light-weight tags on a free-living, crepuscular bird species, the European Nightjar (Caprimulgus europaeus). We developed a classification model to identify four behaviors (rest, sing, fly, and leap) from accelerometer data and, for the purpose of this study, validated the classification of song behavior. Male nightjars produce a distinctive "churring" song while they rest on a stationary song post. We expected churring to be associated with body vibrations (i.e., medium-amplitude body acceleration), which we assumed would be easy to distinguish from resting (i.e., low-amplitude body acceleration). We validated the classification of song behavior using simultaneous GPS tracking data (i.e., information on individuals' movement and proximity to audio recorders) and vocal recordings from stationary audio recorders at known song posts of one tracked individual. Song activity was detected by the classification model with an accuracy of 92%. Beyond a threshold of 20 m from the audio recorders, only 8% of the classified song bouts were recorded. The duration of the detected song activity (i.e., acceleration data) was highly correlated with the duration of the simultaneously recorded song bouts (correlation coefficient = 0.87, N = 10, S = 21.7, p = .001). We show that accelerometer-based identification of vocalizations could serve as a promising tool to study communication in free-living, small-sized birds and demonstrate possible limitations of audio recorders to investigate individual-based variation in song behavior.
Collapse
Affiliation(s)
- Elena Eisenring
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Marcel Eens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | | | - Alain Jacot
- Swiss Ornithological InstituteField Station ValaisSionSwitzerland
| | - Jan Baert
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Terrestrial Ecology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Eddy Ulenaers
- Agentschap Natuur en BosRegio Noord‐LimburgBrusselsBelgium
| | - Michiel Lathouwers
- Research Group: Zoology, Biodiversity and ToxicologyCentre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
- Department of GeographyInstitute of Life, Earth and Environment (ILEE)University of NamurNamurBelgium
| | - Ruben Evens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Max Planck Institute for OrnithologySeewiesenGermany
| |
Collapse
|
3
|
Lahoz-Monfort JJ, Magrath MJL. A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation. Bioscience 2021; 71:1038-1062. [PMID: 34616236 PMCID: PMC8490933 DOI: 10.1093/biosci/biab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The range of technologies currently used in biodiversity conservation is staggering, with innovative uses often adopted from other disciplines and being trialed in the field. We provide the first comprehensive overview of the current (2020) landscape of conservation technology, encompassing technologies for monitoring wildlife and habitats, as well as for on-the-ground conservation management (e.g., fighting illegal activities). We cover both established technologies (routinely deployed in conservation, backed by substantial field experience and scientific literature) and novel technologies or technology applications (typically at trial stage, only recently used in conservation), providing examples of conservation applications for both types. We describe technologies that deploy sensors that are fixed or portable, attached to vehicles (terrestrial, aquatic, or airborne) or to animals (biologging), complemented with a section on wildlife tracking. The last two sections cover actuators and computing (including web platforms, algorithms, and artificial intelligence).
Collapse
Affiliation(s)
- José J Lahoz-Monfort
- School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J L Magrath
- Wildlife Conservation and Science, Zoos Victoria and with the School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Conway AM, Durbach IN, McInnes A, Harris RN. Frame‐by‐frame annotation of video recordings using deep neural networks. Ecosphere 2021. [DOI: 10.1002/ecs2.3384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Alexander M. Conway
- Centre for Statistics in Ecology, the Environment, and Conservation University of Cape Town Cape Town South Africa
| | - Ian N. Durbach
- Centre for Statistics in Ecology, the Environment, and Conservation University of Cape Town Cape Town South Africa
- Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK
| | - Alistair McInnes
- Seabird Conservation Programme BirdLife South Africa Johannesburg South Africa
- Department of Zoology DST/NRF Centre of Excellence at the Percy FitzPatrick Institute Nelson Mandela University Port Elizabeth South Africa
| | | |
Collapse
|
5
|
Abe T, Kubo N, Abe K, Suzuki H, Yoda K, Tadakuma R, Tsumaki Y. Study on hypercompact and lightweight data logger separators for wild animals. Adv Robot 2020. [DOI: 10.1080/01691864.2020.1855245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Takuma Abe
- Department of Mechanical Systems Engineering, Yamagata University, Yamagata, Japan
| | - Natsumi Kubo
- Department of Mechanical Systems Engineering, Yamagata University, Yamagata, Japan
| | - Kazuki Abe
- Department of Mechanical Systems Engineering, Yamagata University, Yamagata, Japan
| | - Hirokazu Suzuki
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Riichiro Tadakuma
- Department of Mechanical Systems Engineering, Yamagata University, Yamagata, Japan
| | - Yuichi Tsumaki
- Department of Mechanical Systems Engineering, Yamagata University, Yamagata, Japan
| |
Collapse
|
6
|
Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun Biol 2020; 3:633. [PMID: 33127951 PMCID: PMC7603325 DOI: 10.1038/s42003-020-01356-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals’ lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices’ limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals’ lives. Joseph Korpela et al. demonstrate the use of machine-learning assisted bio-loggers on black-tailed gulls and streaked shearwaters. As video recording is only activated through variations in movement detected by low-cost accelerometers, this method represents improvements to runtime and precision over existing bio-logging technology.
Collapse
|
7
|
Frankenhuis WE, Nettle D, Dall SRX. A case for environmental statistics of early-life effects. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180110. [PMID: 30966883 PMCID: PMC6460088 DOI: 10.1098/rstb.2018.0110] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is enduring debate over the question of which early-life effects are adaptive and which ones are not. Mathematical modelling shows that early-life effects can be adaptive in environments that have particular statistical properties, such as reliable cues to current conditions and high autocorrelation of environmental states. However, few empirical studies have measured these properties, leading to an impasse. Progress, therefore, depends on research that quantifies cue reliability and autocorrelation of environmental parameters in real environments. These statistics may be different for social and non-social aspects of the environment. In this paper, we summarize evolutionary models of early-life effects. Then, we discuss empirical data on environmental statistics from a range of disciplines. We highlight cases where data on environmental statistics have been used to test competing explanations of early-life effects. We conclude by providing guidelines for new data collection and reflections on future directions. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- 1 Behavioural Science Institute, Radboud University , Nijmegen 6500 HE , The Netherlands
| | - Daniel Nettle
- 2 Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University , Newcastle upon Tyne NE1 7RU , UK
| | - Sasha R X Dall
- 3 Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE , UK
| |
Collapse
|
8
|
Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, Demšar U, English HM, Franconi N, Gómez-Laich A, Griffiths RC, Kay WP, Morales JM, Potts JR, Rogerson KF, Rutz C, Spelt A, Trevail AM, Wilson RP, Börger L. Optimizing the use of biologgers for movement ecology research. J Anim Ecol 2019; 89:186-206. [PMID: 31424571 DOI: 10.1111/1365-2656.13094] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.
Collapse
Affiliation(s)
- Hannah J Williams
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Lucy A Taylor
- Save the Elephants, Nairobi, Kenya.,Department of Zoology, University of Oxford, Oxford, UK
| | - Simon Benhamou
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS Montpellier, Montpellier, France
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, Den Burg, The Netherlands
| | - Thomas A Clay
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Sophie de Grissac
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Urška Demšar
- School of Geography & Sustainable Development, University of St Andrews, St Andrews, UK
| | - Holly M English
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Novella Franconi
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Agustina Gómez-Laich
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Puerto Madryn, Chubut, Argentina
| | - Rachael C Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - William P Kay
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Juan Manuel Morales
- Grupo de Ecología Cuantitativa, INIBIOMA-Universidad Nacional del Comahue, CONICET, Bariloche, Argentina
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | | | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Anouk Spelt
- Department of Aerospace Engineering, University of Bristol, University Walk, UK
| | - Alice M Trevail
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Rory P Wilson
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Luca Börger
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
9
|
Torney CJ, Hopcraft JGC, Morrison TA, Couzin ID, Levin SA. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0012. [PMID: 29581397 DOI: 10.1098/rstb.2017.0012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Colin J Torney
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, UK
| | - J Grant C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78464 Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Greif S, Yovel Y. Using on-board sound recordings to infer behaviour of free-moving wild animals. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb184689. [PMID: 30728226 DOI: 10.1242/jeb.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Technological advances in the last 20 years have enabled researchers to develop increasingly sophisticated miniature devices (tags) that record an animal's behaviour not from an observational, external viewpoint, but directly on the animals themselves. So far, behavioural research with these tags has mostly been conducted using movement or acceleration data. But on-board audio recordings have become more and more common following pioneering work in marine mammal research. The first questions that come to mind when recording sound on-board animals concern their vocal behaviour. When are they calling? How do they adjust their behaviour? What acoustic parameters do they change and how? However, other topics like foraging behaviour, social interactions or environmental acoustics can now be addressed as well and offer detailed insight into the animals' daily life. In this Review, we discuss the possibilities, advantages and limitations of on-board acoustic recordings. We focus primarily on bats as their active-sensing, echolocating lifestyle allows many approaches to a multi-faceted acoustic assessment of their behaviour. The general ideas and concepts, however, are applicable to many animals and hopefully will demonstrate the versatility of on-board acoustic recordings and stimulate new research.
Collapse
Affiliation(s)
- Stefan Greif
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Bombara CB, Dürr S, Machovsky-Capuska GE, Jones PW, Ward MP. A preliminary study to estimate contact rates between free-roaming domestic dogs using novel miniature cameras. PLoS One 2017; 12:e0181859. [PMID: 28750073 PMCID: PMC5547700 DOI: 10.1371/journal.pone.0181859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
Information on contacts between individuals within a population is crucial to inform disease control strategies, via parameterisation of disease spread models. In this study we investigated the use of dog-borne video cameras–in conjunction with global positioning systems (GPS) loggers–to both characterise dog-to-dog contacts and to estimate contact rates. We customized miniaturised video cameras, enclosed within 3D-printed plastic cases, and attached these to nylon dog collars. Using two 3400 mAh NCR lithium Li-ion batteries, cameras could record a maximum of 22 hr of continuous video footage. Together with a GPS logger, collars were attached to six free roaming domestic dogs (FRDDs) in two remote Indigenous communities in northern Australia. We recorded a total of 97 hr of video footage, ranging from 4.5 to 22 hr (mean 19.1) per dog, and observed a wide range of social behaviours. The majority (69%) of all observed interactions between community dogs involved direct physical contact. Direct contact behaviours included sniffing, licking, mouthing and play fighting. No contacts appeared to be aggressive, however multiple teeth baring incidents were observed during play fights. We identified a total of 153 contacts–equating to 8 to 147 contacts per dog per 24 hr–from the videos of the five dogs with camera data that could be analysed. These contacts were attributed to 42 unique dogs (range 1 to 19 per video) which could be identified (based on colour patterns and markings). Most dog activity was observed in urban (houses and roads) environments, but contacts were more common in bushland and beach environments. A variety of foraging behaviours were observed, included scavenging through rubbish and rolling on dead animal carcasses. Identified food consumed included chicken, raw bones, animal carcasses, rubbish, grass and cheese. For characterising contacts between FRDD, several benefits of analysing videos compared to GPS fixes alone were identified in this study, including visualisation of the nature of the contact between two dogs; and inclusion of a greater number of dogs in the study (which do not need to be wearing video or GPS collars). Some limitations identified included visualisation of contacts only during daylight hours; the camera lens being obscured on occasion by the dog’s mandible or the dog resting on the camera; an insufficiently wide viewing angle (36°); battery life and robustness of the deployments; high costs of the deployment; and analysis of large volumes of often unsteady video footage. This study demonstrates that dog-borne video cameras, are a feasible technology for estimating and characterising contacts between FRDDs. Modifying camera specifications and developing new analytical methods will improve applicability of this technology for monitoring FRDD populations, providing insights into dog-to-dog contacts and therefore how disease might spread within these populations.
Collapse
Affiliation(s)
- Courtenay B. Bombara
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| | - Salome Dürr
- Veterinary Public Health Institute, University of Bern, Liebefeld, Switzerland
| | - Gabriel E. Machovsky-Capuska
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
- The Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Peter W. Jones
- School of Electrical and Information Engineering, The University of Sydney, Sydney, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
- * E-mail:
| |
Collapse
|
12
|
WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research. PLoS One 2017; 12:e0169758. [PMID: 28076444 PMCID: PMC5226779 DOI: 10.1371/journal.pone.0169758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named ‘WiseEye’, designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management.
Collapse
|
13
|
Snijders L, Naguib M. Communication in Animal Social Networks. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Navarro J, Grémillet D, Afán I, Ramírez F, Bouten W, Forero MG. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping. PLoS One 2016; 11:e0159974. [PMID: 27448048 PMCID: PMC4957755 DOI: 10.1371/journal.pone.0159974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.
Collapse
Affiliation(s)
- Joan Navarro
- Estación Biológica de Doñana CSIC, Avda. Américo Vespucio s/n, Sevilla, 41092, Spain
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- * E-mail:
| | - David Grémillet
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- Percy Fitz Patrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Isabel Afán
- Estación Biológica de Doñana CSIC, Avda. Américo Vespucio s/n, Sevilla, 41092, Spain
| | - Francisco Ramírez
- Estación Biológica de Doñana CSIC, Avda. Américo Vespucio s/n, Sevilla, 41092, Spain
| | - Willem Bouten
- Computational Geo-Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Manuela G. Forero
- Estación Biológica de Doñana CSIC, Avda. Américo Vespucio s/n, Sevilla, 41092, Spain
| |
Collapse
|
15
|
Cote J, Bocedi G, Debeffe L, Chudzińska ME, Weigang HC, Dytham C, Gonzalez G, Matthysen E, Travis J, Baguette M, Hewison AJM. Behavioural synchronization of large-scale animal movements - disperse alone, but migrate together? Biol Rev Camb Philos Soc 2016; 92:1275-1296. [DOI: 10.1111/brv.12279] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Julien Cote
- ENFA and UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), CNRS; Université Toulouse III - Paul Sabatier; Toulouse cedex 9 F-31062 France
| | - Greta Bocedi
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Lucie Debeffe
- CEFS, INRA; Université de Toulouse; Castanet Tolosan 31320 France
- Department of Biology; University of Saskatchewan; Saskatoon SK S7N 5E2 Canada
| | | | - Helene C. Weigang
- Department of Mathematics and Statistics; University of Helsinki; P.O. Box 68 Helsinki 00014 Finland
| | - Calvin Dytham
- Department of Biology; University of York; York YO10 5DD UK
| | - Georges Gonzalez
- CEFS, INRA; Université de Toulouse; Castanet Tolosan 31320 France
| | - Erik Matthysen
- Department of Biology; University of Antwerp; Antwerp B-2610 Belgium
| | - Justin Travis
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Michel Baguette
- Station d'Ecologie Théorique et Experimentale; CNRS UMR 5321; Moulis 09200 France
- Institut De Systématique, Evolution et Biodiversité, UMR 7205; Muséum National d'Histoire Naturelle; Paris cedex 5 FR-75005 France
| | | |
Collapse
|
16
|
Troscianko J, Rutz C. Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras. Biol Lett 2015; 11:20150777. [PMID: 26701755 PMCID: PMC4707697 DOI: 10.1098/rsbl.2015.0777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/02/2015] [Indexed: 11/12/2022] Open
Abstract
New Caledonian crows are renowned for their unusually sophisticated tool behaviour. Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds. To obtain first estimates of activity budgets, as well as close-up observations of tool-assisted foraging, we equipped 19 wild crows with self-developed miniature video cameras, yielding more than 10 h of analysable video footage for 10 subjects. While only four crows used tools during recording sessions, they did so extensively: across all 10 birds, we conservatively estimate that tool-related behaviour occurred in 3% of total observation time, and accounted for 19% of all foraging behaviour. Our video-loggers provided first footage of crows manufacturing, and using, one of their most complex tool types--hooked stick tools--under completely natural foraging conditions. We recorded manufacture from live branches of paperbark (Melaleuca sp.) and another tree species (thought to be Acacia spirorbis), and deployment of tools in a range of contexts, including on the forest floor. Taken together, our video recordings reveal an 'expanded' foraging niche for hooked stick tools, and highlight more generally how crows routinely switch between tool- and bill-assisted foraging.
Collapse
Affiliation(s)
- Jolyon Troscianko
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Christian Rutz
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
17
|
Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows. Nat Commun 2015; 6:7197. [PMID: 26529116 PMCID: PMC4659832 DOI: 10.1038/ncomms8197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/16/2015] [Indexed: 11/09/2022] Open
Abstract
Social-network dynamics have profound consequences for biological processes such as information flow, but are notoriously difficult to measure in the wild. We used novel transceiver technology to chart association patterns across 19 days in a wild population of the New Caledonian crow--a tool-using species that may socially learn, and culturally accumulate, tool-related information. To examine the causes and consequences of changing network topology, we manipulated the environmental availability of the crows' preferred tool-extracted prey, and simulated, in silico, the diffusion of information across field-recorded time-ordered networks. Here we show that network structure responds quickly to environmental change and that novel information can potentially spread rapidly within multi-family communities, especially when tool-use opportunities are plentiful. At the same time, we report surprisingly limited social contact between neighbouring crow communities. Such scale dependence in information-flow dynamics is likely to influence the evolution and maintenance of material cultures.
Collapse
|
18
|
Kane SA, Fulton AH, Rosenthal LJ. When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies. ACTA ACUST UNITED AC 2015; 218:212-22. [PMID: 25609783 DOI: 10.1242/jeb.108597] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Video filmed by a camera mounted on the head of a Northern Goshawk (Accipiter gentilis) was used to study how the raptor used visual guidance to pursue prey and land on perches. A combination of novel image analysis methods and numerical simulations of mathematical pursuit models was used to determine the goshawk's pursuit strategy. The goshawk flew to intercept targets by fixing the prey at a constant visual angle, using classical pursuit for stationary prey, lures or perches, and usually using constant absolute target direction (CATD) for moving prey. Visual fixation was better maintained along the horizontal than vertical direction. In some cases, we observed oscillations in the visual fix on the prey, suggesting that the goshawk used finite-feedback steering. Video filmed from the ground gave similar results. In most cases, it showed goshawks intercepting prey using a trajectory consistent with CATD, then turning rapidly to attack by classical pursuit; in a few cases, it showed them using curving non-CATD trajectories. Analysis of the prey's evasive tactics indicated that only sharp sideways turns caused the goshawk to lose visual fixation on the prey, supporting a sensory basis for the surprising frequency and effectiveness of this tactic found by previous studies. The dynamics of the prey's looming image also suggested that the goshawk used a tau-based interception strategy. We interpret these results in the context of a concise review of pursuit-evasion in biology, and conjecture that some prey deimatic 'startle' displays may exploit tau-based interception.
Collapse
Affiliation(s)
| | - Andrew H Fulton
- Physics Department, Haverford College, Haverford, PA 19041, USA
| | - Lee J Rosenthal
- Physics Department, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
19
|
Rutz C, Morrissey MB, Burns ZT, Burt J, Otis B, St Clair JJH, James R. Calibrating animal-borne proximity loggers. Methods Ecol Evol 2015; 6:656-667. [PMID: 27547298 PMCID: PMC4974916 DOI: 10.1111/2041-210x.12370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
Growing interest in the structure and dynamics of animal social networks has stimulated efforts to develop automated tracking technologies that can reliably record encounters in free-ranging subjects. A particularly promising approach is the use of animal-attached 'proximity loggers', which collect data on the incidence, duration and proximity of spatial associations through inter-logger radio communication. While proximity logging is based on a straightforward physical principle - the attenuation of propagating radio waves with distance - calibrating systems for field deployment is challenging, since most study species roam across complex, heterogeneous environments.In this study, we calibrated a recently developed digital proximity-logging system ('Encounternet') for deployment on a wild population of New Caledonian crows Corvus moneduloides. Our principal objective was to establish a quantitative model that enables robust post hoc estimation of logger-to-logger (and, hence, crow-to-crow) distances from logger-recorded signal-strength values. To achieve an accurate description of the radio communication between crow-borne loggers, we conducted a calibration exercise that combines theoretical analyses, field experiments, statistical modelling, behavioural observations, and computer simulations.We show that, using signal-strength information only, it is possible to assign crow encounters reliably to predefined distance classes, enabling powerful analyses of social dynamics. For example, raw data sets from field-deployed loggers can be filtered at the analysis stage to include predominantly encounters where crows would have come to within a few metres of each other, and could therefore have socially learned new behaviours through direct observation. One of the main challenges for improving data classification further is the fact that crows - like most other study species - associate across a wide variety of habitats and behavioural contexts, with different signal-attenuation properties.Our study demonstrates that well-calibrated proximity-logging systems can be used to chart social associations of free-ranging animals over a range of biologically meaningful distances. At the same time, however, it highlights that considerable efforts are required to conduct study-specific system calibrations that adequately account for the biological and technological complexities of field deployments. Although we report results from a particular case study, the basic rationale of our multi-step calibration exercise applies to many other tracking systems and study species.
Collapse
Affiliation(s)
- Christian Rutz
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK; Present address: School of Biology Centre for Biological Diversity University of St Andrews Sir Harold Mitchell Building St Andrews KY16 9TH UK
| | - Michael B Morrissey
- School of Biology Centre for Biological Diversity University of St Andrews Sir Harold Mitchell Building St Andrews KY16 9TH UK
| | - Zackory T Burns
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
| | - John Burt
- Department of Electrical Engineering University of Washington Seattle WA 98195 USA
| | - Brian Otis
- Department of Electrical Engineering University of Washington Seattle WA 98195 USA
| | - James J H St Clair
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK; Present address: School of Biology Centre for Biological Diversity University of St Andrews Sir Harold Mitchell Building St Andrews KY16 9TH UK
| | - Richard James
- Department of Physics and Centre for Networks and Collective Behaviour University of Bath Bath BA2 7AY UK
| |
Collapse
|
20
|
Couchoux C, Aubert M, Garant D, Réale D. Spying on small wildlife sounds using affordable collar-mounted miniature microphones: an innovative method to record individual daylong vocalisations in chipmunks. Sci Rep 2015; 5:10118. [PMID: 25944509 PMCID: PMC4650754 DOI: 10.1038/srep10118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Technological advances can greatly benefit the scientific community by making new areas of research accessible. The study of animal vocal communication, in particular, can gain new insights and knowledge from technological improvements in recording equipment. Our comprehension of the acoustic signals emitted by animals would be greatly improved if we could continuously track the daily natural emissions of individuals in the wild, especially in the context of integrating individual variation into evolutionary ecology research questions. We show here how this can be accomplished using an operational tiny audio recorder that can easily be fitted as an on-board acoustic data-logger on small free-ranging animals. The high-quality 24 h acoustic recording logged on the spy microphone device allowed us to very efficiently collect daylong chipmunk vocalisations, giving us much more detailed data than the classical use of a directional microphone over an entire field season. The recordings also allowed us to monitor individual activity patterns and record incredibly long resting heart rates, and to identify self-scratching events and even whining from pre-emerging pups in their maternal burrow.
Collapse
Affiliation(s)
- Charline Couchoux
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| | - Maxime Aubert
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, J1K 2R1, Sherbrooke, QC, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| |
Collapse
|
21
|
Laplanche C, Marques TA, Thomas L. Tracking marine mammals in 3D using electronic tag data. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christophe Laplanche
- Université de Toulouse INP UPS EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) ENSAT Avenue de l‘Agrobiopole 31326 Castanet Tolosan France
- ECOLAB CNRS 31326 Castanet Tolosan France
| | - Tiago A. Marques
- Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens University of St Andrews St Andrews KY16 9LZ Scotland UK
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens University of St Andrews St Andrews KY16 9LZ Scotland UK
| |
Collapse
|
22
|
Weinstein BG. M
otion
M
eerkat: integrating motion video detection and ecological monitoring. Methods Ecol Evol 2014. [DOI: 10.1111/2041-210x.12320] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ben G. Weinstein
- Department of Ecology and Evolution Stony Brook University Stony Brook NY 11794 USA
| |
Collapse
|
23
|
Krause J, Krause S, Arlinghaus R, Psorakis I, Roberts S, Rutz C. Reality mining of animal social systems. Trends Ecol Evol 2013; 28:541-51. [DOI: 10.1016/j.tree.2013.06.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/11/2013] [Accepted: 06/04/2013] [Indexed: 11/16/2022]
|