1
|
Minier L, Bertucci F, Gay T, Chamot Z, Turco T, Schligler J, Mills SC, Vidal M, Parmentier E, Sturny V, Mathevon N, Beauchaud M, Lecchini D, Médoc V. Behavioural response to boat noise weakens the strength of a trophic link in coral reefs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124770. [PMID: 39159719 DOI: 10.1016/j.envpol.2024.124770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
In oceans, the noise generated by human activities has reached phenomenal proportions, with considerable harmful effects on marine life. Measuring this impact to achieve a sustainable balance for highly vulnerable marine ecosystems, such as coral reefs, is a critical environmental policy objective. Here, we demonstrate that anthropogenic noise alters the interactions of a coral reef fish with its environment and how this behavioural response to noise impairs foraging. In situ observations on the Moorea reef revealed that the damselfish Dascyllus emamo reacts to boat passage by moving closer to its coral bommie, considerably reducing the volume of water available to search for prey. Using boat noise playback experiments in microcosms, we studied D. emamo's behaviour and modeled its functional response (FR), which is the relationship between resource use and resource density, when feeding on juvenile shrimps. Similar to field observations, noise reduced D. emamo's spatial occupancy, accompanied by a lower FR, indicating a reduction in predation independent of prey density. Overall, noise-induced behavioural changes are likely to influence predator-prey interaction dynamics and ultimately the fitness of both protagonists. While there is an urgent need to assess the effect of anthropogenic noise on coral reefs, the ecological framework of the FR approach combined with behavioural metrics provides an essential tool for evaluating the cascading effects of noise on nested ecological interactions at the community level.
Collapse
Affiliation(s)
- Lana Minier
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia; Polynésienne des Eaux, Vitale, Bora-Bora, French Polynesia.
| | - Frédéric Bertucci
- UMR MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Sète, France
| | - Tamatoa Gay
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Zoé Chamot
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Théophile Turco
- ENES Bioacoustics Research Laboratory, University of Saint-Etienne, CRNL, CNRS UMR 5292, Inserm UMR_S 1028, Saint-Etienne, France
| | - Jules Schligler
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Suzanne C Mills
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Perpignan, France; Institut universitaire de France, France
| | - Manuel Vidal
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, allée du 6 août B6c, University of Liege, 4000, Liege, Belgium
| | - Vincent Sturny
- Polynésienne des Eaux, Vitale, Bora-Bora, French Polynesia
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, University of Saint-Etienne, CRNL, CNRS UMR 5292, Inserm UMR_S 1028, Saint-Etienne, France; Institut universitaire de France, France; Ecole Pratique des Hautes Etudes, CHArt Lab, PSL University, Paris, France
| | - Marilyn Beauchaud
- ENES Bioacoustics Research Laboratory, University of Saint-Etienne, CRNL, CNRS UMR 5292, Inserm UMR_S 1028, Saint-Etienne, France
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Vincent Médoc
- ENES Bioacoustics Research Laboratory, University of Saint-Etienne, CRNL, CNRS UMR 5292, Inserm UMR_S 1028, Saint-Etienne, France
| |
Collapse
|
2
|
Tsang HH, Joyce PWS, Falkenberg LJ. Temperature-dependent responses and trophic interaction strengths of a predatory marine gastropod and rock oyster under ocean warming. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106675. [PMID: 39146804 DOI: 10.1016/j.marenvres.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Predator-prey interactions are important in shaping ecosystem structure. Consequently, impacts of accelerating global warming on predators will have notable implications. Effects are likely to be particularly marked for tropical organisms which are anticipated to be sensitive to further thermal stress. Here, we investigated effects of future ocean warming on the predatory dogwhelk Reishia clavigera and its predation of Saccostrea cucullata. Mortality of the predators rapidly increased under the extreme elevated temperature, while those exposed to moderate elevated temperature displayed similar mortality as the ambient. Predators that survived moderate temperature increases altered their oxygen consumption patterns, increased average feeding rates, and functional responses, although condition index and energy reserves were unchanged. Overall, we show extreme ocean warming scenarios can remove predators and their consumption of prey from an ecosystem, whereas moderate warming can intensify predator-prey interactions. Such temperature-dependent alterations to predator-prey interactions would lead to fundamental changes of ecosystem structure as the ocean warms.
Collapse
Affiliation(s)
- Hin Hung Tsang
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Patrick W S Joyce
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR.
| |
Collapse
|
3
|
Silva Neto JG, Silva TGF, Salustino AS, Leite EL, Abreu KG, Silva AS, Batista JL, Brito CH, Araújo EK, Cândido BAP, Silva IVI, Viagem CRSM, Ramírez IMB, Correia Neto DF, Malaquias JB. Estimation of predation rate and handling time of boll weevil larvae by Marava arachidis (Dermaptera: Labiidae) using different mathematical methods. BRAZ J BIOL 2024; 84:e282251. [PMID: 39230078 DOI: 10.1590/1519-6984.282251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
Anthonomus grandis grandis (Coleoptera: Curculionidae) is a pest with a large potential for destruction in cotton crops, causing damage to the cotton reproductive structures. The earwig Marava arachidis (Dermaptera: Labiidae), is an important reference as a predator in several crops and being easy to rear in the laboratory. To analyze the potential biocontrol of M. arachidis of A. grandis grandis larvae, a study of predatory capacity was conducted using a functional response model. A. grandis grandis larvae were exposed to the predator at densities 1, 2, 4, 6, and 8 larvae (= prey/predator / Petri dish), with 30 replications at each density. Contact between the predator and the prey occurred for 24 hours; after this period, the level of predation of M. arachidis was assessed based on the proportion of preyed larvae. The linear logistic regression coefficient was used with a beta-binomial generalized linear model to determine the functional response. The negative signal of the linear coefficient and the goodness-of-fit tests revealed a quadratic or type II functional response, with the number of prey varying from 1.00 larva (density of 1 larva/predator) to 6.50 larvae (density of 8 larvae/predator). Therefore, the results of the present study demonstrate a high predatory capacity of M. arachidis on A. grandis grandis larvae.
Collapse
Affiliation(s)
- J G Silva Neto
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - T G F Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - A S Salustino
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - E L Leite
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - K G Abreu
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - A S Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - J L Batista
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - C H Brito
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - E K Araújo
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - B A P Cândido
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - I V I Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - C R S M Viagem
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - I M Buenaventura Ramírez
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - D F Correia Neto
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| | - J B Malaquias
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias, Laboratório de Entomologia, Areia, PB, Brasil
| |
Collapse
|
4
|
Li C, Yu J, Mao R, Kang K, Xu L, Wu M. Functional and Numerical Responses of Harmonia axyridis (Coleoptera: Coccinellidae) to Rhopalosiphum nymphaeae (Hemiptera: Aphididae) and Their Potential for Biological Control. INSECTS 2024; 15:633. [PMID: 39336601 PMCID: PMC11432611 DOI: 10.3390/insects15090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
The water lily aphid (Rhopalosiphum nymphaeae) is a highly polyphagous herbivore that causes severe damage to many terrestrial and aquatic plants, especially lotus. Due to environmental concerns about water pollution and other issues caused by chemical control methods, there is an urgent need to develop effective and sustainable control methods. The harlequin ladybird (Harmonia axyridis) is a well-known aphid predator and may pose a potential threat to R. nymphaeae. To study the predation ability of H. axyridis at different developmental stages on R. nymphaeae, we assessed the functional response, attack rate, and search effect of H. axyridis larvae and adults preying on R. nymphaeae. The numerical response of this process was also evaluated under a constant ladybird-to-aphid ratio and constant aphid density conditions, respectively. Our results showed that all predator stages exhibited type II functional responses. The predation rate of individual H. axyridis on R. nymphaeae nymphs significantly increased as prey density increased. In contrast, the search effect of H. axyridis gradually decreased with an increase in prey density. Meanwhile, H. axyridis at different developmental stages possess varying predation abilities; fourth instar and adult H. axyridis were found to be highly efficient predators of R. nymphaeae. H. axyridis adults exhibited the highest predation ability and predation rate, while both the adult and fourth-instar larvae exhibited the highest attack rate. Moreover, fourth-instar larvae exhibited the highest search effect value at initially lower prey densities, although adults surpassed them at higher prey densities. Our results also indicated that H. axyridis exhibited varying degrees of intraspecific interference and self-interference influence as predator density increases. These results strongly support H. axyridis as an effective biocontrol agent for R. nymphaeae.
Collapse
Affiliation(s)
- Chong Li
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jingya Yu
- Institute of Plant Protection, Wuhan Institute of Landscape Architecture, Wuhan 430022, China
| | - Runping Mao
- Institute of Plant Protection, Wuhan Institute of Landscape Architecture, Wuhan 430022, China
| | - Kaili Kang
- Institute of Plant Protection, Wuhan Institute of Landscape Architecture, Wuhan 430022, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Mengting Wu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
McCard M, McCard N, Coughlan NE, South J, Kregting L, Dick JTA. Functional response metrics explain and predict high but differing ecological impacts of juvenile and adult lionfish. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240855. [PMID: 39169969 PMCID: PMC11335401 DOI: 10.1098/rsos.240855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Recent accumulation of evidence across taxa indicates that the ecological impacts of invasive alien species are predictable from their functional response (FR; e.g. the maximum feeding rate) and functional response ratio (FRR; the FR attack rate divided by handling time). Here, we experimentally derive these metrics to predict the ecological impacts of both juvenile and adult lionfish (Pterois volitans), one of the world's most damaging invaders, across representative and likely future prey types. Potentially prey-population destabilizing Type II FRs were exhibited by both life stages of lionfish towards four prey species: Artemia salina, Gammarus oceanicus, Palaemonetes varians and Nephrops norvegicus. FR magnitudes revealed ontogenetic shifts in lionfish impacts where juvenile lionfish displayed similar if not higher consumption rates than adult lionfish towards prey, apart from N. norvegicus, where adult consumption rate was considerably higher. Additionally, lionfish FRR values were very substantially higher than mean FRR values across known damaging invasive taxa. Thus, both life stages of lionfish are predicted to contribute to differing but high ecological impacts across prey communities, including commercially important species. With lionfish invasion ranges currently expanding across multiple regions globally, efforts to reduce lionfish numbers and population size structure, with provision of prey refugia through habitat complexity, might curtail their impacts. Nevertheless, the present study indicates that management programmes to support early detection and complete eradication of lionfish individuals when discovered in new regions are advised.
Collapse
Affiliation(s)
- Monica McCard
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- School of Biological and Environmental Sciences, Liverpool John Moore University, Byrom Street, LiverpoolL3 3AF, UK
| | - Nathan McCard
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
| | - Neil E. Coughlan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - Josie South
- Water@Leeds, School of Biology, University of Leeds, Woodhouse, LeedsLS2 9JT, UK
| | - Louise Kregting
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
- The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BelfastBT9 5DL, UK
- Queen’s University Marine Laboratory, 12–13 The Strand, PortaferryBT22 1PF, UK
| |
Collapse
|
6
|
Cicero L, Chavarín-Gómez LE, Pérez-Ascencio D, Barreto-Barriga O, Guevara R, Desneux N, Ramírez-Romero R. Influence of Alternative Prey on the Functional Response of a Predator in Two Contexts: With and without Intraguild Predation. INSECTS 2024; 15:315. [PMID: 38786871 PMCID: PMC11122098 DOI: 10.3390/insects15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
In biological control, joint releases of predators and parasitoids are standard. However, intraguild predation (IGP) can occur when a predator attacks a parasitoid, potentially affecting pest control dynamics. In addition to the focal prey (FP), Trialeurodes vaporariorum, the intraguild predator (IG-predator) Geocoris punctipes can consume the parasitoid Eretmocerus eremicus (IG-prey). In this IGP context with multiple prey, an alternative prey (AP), like the aphid Myzus persicae, may influence interactions. Theory predicts that, in simple interactions, a predator's functional response (FR) to the FP changes with the presence of an AP. However, whether this holds in an IGP context is unknown. In this study, we empirically tested that prediction. Our results show that without IGP, G. punctipes exhibits a generalized FR with and without AP. Nevertheless, with IGP, the predator exhibited a Type II FR at low and high AP densities, increasing pressure on the FP and potentially favoring short-term biological control strategies. However, when 25 AP were offered, the predator's response shifted, underscoring the importance of monitoring AP densities to prevent potential disruptions in FP control. In both contexts, the increase in AP produced a handling time increase and a decrease in consumption rate. These results indicate that the theoretical prediction of the effect of AP on the FR is met only under specific conditions, and the complexity of multitrophic interactions must be considered.
Collapse
Affiliation(s)
- Lizette Cicero
- Laboratorio de Ecología Aplicada al Control Biológico (ECOBI), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Mexico City 04010, Mexico;
| | - Luis Enrique Chavarín-Gómez
- Laboratorio de Control Biológico (LabCB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Guadalajara 44100, Mexico; (L.E.C.-G.); (D.P.-A.); (O.B.-B.)
| | - Daniela Pérez-Ascencio
- Laboratorio de Control Biológico (LabCB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Guadalajara 44100, Mexico; (L.E.C.-G.); (D.P.-A.); (O.B.-B.)
| | - Ornella Barreto-Barriga
- Laboratorio de Control Biológico (LabCB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Guadalajara 44100, Mexico; (L.E.C.-G.); (D.P.-A.); (O.B.-B.)
| | - Roger Guevara
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa 91070, Mexico;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, 06903 Sophia-Antipolis, France
| | - Ricardo Ramírez-Romero
- Laboratorio de Control Biológico (LabCB-AIFEN), Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Guadalajara 44100, Mexico; (L.E.C.-G.); (D.P.-A.); (O.B.-B.)
| |
Collapse
|
7
|
Cuthbert RN, Nkosi MS, Dalu T. Field and laboratory microplastics uptake by a freshwater shrimp. Ecol Evol 2024; 14:e11198. [PMID: 38571809 PMCID: PMC10985367 DOI: 10.1002/ece3.11198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Microplastics are widespread pollutants, but few studies have linked field prevalence in organisms to laboratory uptakes. Aquatic filter feeders may be particularly susceptible to microplastic uptake, with the potential for trophic transfer to higher levels, including humans. Here, we surveyed microplastics from a model freshwater shrimp, common caraidina (Caridina nilotica) inhabiting the Crocodile River in South Africa to better understand microplastic uptake rates per individual. We then use functional response analysis (feeding rate as a function of resource density) to quantify uptake rates by shrimps in the laboratory. We found that microplastics were widespread in C. nilotica, with no significant differences in microplastic abundances among sampled sites under varying land uses, with an average abundance of 6.2 particles per individual. The vast majority of microplastics found was fibres (86.1%). Shrimp microplastic accumulation patterns were slightly higher in the laboratory than the field, where shrimp exhibited a hyperbolic Type II functional response model under varying exposure concentrations. Maximum feeding rates of 20 particles were found over a 6 h feeding period, and uptake evidenced at even the lowest laboratory concentrations (~10 particles per mL). These results highlight that microplastic uptake is widespread in field populations and partly density dependent, with field concentrations corroborating uptake rates recorded in the laboratory. Further research is required to elucidate trophic transfer from these taxa and to understand potential physiological impacts.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Masimini S. Nkosi
- Aquatic Systems Research Group, School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| |
Collapse
|
8
|
Tóth Z, Bartók R, Nagy Z, Szappanos VR. The relative importance of social information use for population abundance in group-living and non-grouping prey. J Theor Biol 2023; 575:111626. [PMID: 37758120 DOI: 10.1016/j.jtbi.2023.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Predator-prey relationships are fundamental components of ecosystem functioning, within which the spatial consequences of prey social organization can alter predation rates. Group-living (GL) species are known to exploit inadvertent social information (ISI) that facilitates population persistence under predation risk. Still, the extent to which non-grouping (NG) prey can benefit from similar processes is unknown. Here we built an individual-based model to explore and compare the population-level consequences of ISI use in GL and NG prey. We differentiated between GL and NG prey only by the presence or absence of social attraction toward conspecifics that drives individual movement patterns. We found that the extent of the benefits of socially acquired predator information in NG highly depends on the prey's ability to detect nearby predators, prey density and the occurrence of false alarms. Conversely, even moderate probabilities of ISI use and predator detection can lead to maximal population-level benefits in GL prey. This theoretical work provides additional insights into the conditions under which ISI use can facilitate population persistence irrespective of prey social organisation.
Collapse
Affiliation(s)
- Zoltán Tóth
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary; University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
9
|
Ray A, Gadratagi BG, Budhlakoti N, Rana DK, Adak T, Govindharaj GPP, Patil NB, Mahendiran A, Rath PC. Functional response of an egg parasitoid, Trichogramma chilonis Ishii to sublethal imidacloprid exposure. PEST MANAGEMENT SCIENCE 2023; 79:3656-3665. [PMID: 37178406 DOI: 10.1002/ps.7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The effectiveness of a biological control agent depends on how well it can control pests and how compatible it is with pesticides. Therefore, we reported the multigenerational effect of a commonly used insecticide, imidacloprid, on the functional response of a widely acclaimed egg parasitoid, Trichogramma chilonis Ishii, to different densities of the host Corcyra cephalonica Stainton eggs. The study investigated the outcomes of the median lethal concentration (LC50 ) and sublethal concentrations (LC5 , LC30 ), along with control treatments for five continuous generations (F1 to F5 ). RESULTS The results showed that the F5 generation of LC30 , both of the F1 and F5 generations of LC50 , and the control all had a Type II functional response. A Type I functional response was exhibited for the F1 generation of LC30 and both generations of LC5 . The attack rate on host eggs treated with LC5 and LC30 did not change (decrease) with the shift in the type of functional response as compared to the control. A significant increase in the searching efficiency (a) was observed in the later generation (F5 ) under the exposure of LC5 and LC30 imidacloprid concentrations. A lower handling time (Th ) in both generations of the LC5 followed by LC30 treated individuals was observed when compared with the control and LC50 treatments. The per capita parasitization efficiency (1/Th ) and the rate of parasitization per handling time (a/Th ) were also considerably higher in both the generations of LC5 and LC30 than in the control and LC50 , thereby implying positive effects of imidacloprid on the parasitization potential of T. chilonis. CONCLUSION Altogether, these multigenerational outcomes on the functional response of T. chilonis could be leveraged to control the intractable lepidopteran pests under the mild exposure of imidacloprid in integrated pest management (IPM) programs as well as in the mass rearing of the parasitoid, T. chilonis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aishwarya Ray
- Department of Entomology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
- Crop Protection Division, ICAR - National Rice Research Institute, Cuttack, India
| | | | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR - Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dhanendra Kumar Rana
- Department of Entomology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Totan Adak
- Crop Protection Division, ICAR - National Rice Research Institute, Cuttack, India
| | | | | | - Annamalai Mahendiran
- Crop Protection Division, ICAR - National Rice Research Institute, Cuttack, India
| | - Prakash Chandra Rath
- Crop Protection Division, ICAR - National Rice Research Institute, Cuttack, India
| |
Collapse
|
10
|
Hu H, Tang S, Fang C, Mu K, Su J, Zhang J. Presence of nontarget prey, Tetranychus truncatus, affected the predation by Neoseiulus bicaudus on Tetranychus turkestani. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1137-1145. [PMID: 37247377 DOI: 10.1093/jee/toad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Neoseiulus bicaudus (Wainstein) (Acari: Phytoseiidae) is a generalist predatory mite that consumes several pest species, including Tetranychus turkestani (Ugarov et Nikolskii) (Acari: Tetranychidae) in the Xinjiang Uygur Autonomous Region. The release numbers of predatory mites are based on the populations of target pests and their ability to control them. Populations of T. turkestani and T. truncatus Ehara (Acari: Tetranychidae) often coexist and damage many crops. To determine whether the presence of the non-target prey T. truncatus affects the ability of N. bicaudus to control the target prey T. turkestani. The study evaluated the predation rate and functional response of N. bicaudus to 4 stages of T. turkestani in the presence of T. truncatus. The consumption of T. turkestani by N. bicaudus gradually decreased as the proportion of T. truncatus increased. The functional response of N. bicaudus to T. turkestani was not changed when T. truncatus was presented, which was consistent with a type II response. The attack rate of N. bicaudus on the egg, larva, and nymph of T. turkestani was significantly decreased and the handling time of N. bicaudus on T. turkestani was significantly extended when T. truncatus was presented. The preference index showed that the preference of N. bicaudus for eggs and female adults of T. turkestani decreased with increasing density of T. turkestani in the same proportion as T. truncatus. The presence of T. truncatus can negatively affect the predation of T. turkestani by N. bicaudus. We suggest that the number of N. bicaudus released to control T. turkestani should be increased when T. truncatus coexist.
Collapse
Affiliation(s)
- Hengxiao Hu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| | - Siqiong Tang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| | - Chen Fang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| | - Kaiqin Mu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| | - Jie Su
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| | - Jianping Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, College of Agriculture, Shihezi University, Shihezi 83200, China
| |
Collapse
|
11
|
Pantel JH, Becks L. Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics. Trends Ecol Evol 2023; 38:760-772. [PMID: 37437547 DOI: 10.1016/j.tree.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 07/14/2023]
Abstract
While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.
Collapse
Affiliation(s)
- Jelena H Pantel
- Ecological Modelling, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
| | - Lutz Becks
- University of Konstanz, Aquatic Ecology and Evolution, Limnological Institute University of Konstanz Mainaustraße 252 78464, Konstanz/Egg, Germany
| |
Collapse
|
12
|
Reeves LA, Garratt MPD, Fountain MT, Senapathi D. Functional and Behavioral Responses of the Natural Enemy Anthocoris nemoralis to Cacopsylla pyri, at Different Temperatures. JOURNAL OF INSECT BEHAVIOR 2023; 36:222-238. [PMID: 37547869 PMCID: PMC10403413 DOI: 10.1007/s10905-023-09836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Anthocoris nemoralis is the dominant predator of pear sucker (Cacopsylla pyri) in the UK. Anthocoris nemoralis migrates into orchards in spring or is introduced as a biocontrol agent, reaching peak population levels in July-August, contributing to effective control of summer pear sucker populations. However, due to temperature dependent development and metabolism there are concerns that C. pyri populations or feeding rates may increase due to changing climatic conditions. Thus, how A. nemoralis responds to temperature, impacts its ability as a biocontrol agent. Functional response assays, monitoring attack rate and handling time of A. nemoralis and behavioral assays, using Ethovision tracking software occurred, to assess the impact of temperature on predation. Experiments were conducted at current and future July-August mean temperatures, predicted using RCP4.5 and RCP8.5 (medium and high, representative concentration pathway) emissions scenarios, using 2018 UK Climate Projections (UKCP18). All treatments demonstrated a Type II functional response, with female anthocorids demonstrating shorter handling times and higher attack rates than males. Males showed longer prey handling times at 18 °C compared to 23 °C and more time was spent active at lower temperatures for both sexes. Females did not show significant differences in attack rate or handling time in response to temperature. Overall prey consumption was also not significantly affected by temperature for either sex. This study suggests that anthocorids are likely to remain effective natural enemies under future predicted temperatures, due to non-significant differences in prey consumption. Supplementary Information The online version contains supplementary material available at 10.1007/s10905-023-09836-5.
Collapse
Affiliation(s)
- Laura A. Reeves
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| | - Michael P. D. Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| |
Collapse
|
13
|
Totin FA, Togbé DR, Sinzogan A, Karlsson MF. Interactions between the omnivorous bug Nesidiocoris tenuis (Heteroptera: Miridae) and the tomato pests Helicoverpa armigera (Lepidoptera: Noctuidae) and Phthorimaea absoluta (Lepidoptera: Gelechiidae): predation, phytophagy, and prey preference. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:6. [PMID: 37428827 DOI: 10.1093/jisesa/iead056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/06/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a zoophytophagous bug that can derive nutrients from 3 trophic levels: plants, herbivorous arthropods, and other predators. On tomato, besides damaging the plants as they feed, might the mirid also forage on pest species and repel pests. In greenhouse and laboratory experiments, we investigated the functional response of the bug, its prey preference, and its influence on the oviposition potentials of 2 major pest species Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and Phthorimaea absoluta Meyrick (Lepidoptera: Gelechiidae) on tomato Solanum lycopersicum L. (Solanaceae). Nesidiocoris tenuis showed a Type II functional response to both prey species. The estimated handling time was higher for H. armigera eggs than for P. absoluta yet N. tenuis attack rates did not differ between the 2 prey species. Nesidiocoris tenuis did not show a preference for 1 species when prey eggs were provided in equal proportions. The feeding on tomato plants by N. tenuis did not affect oviposition by the 2 moth species, as neither species showed a preference for clean or N. tenuis-adult-damaged plants and clean or N. tenuis-nymph-damaged plants. This study shows that N. tenuis can prey upon eggs of both moth species as the 3 species co-occur in tomato fields. However, because of the shorter handling time of P. absoluta eggs by the predator and the higher number of eggs laid by H. armigera, the co-occurrence might be less detrimental to the H. armigera populations compared to P. absoluta.
Collapse
Affiliation(s)
- Félicien Abègnonhou Totin
- International Institute of Tropical Agriculture (IITA), 08 BP 0932-Tri Postal, Cotonou, Benin
- Department of Crop Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (UAC), 03 BP 2819 Cotonou, Benin
| | - Delano Ronald Togbé
- International Institute of Tropical Agriculture (IITA), 08 BP 0932-Tri Postal, Cotonou, Benin
| | - Antonio Sinzogan
- Department of Crop Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (UAC), 03 BP 2819 Cotonou, Benin
| | - Miriam Frida Karlsson
- International Institute of Tropical Agriculture (IITA), 08 BP 0932-Tri Postal, Cotonou, Benin
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| |
Collapse
|
14
|
Kattler KR, Oishi EM, Lim EG, Watkins HV, Côté IM. Functional responses of male and female European green crabs suggest potential sex-specific impacts of invasion. PeerJ 2023; 11:e15424. [PMID: 37283895 PMCID: PMC10241166 DOI: 10.7717/peerj.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Predicting the impacts of predatory invasive species is important for prioritising conservation interventions. Functional response experiments, which examine consumption by predators in relation to prey density, are a useful way to assess the potential strength of novel predator-prey relationships. However, such experiments are often conducted without consideration of sex or only with males to reduce invasion risk. Here, we compared the functional responses of male and female European green crabs (Carcinus maenas), a global invader, feeding on varnish clams (Nuttallia obscurata) to test whether the two sexes have similar potential for impact. We also examined potential correlates of predation behaviour by measuring sex-specific movement and prey choice. Both sexes displayed a Type II hyperbolic functional response, which can destabilise prey populations at low prey densities. However, males and females exhibited some differences in foraging behaviour. Female green crabs had slightly lower attack rates, which were not linked to sex differences in movement, and slightly longer handling times, which were not linked to sex differences in prey choice. These small, non-significant differences nevertheless translated into significantly greater functional response ratios, which are used to predict the ecological impact of invasive species, for males than females. There was no difference in the proportion of clams consumed between males and females with similar crusher claw heights, but females have smaller crusher claws on average, hence they consumed a smaller proportion of clams. Repeated surveys of four populations of European green crabs established in British Columbia, Canada, showed that sex ratio is highly variable. Taken together, these results and population-level modelling suggest that trying to evaluate the potential impact of European green crabs on clam populations by sampling only males could result in overestimation, even in populations that have male-biased sex-ratios. Consumer sex might generally be an important feature to consider when using functional response experiments to forecast the impact of new invasive species, especially those with marked sexual dimorphism that affect foraging.
Collapse
Affiliation(s)
- Kiara R. Kattler
- Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Em G. Lim
- Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Isabelle M. Côté
- Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
Rojas E, Prosnier L, Pradeau A, Boyer N, Médoc V. Anthropogenic noise does not strengthen multiple-predator effects in a freshwater invasive fish. JOURNAL OF FISH BIOLOGY 2023; 102:1470-1480. [PMID: 37029524 DOI: 10.1111/jfb.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023]
Abstract
Anthropogenic noise has the potential to alter community dynamics by modifying the strength of nested ecological interactions such as predation. Direct effects of noise on per capita predation rates have received much attention but the context in which predation occurs is often oversimplified. For instance, many animals interact with conspecifics while foraging and these nontrophic interactions can positively or negatively influence per capita predation rates. These effects are often referred to as multiple-predator effects (MPEs). The extent to which noise can modulate MPEs and thereby indirectly alter per capita predation remains unknown. To address this question, we derived the relationship between per capita predation rate and prey density, namely the functional response (FR), of single and pairs of the invasive topmouth gudgeon Pseudorasbora parva when feeding on water fleas under two noise conditions: control ambient noise estimated at 95 dB re 1 μPa and ambient noise supplemented with motorboat sounds whose relative importance over ambient noise ranged from 4.81 to 27 dB. In addition, we used video recordings to track fish movements. To detect MPEs, we compared the observed group-level FRs to predicted group-level FRs inferred from the individual FRs and based on additive effects only. Regardless of the number of fish and the noise condition, the FR was always of type II, showing predation rate in a decelerating rise to an upper asymptote. Compared to the noiseless condition, the predation rate of single fish exposed to noise did not differ at high prey densities but was significantly lower at low prey densities, resulting in an FR with the same asymptote but a less steep initial slope. Noise also reduced fish mobility, which might explain the decrease in predation rate at low prey densities. Conspecific presence suppressed the individual response to noise, the FRs of two fish (observed group-level FRs) being perfectly similar between the two noise conditions. Although observed and predicted group-level FRs did not differ significantly, observed group-level FRs tended to fall in the low range of predicted group-level FRs, suggesting antagonism and a negative effect of nontrophic interactions on individual foraging performance. Interestingly, the difference between predicted and observed group-level FRs was not greater with noise, which means that noise did not strengthen MPEs. Our results show that when considering the social context of foraging, here through the presence of a conspecific, anthropogenic noise does not compromise foraging in the invasive P. parva.
Collapse
Affiliation(s)
- Emilie Rojas
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Loïc Prosnier
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Aurélie Pradeau
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Nicolas Boyer
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Vincent Médoc
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
16
|
Chou PA, Bain A, Chantarasuwan B, Tzeng HY. Parasitism Features of a Fig Wasp of Genus Apocrypta (Pteromalidae: Pteromalinae) Associated with a Host Belonging to Ficus Subgenus Ficus. INSECTS 2023; 14:insects14050437. [PMID: 37233065 DOI: 10.3390/insects14050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Non-pollinating fig wasps (NPFWs), particularly long-ovipositored Sycoryctina wasps, exhibit a high species specificity and exert complex ecological effects on the obligate mutualism between the plant genus Ficus and pollinating fig wasps. Apocrypta is a genus of NPFWs that mostly interacts with the Ficus species under the subgenus Sycomorus, and the symbiosis case between Apocrypta and F. pedunculosa var. mearnsii, a Ficus species under subgenus Ficus, is unique. As fig's internal environments and the wasp communities are distinct between the two subgenera, we addressed the following two questions: (1) Are the parasitism features of the Apocrypta wasp associated with F. pedunculosa var. mearnsii different from those of other congeneric species? (2) Is this Apocrypta species an efficient wasp that lives in its unique host? Our observation revealed that this wasp is an endoparasitic idiobiont parasitoid, as most congeneric species are, but developed a relatively long ovipositor. Furthermore, the relationships of the parasitism rate versus the pollinator number, the fig wall, and the sex ratio of the pollinator, respectively, showed that it possessed a higher parasitism ability than that of other congeners. However, its parasitism rate was low, and thus it was not an efficient wasp in its habitat. This difference between parasitism ability and parasitism rate might be a consequence of its oviposition strategy and the severe habitat conditions. These findings may also provide insights into the mechanism to maintain the interaction between the fig tree and the fig wasp community.
Collapse
Affiliation(s)
- Po-An Chou
- Department of Forestry, National Chung Hsing University, No. 145 Xingda Rd., Taichung City 40227, Taiwan
| | - Anthony Bain
- Department of Biological Science, National Sun Yat-sen University, No. 70 Lien-Hai Rd., Kaohsiung City 80424, Taiwan
| | | | - Hsy-Yu Tzeng
- Department of Forestry, National Chung Hsing University, No. 145 Xingda Rd., Taichung City 40227, Taiwan
| |
Collapse
|
17
|
Griffith RM, Cuthbert RN, Johnson JV, Hardiman G, Dick JTA. Resilient amphipods: Gammarid predatory behaviour is unaffected by microplastic exposure and deoxygenation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163582. [PMID: 37086992 DOI: 10.1016/j.scitotenv.2023.163582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Microplastics are a ubiquitous and persistent form of pollution globally, with impacts cascading from the cellular to ecosystem level. However, there is a paucity in understanding interactions between microplastic pollution with other environmental stressors, and how these could affect ecological functions and services. Freshwater ecosystems are subject to microplastic input from anthropogenic activities (eg. wastewater), but are also simultaneously exposed to many other stressors, particularly reduced dissolved oxygen availability associated with climatic warming and pollutants, as well as biological invasions. Here, we employ the comparative functional response method (CFR; quantifying and comparing organism resource use as a function of resource density) to investigate the relative impact of different microplastic concentrations and oxygen regimes on predatory trophic interactions of a native and an invasive alien gammarid (Gammarus duebeni and Gammarus pulex). No significant effect on trophic interaction strengths was found from very high concentrations of microplastics (200 mp/L and 200,000 mp/L) or low oxygen (40 %) stressors on either species. Additionally, both gammarid species exhibited significant Type II functional responses, with attack rates and handling times not significantly affected by microplastics, oxygen or gammarid invasion status. Thus, both species showed resistance to the simultaneous effects of microplastics and deoxygenation in terms of feeding behaviour. Based on these findings, we suggest that the trophic function, in terms of predation rate, of Gammarus spp. may be sustained under acute bouts of microplastic pollution even in poorly‑oxygenated waters. This is the first study to investigate microplastic and deoxygenation interactions and to find no evidence for an interaction on a key invertebrate ecosystem service. We argue that our CFR methods can help understand and predict the future ecological ramifications of microplastics and other stressors across taxa and habitats.
Collapse
Affiliation(s)
- Rose M Griffith
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jack V Johnson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Gary Hardiman
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jaimie T A Dick
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
18
|
Parker B, Britton JR, Green ID, Amat-Trigo F, Andreou D. Parasite infection but not chronic microplastic exposure reduces the feeding rate in a freshwater fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121120. [PMID: 36682615 DOI: 10.1016/j.envpol.2023.121120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (plastics <5 mm) are an environmental contaminant that can negatively impact the behaviour and physiology of aquatic biota. Although parasite infection can also alter the behaviour and physiology of their hosts, few studies have investigated how microplastic and parasite exposure interact to affect hosts. Accordingly, an interaction experiment tested how exposure to environmentally relevant microplastic concentrations and the trophically transmitted parasite Pomphorhynchus tereticollis affected the parasite load, condition metrics and feeding rate of the freshwater fish final host chub Squalius cephalus. Microplastic exposure was predicted to increase infection susceptibility, resulting in increased parasite loads, whereas parasite and microplastic exposure were expected to synergistically and negatively impact condition indices and feeding rates. Following chronic (≈170 day) dietary microplastic exposure, fish were exposed to a given number of gammarids (4/8/12/16/20), with half of the fish presented with parasite infected individuals, before a comparative functional response experiment tested differences in feeding rates on different live prey densities. Contrary to predictions, dietary microplastic exposure did not affect parasite abundance at different levels of parasite exposure, specific growth rate was the only condition index that was lower for exposed but unexposed fish, with no single or interactive effects of microplastic exposure detected. However, parasite infected fish had significantly lower feeding rates than unexposed fish in the functional response experiment, with exposed but unexposed fish also showing an intermediate decrease in feeding rates. Thus, the effects of parasitism on individuals were considerably stronger than microplastic exposure, with no evidence of interactive effects. Impacts of environmentally relevant microplastic levels might thus be relatively minor versus other stressors, with their interactive effects difficult to predict based on their single effects.
Collapse
Affiliation(s)
- Ben Parker
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK.
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Iain D Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Fátima Amat-Trigo
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
19
|
Mostafiz MM, Güncan A, Lee KY. Evaluation of Lethal and Sublethal Effects of Methyl Benzoate on the Generalist Predator Orius laevigatus (Fieber). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1911-1920. [PMID: 36124760 DOI: 10.1093/jee/toac137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Methyl benzoate (MBe), a volatile organic molecule, has been shown to have insecticidal effects on a variety of agricultural, stored products, and urban arthropod pests in recent investigations. However, the toxicity of MBe against nontarget organisms has rarely been investigated. This study investigated the lethal and sublethal effects of MBe on the generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) via different exposure routes. This species is an important natural enemy of thrips, aphids, and mites in biological control programs globally. Acute toxicity bioassays conducted on O. laevigatus showed that the lethal median concentration (LC50) values of MBe for topical and residual toxicity were 0.73 and 0.94%, respectively, after 24 hr of exposure. Importantly, a sublethal concentration of MBe (LC30 = 0.51%) did not affect the survival and reproduction of O. laevigatus. In addition, prey consumption by O. laevigatus under different exposure conditions with varying densities of Aphis gossypii (Glover) (Hemiptera: Aphididae) adults demonstrated a good fit for a Type II functional response. The sublethal concentration of MBe did not affect the attack rate and handling time of O. laevigatus compared to untreated insects, nor did it affect the longevity and fecundity of O. laevigatus females. Thus, according to the International Organization for Biological Control, the sublethal MBe concentration for O. laevigatus is categorized as harmless and may be used in conjunction with this predator species for integrated control of many agricultural insect pests.
Collapse
Affiliation(s)
- Md Munir Mostafiz
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ali Güncan
- Ordu University, Faculty of Agriculture, Department of Plant Protection, 52200, Ordu, Turkey
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, 39061, Republic of Korea
| |
Collapse
|
20
|
Adekolurejo OA, Floyd M, Dunn AM, Kay P, Dean AP, Hassall C. Combined effects of increased water temperature and cyanobacterial compounds exert heterogeneous effects on survival and ecological processes in key freshwater species. Oecologia 2022; 200:515-528. [PMID: 36342526 PMCID: PMC9675649 DOI: 10.1007/s00442-022-05277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Climate change is increasing water temperature and intensifying the incidence of cyanobacterial blooms worldwide. However, the combined effects of increased temperature and microcystin concentrations as co-stressors on survival and ecological processes in freshwater species are unclear. Here, using purified MC-LR and crude extract of toxigenic Microcystis aeruginosa, we tested the individual and combined effects of three water temperatures (15, 20, 25 °C) and a range of environmentally relevant concentrations of dissolved microcystin and crude extract (0.01-10 µg·L-1) on survival, growth inhibition, grazing and predation rates in three freshwater species: phytoplankton (Scenedesmus quadricauda), zooplankton (Daphnia pulex), and an invertebrate predator (Ischnura elegans). Purified MC-LR exerted a higher growth inhibitory effect on S. quadricauda compared to crude extract with the same concentration of MC-LR, while neither treatment affected its chlorophyll-a content or survival of D. pulex. Crude extract reduced grazing and survival of D. pulex and I. elegans, respectively. The combined effect of higher temperature and crude extract reduced I. elegans survival by 50%. Increased temperature reduced prey handing time in I. elegans by 49%, suggesting a higher predation rate. However, warming together with higher concentrations of crude extract jointly increased zooplankton grazing and reduced damselfly predation. Taken together, these results suggest crude extract, and not necessarily microcystin, can affect survival and productivity in freshwater species, although these effects may vary unevenly across trophic levels. Our findings highlight the importance of complex ecological mechanisms by which warming can exacerbate toxic effects of cyanobacterial bloom extracts on survival and functions among species in eutrophic freshwaters.
Collapse
Affiliation(s)
- Oloyede A Adekolurejo
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Floyd
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison M Dunn
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Kay
- School of Geography, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew P Dean
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Wang ZQ, Zhou XG, Xiao Q, Tang P, Chen XX. The Potential of Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae) as Biocontrol Agents for the Tea Grey Geometrid Ectropis grisescens (Lepidoptera). INSECTS 2022; 13:937. [PMID: 36292885 PMCID: PMC9604023 DOI: 10.3390/insects13100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The tea grey geometrid Ectropis grisescens has long been a significant insect pest of tea plants in China. Two parasitoids, Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae: Microgastrinae), are the most important parasitoids in the larval stage of E. grisescens. Yet, the potential of these two parasitoids for controlling the tea grey geometrid is not known. Here, we studied the parasitism performance of these two parasitoid species on different host densities under different temperatures as well as the interference effect of parasitoid density. The results showed that both parasitoid species, Pa. hyposidrae and Pr. immunis, exhibited a Type II functional response towards the tea grey geometrid E. grisescens at four tested temperatures. With increasing the density of E. grisescens larvae, the number of parasitized larvae increased until a maximum was reached. The highest number of hosts parasitized by Pa. hyposidrae or Pr. immunis reached 14.5 or 14.75 hosts d-1 at 22 °C, respectively. The estimated values of instantaneous searching efficiency (a) and handling time (h) for Pa. hyposidrae or Pr. immunis were 1.420 or 3.621 and 0.04 or 0.053 at 22 °C, respectively. Pr. immunis performed better than Pa. hyposidrae under higher temperatures. The parasitism rate by a single female parasitoid decreased with increasing parasitoid density at different temperatures, resulting in a reduction of searching efficiency. The findings of this study showed that Pr.immunis could be a better effective biocontrol agent than Pa. hyposidrae against the tea grey geometrid.
Collapse
Affiliation(s)
- Zi-Qi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Gui Zhou
- Ministry of Agriculture Key Laboratory of Tea Quality and Safety Control, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiang Xiao
- Ministry of Agriculture Key Laboratory of Tea Quality and Safety Control, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pu Tang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Coughlan NE, Dickey JWE, Dick JTA, Médoc V, McCard M, Lacroix G, Fiorini S, Millot A, Cuthbert RN. When worlds collide: Invader-driven benthic habitat complexity alters predatory impacts of invasive and native predatory fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156876. [PMID: 35760170 DOI: 10.1016/j.scitotenv.2022.156876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/27/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Interactions between multiple invasive alien species (IAS) might increase their ecological impacts, yet relatively few studies have attempted to quantify the effects of facilitative interactions on the success and impact of aquatic IAS. Further, the effect of abiotic factors, such as habitat structure, have lacked consideration in ecological impact prediction for many high-profile IAS, with most data acquired through simplified assessments that do not account for real environmental complexities. In the present study, we assessed a potential facilitative interaction between a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), and an invasive bivalve, the Asian clam (Corbicula fluminea). We compared N. melanostomus functional responses (feeding-rates under different prey densities) to a co-occurring endangered European native analogue fish, the bullhead (Cottus gobio), in the presence of increased levels of habitat complexity driven by the accumulation of dead C. fluminea biomass that persists within the environment (i.e. 0, 10, 20 empty bivalve shells). Habitat complexity significantly influenced predation, with consumption in the absence of shells being greater than where 10 or 20 shells were present. However, at the highest shell density, invasive N. melanostomus maximum feeding-rates and functional response ratios were substantially higher than those of native C. gobio. Further, the Relative Impact Potential metric, by combining per capita effects and population abundances, indicated that higher shell densities exacerbate the relative impact of the invader. It therefore appears that N. melanostomus can better tolerate higher IAS shell abundances when foraging at high prey densities, suggesting the occurrence of an important facilitative interaction. Our data are thus fully congruent with field data that link establishment success of N. melanostomus with the presence of C. fluminea. Overall, we show that invader-driven benthic habitat complexity can alter the feeding-rates and thus impacts of predatory fishes, and highlight the importance of inclusion of abiotic factors in impact prediction assessments for IAS.
Collapse
Affiliation(s)
- Neil E Coughlan
- School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK.
| | - James W E Dickey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany; Freie Universität Berlin, Institute of Biology, Königin-Luise-Str. 1-3, 14195 Berlin, Germany; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| | - Vincent Médoc
- Equipe Neuro Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR 9197, Université de Lyon/Saint-Etienne, Saint-Etienne, France
| | - Monica McCard
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| | - Gérard Lacroix
- iEES-Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618 (CNRS, INRAE, IRD, Sorbonne Université, UPEC, Université de Paris), CC237 Paris, France; Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Sarah Fiorini
- Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Ecole Normale Supérieure, PSL Research University, CNRS, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile-De-France), UAR 3194 Saint-Pierre-lès-Nemours, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, UK
| |
Collapse
|
23
|
Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA. Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.80542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) are major drivers of global biodiversity loss, and the poorly regulated international pet trade is a source of emerging and future invaders. Predictions of the likely ecological impacts and risks of such IAS have been significantly enhanced in recent years with new metrics, which require application to many more actual and potential IAS. Hence, this study assesses the potential ecological impacts and risks of two readily available pet trade species: goldfish, Carassius auratus, a species with non-native populations worldwide; and white cloud mountain minnow, Tanichthys albonubes, a species with a limited invasion history to date. First, we compared the per capita feeding rates of these non-native species with two European trophically analogous natives – the stone loach, Barbatula barbatula, and the common minnow, Phoxinus phoxinus – using the Comparative Functional Response method. Second, we used foraging experiments in conspecific pairs to determine synergistic, neutral or antagonistic intraspecific interactions. Third, we performed novel object experiments using the two pet trade species to assess boldness, a known “dispersal enhancing trait”. Goldfish had the highest maximum feeding rates of the four species, while white cloud mountain minnows had the lowest. Neutral interactions were observed for all four species in the paired foraging experiments, with goldfish having the highest consumption and white cloud mountain minnows having the lowest. Goldfish demonstrated greater boldness, being more active during the experimental trials and more likely to approach a novel object than white cloud mountain minnows. Further, combining maximum feeding rates, boldness and species availabilities from our survey of pet shops, we assessed the relative invasion risks (RIR) of the two non-natives. This highlighted goldfish as the higher risk and most worthy of management prioritisation, mirroring its more extensive invasion history. We propose that such metrics have potential to direct future IAS policy decisions and management towards the ever-increasing rates of biological invasions worldwide.
Collapse
|
24
|
Cuthbert RN, Briski E. Functional responses of an invasive mud crab across a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151684. [PMID: 34793792 DOI: 10.1016/j.scitotenv.2021.151684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental gradients may alter the ecological impacts of invasive alien species. In marine systems such as the Baltic Sea, current salinity is variable and seawater freshening is projected in future, potentially facilitating novel keystone predators. Here, we examine the influence of salinity variation in the western Baltic Sea (i.e. ambient 10, then 7 and 4 ppt) on the functional response (FR) of the Harris mud crab Rhithropanopeus harrisii towards benthic macroinvertebrate prey at different densities. Rhithropanopeus harrisii displayed a Type II FR across salinities towards larval chironomids, due to a consistently high resource consumption rate at low prey densities. Feeding rates were significantly reduced at 4 ppt (mean 6 chironomid prey killed day-1) compared to 10 ppt and 7 ppt (9 killed day-1). Search efficiencies tended to be greatest at 10 ppt, whereas handling times were shortest - and maximum feeding rate highest - at the intermediate 7 ppt. These results suggest a slight reduction in predatory impact by R. harrisii at lower salinities. Nevertheless, across most prey densities, FRs were not significantly different, indicating sustained interaction strength across a range of salinity regimes.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
25
|
Effects of substrate and elevated temperature on the growth and feeding efficiency of an invasive cyprinid fish, Tench (Tinca tinca). Biol Invasions 2022. [DOI: 10.1007/s10530-022-02778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wang Y, Tüzün N, Sentis A, Stoks R. Thermal plasticity and evolution shape predator‐prey interactions differently in clear and turbid water. J Anim Ecol 2022; 91:883-894. [DOI: 10.1111/1365-2656.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix‐en‐Provence France
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Debériotstraat 32, 3000 Leuven Belgium
| |
Collapse
|
27
|
Holloway JC, Barton M, Wood R, Parry HR. Combined effects of temperature and population density of Myzus persicae (Hemiptera: Aphididae) on consumption by Harmonia conformis (Coleoptera: Coccinellidae). PEST MANAGEMENT SCIENCE 2022; 78:653-661. [PMID: 34647406 DOI: 10.1002/ps.6675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The green peach aphid Myzus persicae is a major pest of many crops around the world, causing direct damage and acting as a vector for several viruses. This species has developed resistance to several insecticides, resulting in a greater emphasis on nonchemical methods of control. The aphidophagous ladybird, Harmonia conformis, is one of several species to predate on this pest. H. conformis is native to Australia, but has been exported to New Zealand, the USA and Europe as a biological control agent for horticultural pests and has now become established in several regions. Despite these introductions, the ability of H. conformis to predate on M. persicae has not yet been quantified. To address this knowledge gap, we measured the potential success of this natural enemy and its functional response over a range of temperatures. RESULTS H. conformis displayed a Type II response over all temperatures assessed. The peak temperature for voracity was 32 °C, with a potential maximum daily predation rate of 204 aphids. Consumption of aphids by H. conformis on canola plants within a glasshouse was less than predicted from the laboratory-generated models. However, consumption increased significantly with increasing density of M. persicae. CONCLUSION H. conformis can contribute markedly to aphid suppression and could be incorporated into integrated pest management systems which rely on natural enemies, particularly during spring when temperatures increase above 25 °C. Furthermore, it would also be an ideal candidate for augmentative releases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanne C Holloway
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | | | - Rachel Wood
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | | |
Collapse
|
28
|
Islam Y, Shah FM, Güncan A, DeLong JP, Zhou X. Functional Response of Harmonia axyridis to the Larvae of Spodoptera litura: The Combined Effect of Temperatures and Prey Instars. FRONTIERS IN PLANT SCIENCE 2022; 13:849574. [PMID: 35845680 PMCID: PMC9284266 DOI: 10.3389/fpls.2022.849574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/10/2023]
Abstract
Functional responses are central to predator-prey dynamics and describe how predation varies with prey abundance. Functional responses often are measured without regard to prey size (i.e., body mass) or the temperature dependence of feeding rates. However, variation in prey size within populations is ubiquitous, and predation rates are often both size and temperature-dependent. Here, we assessed functional responses of larvae and adult Harmonia axyridis on the 1st, 2nd, and 3rd instars of the prey Spodoptera litura across a range of temperatures (i.e., 15, 20, 25, 30, and 35°C). The type and parameters of the functional responses were determined using logistic regression and fitted to the Roger's random predator equation. The magnitude of predation varied with the predator and prey stage, but prey predation increased with warming and predator age. Predation by the female and 4th instar of H. axyridis on the 1st instar of prey was greater, followed by the 2nd and 3rd instar of prey S. litura. No predation occurred on the larger prey for the 1st, 2nd, and 3rd instars of H. axyridis. The larvae and adult H. axyridis produced a type II (hyperbolic) functional response curve across all temperatures and the three prey types they consumed. Space clearance rates, handling time, and maximum predation rates of H. axyridis changed with temperature and prey size, increasing with temperature and decreasing with prey size, suggesting more predation will occur on younger prey. This study indicates an interactive role of temperature and prey/predator size in shaping functional responses, which might complicate the planning of effective biocontrol strategies against this serious pest.
Collapse
Affiliation(s)
- Yasir Islam
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Farhan Mahmood Shah
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Farhan Mahmood Shah ;
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, Ordu, Turkey
| | - John Paul DeLong
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Xingmiao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Xingmiao Zhou
| |
Collapse
|
29
|
Van Duong C, Phuong Tran UT, Van Nguyen V, Bae YJ. Predator selection and predator-prey interactions for the biological control of mosquito dengue vectors in northern Vietnam. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:163-172. [PMID: 35230021 DOI: 10.52707/1081-1710-46.2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/17/2021] [Indexed: 06/14/2023]
Abstract
Predators and their interactions with target prey influence the efficiency of control strategies. In the present study, we demonstrate the implementation of natural predator selection for controlling dengue vectors in northern Vietnam through field-based observation of aquatic insect predators in natural habitats and lab-based assessment of predatorial capacities for several aquatic insect predators. The selected species was then used to evaluate the predatory-prey interaction using functional responses (FRs) toward 3rd- and 4th-instar larvae of four major medical mosquito species (Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus). The preference of selected predators for Ae. aegypti larvae over other mosquito larvae was also investigated. Both field observation and lab experiments indicated that the giant water bug Diplonychus rusticus was abundant and exhibited the highest predatory capacity for mosquito larvae. The predator exhibited type II FRs when offered each of the four prey species, and the greatest attack rates were observed for Ae. aegypti and Ae. albopictus, with only negligible differences observed in the handling times of the prey species. Further, Manly's selectivity (α) values calculated from the prey choice experiments showed that Ae. aegypti was preferred over both Cx. quinquefasciatus and An. minimus. Together, these findings indicate that D. rusticus could be successfully used to facilitate the biological control of both Ae. aegypti and Ae. albopictus within the species' distributional overlap in Southeast Asia.
Collapse
Affiliation(s)
- Cuong Van Duong
- Department of Environmental Science and Ecological Engineering, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Uyen Thi Phuong Tran
- Department of Applied Zoology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Vinh Van Nguyen
- Department of Applied Zoology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, College of Life Sciences, Korea University, Seoul 02841, Korea,
| |
Collapse
|
30
|
Cuthbert RN, Briski E. Temperature, not salinity, drives impact of an emerging invasive species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146640. [PMID: 33774308 DOI: 10.1016/j.scitotenv.2021.146640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Biological invasions are a growing ecological and socioeconomic problem worldwide. While robust predictions of impactful future invaders are urgently needed, understandings of invader impacts have been challenged by context-dependencies. In aquatic systems in particular, future climate change could alter the impacts of invasive non-native species. Widespread warming coupled with sea freshening may exacerbate ecological impacts of invaders in marine environments, compromising ecosystem structure, function and stability. We examined how multiple abiotic changes affect the potential ecological impact of an emerging invasive non-native species from the Ponto-Caspian region - a notorious origin hotspot for invaders, characterised by high salinity and temperature variation. Using a comparative functional response (feeding rates across prey densities) approach, the potential ecological impacts of the gammarid Pontogammarus maeoticus towards native chironomid prey were examined across a range of current and future temperature (18, 22 °C) and salinity (14, 10, 6, 2 ppt) regimes in a factorial design. Feeding rates of P. maeoticus on prey significantly increased with temperature (by 60%), but were not significantly affected by salinity regime. Gammarids displayed significant Type II functional responses, with attack rates not significantly affected by warming across all salinities. Handling times were, however, shortened by warming, and thus maximum feeding rates significantly increased, irrespective of salinity regime. Functional responses were significantly different following warming at high prey densities under all salinities, except under the ambient 10 ppt. Euryhalinity of invasive non-native species from the Ponto-Caspian region thus could allow sustained ecological impacts across a range of salinity regimes. These results corroborate high invasion success and field impacts of Ponto-Caspian gammarids in brackish through to freshwater ecosystems. Climate warming will likely worsen the potential ecological impact of P. maeoticus. With invasions growing worldwide, quantifications of how combined elements of climate change will alter the impacts of emerging invasive non-native species are needed.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
| | | |
Collapse
|
31
|
Dominguez Almela V, South J, Britton JR. Predicting the competitive interactions and trophic niche consequences of a globally invasive fish with threatened native species. J Anim Ecol 2021; 90:2651-2662. [PMID: 34309851 DOI: 10.1111/1365-2656.13571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Novel trophic interactions between invasive and native species potentially increase levels of interspecific competition in the receiving environment. However, theory on the trophic impacts of invasive fauna on native competitors is ambiguous, as while increased interspecific competition can result in the species having constricted and diverged trophic niches, the species might instead increase their niche sizes, especially in omnivorous species. The competitive interactions between an omnivorous invasive fish, common carp Cyprinus carpio, and a tropically analogous native and threatened fish, crucian carp Carassius carassius, were tested using comparative functional responses (CFRs). A natural pond experiment then presented the species in allopatry and sympatry, determining the changes in their trophic (isotopic) niche sizes and positions over 4 years. These predictive approaches were complemented by assessing their trophic relationships in wild populations. Comparative functional responses revealed that compared to crucian carp, carp had a significantly higher maximum consumption rate. Coupled with a previous cohabitation growth study, these results predicted that competition between the species is asymmetric, with carp the superior competitor. The pond experiment used stable isotope metrics to quantify shifts in the trophic (isotopic) niche sizes of the fishes. In allopatry, the isotopic niches of the two species were similar sized and diverged. Conversely, in sympatry, carp isotopic niches were always considerably larger than those of crucian carp and were strongly partitioned. Sympatric crucian carp had larger isotopic niches than allopatric conspecifics, a likely response to asymmetric competition from carp. However, carp isotopic niches were also larger in sympatry than allopatry. In the wild populations, the carp isotopic niches were always larger than crucian carp niches, and were highly divergent. The superior competitive abilities of carp predicted in aquaria experiments were considered to be a process involved in sympatric crucian carp having larger isotopic niches than in allopatry. However, as sympatric carp also had larger niches than in allopatry, this suggests other ecological processes were also likely to be involved, such as those relating to fish prey resources. These results highlight the inherent complexity in determining how omnivorous invasive species integrate into food webs and alter their structure.
Collapse
Affiliation(s)
- Victoria Dominguez Almela
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Josie South
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| |
Collapse
|
32
|
Cunningham EM, Cuthbert RN, Coughlan NE, Kregting L, Cairnduff V, Dick JTA. Microplastics do not affect the feeding rates of a marine predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146487. [PMID: 34030230 DOI: 10.1016/j.scitotenv.2021.146487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
Microplastics may affect the physiology, behaviour and populations of aquatic and terrestrial fauna through many mechanisms, such as direct consumption and sensory disruption. However, the majority of experimental studies have employed questionably high dosages of microplastics that have little environmental relevance. Predation, in particular, is a key trophic interaction that structures populations and communities and influences ecosystem functioning, but rarely features in microplastic research. Here, we quantify the effects of low (~65-114 MP/L) and high (~650-1140 MP/L) microplastic concentrations on the feeding behaviour of a ubiquitous and globally representative key marine predator, the shore crab, Carcinus maenas. We used a functional response approach (predator consumption across prey densities) to determine crab consumption rates towards a key marine community prey species, the blue mussel Mytilus edulis, under low and high microplastic concentrations with acute (8h) and chronic (120h) microplastic exposure times. For both the acute and chronic microplastic exposure experiments, proportional prey consumption by crabs did not differ with respect to microplastic concentration, but significantly decreased over increasing prey densities. The crabs thus displayed classical, hyperbolic Type II functional responses in all experimental groups, characterised by high consumption rates at low prey densities. Crab attack rates, handling times and maximum feeding rates (i.e. functional response curves) were not significantly altered under lower or higher microplastics concentrations, or by acute or chronic microplastic exposures. Here, we show that functional response analyses could be widely employed to ascertain microplastic impacts on consumer-resource interactions. Furthermore, we suggest that future studies should adopt both acute and chronic microplastic exposure regimes, using environmentally-relevant microplastic dosages and types as well as elevated future scenarios of microplastic concentrations.
Collapse
Affiliation(s)
- Eoghan M Cunningham
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK.
| | - Ross N Cuthbert
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany; Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK
| | - Louise Kregting
- School of Natural and Built Environment, Queen's University Belfast, Belfast BT9 5BN, UK; Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK
| | - Victoria Cairnduff
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK
| | - Jaimie T A Dick
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, UK; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, UK
| |
Collapse
|
33
|
Griffen BD. Considerations When Applying the Consumer Functional Response Measured Under Artificial Conditions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.713147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since its creation, considerable effort has been given to improving the utility of the consumer functional response. To date, the majority of efforts have focused on improving mathematical formulation in order to include additional ecological processes and constraints, or have focused on improving the statistical analysis of the functional response to enhance rigor and to more accurately match experimental designs used to measure the functional response. In contrast, relatively little attention has been given to improving the interpretation of functional response empirical results, or to clarifying the implementation and extrapolation of empirical measurements to more realistic field conditions. In this paper I explore three concepts related to the interpretation and extrapolation of empirically measured functional responses. First, I highlight the need for a mechanistic understanding when interpreting foraging patterns and highlight pitfalls that can occur when we lack understanding between the shape of the functional response curve and the mechanisms that give rise to that shape. Second, I discuss differences between experimental and real-world field conditions that must be considered when trying to extrapolate measured functional responses to more natural conditions. Third, I examine the importance of the time scale of empirical measurements, and the need to consider tradeoffs that alter or limit foraging decisions under natural conditions. Clearly accounting for these three conceptual areas when measuring functional responses and when interpreting and attempting to extrapolate empirically measured functional responses will lead to more accurate estimates of consumer impacts under natural field conditions, and will improve the utility of the functional response as a heuristic tool in ecology.
Collapse
|
34
|
Tsang AHF, Dudgeon D. Can the functional response to prey predict invasiveness? A comparison of native fishes and alien poeciliids in Hong Kong. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci Rep 2021; 11:13565. [PMID: 34193927 PMCID: PMC8245531 DOI: 10.1038/s41598-021-92954-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.
Collapse
|
36
|
Functional Response and Predation Rate of Dicyphus cerastii Wagner (Hemiptera: Miridae). INSECTS 2021; 12:insects12060530. [PMID: 34200391 PMCID: PMC8229145 DOI: 10.3390/insects12060530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Biological control (BC) is an effective way to regulate pest populations in horticultural crops, allowing the decrease of pesticide usage. On tomato, predatory insects like plant bugs or mirids provide BC services against several insect pests. Native predators are adapted to local conditions of climate and ecology and therefore may be well suited to provide BC services. Dicyphus cerastii is a predatory mirid that is present in the Mediterranean region and occurs in tomato greenhouses in Portugal. However, little is known about its contribution to BC in this crop. In this study, we evaluated how prey consumption is affected by increasing prey abundance on four different prey, in laboratory conditions. We found that the predator can increase its predation rate until a maximum is reached and that prey characteristics like size and mobility can affect predation. Dicyphus cerastii showed high predation rates for all prey species tested, allowing us to conclude that this species is an interesting predator for BC in tomato crops. Abstract Dicyphine mirids are important biological control agents (BCAs) in horticultural crops. Dicyphus cerastii Wagner can be found in protected tomato crops in Portugal, and has been observed feeding on several tomato pests. However, the predation capacity of this species is poorly studied. In order to investigate the predation capacity of D. cerastii, and how it is affected by prey size and mobility, we evaluated the functional response (FR) and predation rate of female predators on different densities of four prey species: Myzus persicae 1st instar nymphs (large mobile prey), Bemisia tabaci 4th instar nymphs, Ephestia kuehniella eggs (large immobile prey) and Tuta absoluta eggs (small immobile prey). Experiments were performed on tomato leaflets in Petri dish arenas for 24 h. Dicyphus cerastii exhibited type II FR for all prey tested. The predator effectively preyed upon all prey, consuming an average of 88.8 B. tabaci nymphs, 134.4 E. kuehniella eggs, 37.3 M. persicae nymphs and 172.3 T. absoluta eggs. Differences in the FR parameters, attack rate and handling time, suggested that prey size and mobility affected predation capacity. Considering the very high predation rates found for all prey species, D. cerastii proved to be an interesting candidate BCA for tomato crops.
Collapse
|
37
|
Cuthbert RN, Dalu T, Wasserman RJ, Sentis A, Weyl OLF, Froneman PW, Callaghan A, Dick JTA. Prey and predator density-dependent interactions under different water volumes. Ecol Evol 2021; 11:6504-6512. [PMID: 34141235 PMCID: PMC8207356 DOI: 10.1002/ece3.7503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/28/2023] Open
Abstract
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator-prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator-predator interference effects.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Olaf L. F. Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | | | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
38
|
Anthropogenic water conditions amplify predatory impact of the non-native Oriental river prawn Macrobrachium nipponense. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Wang Y, Sentis A, Tüzün N, Stoks R. Thermal evolution ameliorates the long‐term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, UMR RECOVER Aix‐en‐Provence France
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| |
Collapse
|
40
|
Kumari S, Suroshe SS, Kumar D, Budhlakoti N, Yana V. Foraging behaviour of Scymnus coccivora Ayyar against cotton mealybug Phenacoccus solenopsis Tinsley. Saudi J Biol Sci 2021; 28:3799-3805. [PMID: 34220234 PMCID: PMC8241695 DOI: 10.1016/j.sjbs.2021.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022] Open
Abstract
Predation is one of the significant biotic mortality factors reducing the insect pest population as functional response and the numerical response of the predator are the key factor regulating the population dynamics of predator prey species. This study is aimed to evaluate the functional response of all the developmental stages of Scymnus coccivora Ayyar (Coleoptera: Coccinellidae) against the different densities of cotton mealybug, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae) and the numerical response of female predator. Experiments were carried out in controlled environment laboratory conditions at 25 ± 1 °C temperature, 60 ± 5% relative humidity and photoperiod of 16 h. Number of eggs consumed, number of eggs laid and the Efficiency of Conversion of Ingested food (ECI) were recorded daily. Results from the study revealed that all the developmental stages of S. coccivora exhibited a Type II response. Different parameters such as attack rate (a'), handling time (Th) and the maximum rate of predation were estimated using Roger's random attack equation and Holling Disc equation in which Rogers random attack equation was found best fit. Female has shown the highest attack rate (a') followed by IVth instar grub, male, IIIrd, IInd and Ist instar grub. With low handling time, IVth instar grub has shown maximum predation rate of 76.40 per day followed by female (75.86), male (58.79), IIIrd (22.84), IInd (19.65) and Ist instar grub (15.39). The numerical response increase was curvilinearly related to different prey densities with the highest number of eggs (11.8 ± 3.44) produced at highest prey density (160). The Efficiency of Conversion of Ingested food (ECI) was highest (64.49 ± 8.03) at prey density of 10. Understanding the factors that lead to variation in functional response of predator in natural population will advance our understanding of the effects of predation on individual and the effectiveness of coccinellid predators as biocontrol agent against cotton mealybug.
Collapse
Affiliation(s)
- Sweetee Kumari
- Biocontrol Laboratory, Division of Entomology, ICAR-IARI, Pusa, New Delhi 110012, India
| | - Sachin S Suroshe
- Biocontrol Laboratory, Division of Entomology, ICAR-IARI, Pusa, New Delhi 110012, India
| | - Dinesh Kumar
- Department of Zoology, Centre of Advanced Study, Institute of Science, BHU, Varanasi 221005, India
| | - Neeraj Budhlakoti
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi 110012, India
| | - Venkanna Yana
- Biocontrol Laboratory, Division of Entomology, ICAR-IARI, Pusa, New Delhi 110012, India
| |
Collapse
|
41
|
Pushing the switch: functional responses and prey switching by invasive lionfish may mediate their ecological impact. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02487-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBiodiversity is declining on a global scale and the spread of invasive alien species (IAS) is a major driver, particularly through predatory impacts. Thus, effective means of assessing and predicting the consequences of IAS predation on native prey population stability remains a vital goal for conservation. Here, we applied two classic ecological concepts, consumer functional response (FR) and prey switching, to predict and understand the ecological impacts of juveniles of the lionfish (Pterois volitans), a notorious and widespread marine invader. Functional responses and prey switching propensities were quantified towards three representative prey species: Artemia salina, Palaemonetes varians, and Gammarus oceanicus. Lionfish exhibited potentially destabilising Type II FRs towards individual prey species, owing to high consumption rates at low prey densities, whilst FR magnitudes differed among prey species. Functional response attack rates (a) were highest, and handling times (h) lowest, towards A. salina, followed by P. varians and then G. oceanicus. Maximum feeding rates (1/h) and functional response ratios (FRR; a/h) also followed this impact gradient for the three prey species. Lionfish, however, displayed a potentially population stabilising prey switching propensity (i.e. frequency-dependent predation) when multiple prey species were presented simultaneously, where disproportionately less of rare prey, and more of abundant prey, were consumed. Whilst FR and FRR magnitudes indicate marked per capita lionfish predatory impacts towards prey species, a strong prey switching propensity may reduce in-field impacts by offering low density prey refuge in biodiverse communities. Our results thus corroborate field patterns documenting variable impacts of lionfish, with prey extirpations less likely in diverse communities owing to frequency-dependent predation.
Collapse
|
42
|
Born-Torrijos A, Paterson RA, van Beest GS, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen PA, Soldánová M. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J Anim Ecol 2021; 90:978-988. [PMID: 33481253 DOI: 10.1111/1365-2656.13427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023]
Abstract
Free-living parasite life stages may contribute substantially to ecosystem biomass and thus represent a significant source of energy flow when consumed by non-host organisms. However, ambient temperature and the predator's own infection status may modulate consumption rates towards parasite prey. We investigated the combined effects of temperature and predator infection status on the consumer functional response of three-spined sticklebacks towards the free-living cercariae stages of two common freshwater trematode parasites (Plagiorchis spp., Trichobilharzia franki). Our results revealed genera-specific functional responses and consumption rates towards each parasite prey: Type II for Plagiorchis spp. and Type III for T. franki, with an overall higher consumption rate on T. franki. Elevated temperature (13°C) increased the consumption rate on Plagiorchis spp. prey for sticklebacks with mild cestode infections (<5% fish body weight) only. High consumption of cercarial prey by sticklebacks may impact parasite population dynamics by severely reducing or even functionally eliminating free-living parasite life stages from the environment. This supports the potential role of fish as biocontrol agents for cercariae with similar dispersion strategies, in instances where functional response relationships have been established. Our study demonstrates how parasite consumption by non-host organisms may be shaped by traits inherent to parasite transmission and dispersal, and emphasises the need to consider free-living parasite life stages as integral energy resources in aquatic food webs.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Rachel A Paterson
- School of Biosciences, Cardiff University, Cardiff, UK.,The Norwegian Institute for Nature Research, Trondheim, Norway
| | - Gabrielle S van Beest
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Valencia, Spain
| | - Tereza Vyhlídalová
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Eirik H Henriksen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rune Knudsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roar Kristoffersen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Miroslava Soldánová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
43
|
Russell MC, Qureshi A, Wilson CG, Cator LJ. Size, not temperature, drives cyclopoid copepod predation of invasive mosquito larvae. PLoS One 2021; 16:e0246178. [PMID: 33529245 PMCID: PMC7853444 DOI: 10.1371/journal.pone.0246178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
During range expansion, invasive species can experience new thermal regimes. Differences between the thermal performance of local and invasive species can alter species interactions, including predator-prey interactions. The Asian tiger mosquito, Aedes albopictus, is a known vector of several viral diseases of public health importance. It has successfully invaded many regions across the globe and currently threatens to invade regions of the UK where conditions would support seasonal activity. We assessed the functional response and predation efficiency (percentage of prey consumed) of the cyclopoid copepods Macrocyclops albidus and Megacyclops viridis from South East England, UK against newly-hatched French Ae. albopictus larvae across a relevant temperature range (15, 20, and 25°C). Predator-absent controls were included in all experiments to account for background prey mortality. We found that both M. albidus and M. viridis display type II functional response curves, and that both would therefore be suitable biocontrol agents in the event of an Ae. albopictus invasion in the UK. No significant effect of temperature on the predation interaction was detected by either type of analysis. However, the predation efficiency analysis did show differences due to predator species. The results suggest that M. viridis would be a superior predator against invasive Ae. albopictus larvae due to the larger size of this copepod species, relative to M. albidus. Our work highlights the importance of size relationships in predicting interactions between invading prey and local predators.
Collapse
Affiliation(s)
- Marie C. Russell
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
- * E-mail:
| | - Alima Qureshi
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | | | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
44
|
Barraquand F, Gimenez O. Fitting stochastic predator-prey models using both population density and kill rate data. Theor Popul Biol 2021; 138:1-27. [PMID: 33515551 DOI: 10.1016/j.tpb.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 12/01/2022]
Abstract
Most mechanistic predator-prey modelling has involved either parameterization from process rate data or inverse modelling. Here, we take a median road: we aim at identifying the potential benefits of combining datasets, when both population growth and predation processes are viewed as stochastic. We fit a discrete-time, stochastic predator-prey model of the Leslie type to simulated time series of densities and kill rate data. Our model has both environmental stochasticity in the growth rates and interaction stochasticity, i.e., a stochastic functional response. We examine what the kill rate data brings to the quality of the estimates, and whether estimation is possible (for various time series lengths) solely with time series of population counts or biomass data. Both Bayesian and frequentist estimation are performed, providing multiple ways to check model identifiability. The Fisher Information Matrix suggests that models with and without kill rate data are all identifiable, although correlations remain between parameters that belong to the same functional form. However, our results show that if the attractor is a fixed point in the absence of stochasticity, identifying parameters in practice requires kill rate data as a complement to the time series of population densities, due to the relatively flat likelihood. Only noisy limit cycle attractors can be identified directly from population count data (as in inverse modelling), although even in this case, adding kill rate data - including in small amounts - can make the estimates much more precise. Overall, we show that under process stochasticity in interaction rates, interaction data might be essential to obtain identifiable dynamical models for multiple species. These results may extend to other biotic interactions than predation, for which similar models combining interaction rates and population counts could be developed.
Collapse
Affiliation(s)
- Frédéric Barraquand
- CNRS, Institute of Mathematics of Bordeaux, France; University of Bordeaux, Integrative and Theoretical Ecology, LabEx COTE, France.
| | - Olivier Gimenez
- CNRS, Center for Evolutionary and Functional Ecology, Montpellier, France
| |
Collapse
|
45
|
Dickey JWE, Cuthbert RN, Steffen GT, Dick JTA, Briski E. Sea freshening may drive the ecological impacts of emerging and existing invasive non‐native species. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- James W. E. Dickey
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | - Ross N. Cuthbert
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
| | | | - Jaimie T. A. Dick
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | | |
Collapse
|
46
|
Cuthbert RN, Dalu T, Wasserman RJ, Weyl OLF, Froneman PW, Callaghan A, Dick JTA. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1983-1987. [PMID: 32459349 DOI: 10.1093/jme/tjaa093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Predation is a critical factor that mediates population stability, community structure, and ecosystem function. Predatory natural enemies can contribute to the regulation of disease vector groups such as mosquitoes, particularly where they naturally co-occur across landscapes. However, we must understand inter-population variation in predatory efficiency if we are to enhance vector control. The present study thus employs a functional response (FR; resource use under different densities) approach to quantify and compare predatory interaction strengths among six populations of a predatory temporary pond specialist copepod, Lovenula raynerae, from the Eastern Cape of South Africa preying on second instar Culex pipiens complex mosquito larvae. All individuals from the sampled populations were predatory and drove significant mortality through per capita predation rates of 0.75-1.10 mosquitoes/h at maximum densities over a 5-h feeding time. Individuals from all copepod populations exhibited Type II FRs with no significant differences in attack rates. On the other hand, there were significant differences in handling times, and therefore also maximum feeding rates (maximum experimental prey density: 32), suggesting possible genetic differences among populations that influenced predation. Owing to a widespread distribution in arid landscapes, we propose that predatory calanoid copepods such as L. raynerae play a key regulatory role at the landscape scale in the control of disease vector mosquito populations. We propose that these ecosystems and their specialist biota should thus be conserved and enhanced (e.g., via selective breeding) owing to the ecosystem services they provide in the context of public health.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Tatenda Dalu
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ecology and Resource Management, University of Venda, Thohoyandou, South Africa
| | - Ryan J Wasserman
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Olaf L F Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - P William Froneman
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Harborne Building, Reading, United Kingdom
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
47
|
Dalal A, Gallogly J, Cuthbert RN, Laverty C, Dickey JWE, Dick JTA. Ecological impacts of an invasive predator are mediated by the reproductive cycle. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
The effects of trophic interaction between the Patagonian native Percichthys trucha and the invasive Oncorhynchus mykiss during the juvenile period. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Gimme Shelter: differential utilisation and propagule creation of invasive macrophytes by native caddisfly larvae. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02358-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractIn aquatic systems, invasive submerged macrophytes considerably alter the structure and functioning of communities, thus potentially compromising ecosystem services. The prolific spread of invasive macrophytes is often aided by vegetative fragment propagation, yet the contributions of various commonly occurring invertebrates to such fragmentation are often unquantified. In the present study, we examine fragmentary spread of invasive macrophytes by a group of shredder-herbivores, larval caddisflies. Through novel application of the comparative functional response (FR; resource use as a function of density) approach to the native case-building species Limnephilus lunatus, we compared utilisation of non-native waterweeds Elodea canadensis and E. nuttallii in mono- and polycultures. Furthermore, we quantified de-cased and cased caddisfly-induced fragment production and length changes among non-native E. canadensis, E. nuttallii, Crassula helmsii and Lagarosiphon major under two different plant orientations: horizontal (floating) versus vertical (upright) growth forms. Larval caddisflies exhibited Type II (hyperbolic) FRs towards both Elodea species, and utilised each plant at similar rates when plants were provided separately. When plant species were presented in combination horizontally, E. canadensis was significantly less utilised compared to E. nuttallii, corroborating observations in the field. De-cased larvae produced new plant fragments for all four aquatic macrophytes, whereas cased larvae fragmented plants significantly less. Elodea nuttalii and C. helmsii were fragmented the most overall. Crassula helmsii was utilised to the greatest extent when plants were horizontally orientated, and Elodea species when vertically orientated. This study identifies and quantifies a mechanism from a novel species group that may contribute to the spread of invasive macrophytes in aquatic systems. Whilst exploititative interactions are thought to impede invasion success, here we demonstrate how resource utilisation by a resident species may exacerbate propagule pressure from an invasive species.
Collapse
|
50
|
Islam Y, Shah FM, Shah MA, Musa Khan M, Rasheed MA, Ur Rehman S, Ali S, Zhou X. Temperature-Dependent Functional Response of Harmonia axyridis (Coleoptera: Coccinellidae) on the Eggs of Spodoptera litura (Lepidoptera: Noctuidae) in Laboratory. INSECTS 2020; 11:insects11090583. [PMID: 32882812 PMCID: PMC7564558 DOI: 10.3390/insects11090583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 02/02/2023]
Abstract
Simple Summary Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a notorious and polyphagous pest of several economically important agricultural crops. It is worldwide in distribution and primarily managed through typical dependence on insecticides, which resulted in health and the environmental challenges and selected for resistance development in S. litura field populations. Resistance caused chemical control failures and S. litura outbreaks around the world. This necessitated development of eco-friendly alternative approaches such as biological control. With this view, current study investigated the functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) at various growth stages (i.e., 1st, 2nd, 3rd and 4th instars, and male and female stages) and temperatures (i.e., 15, 20, 25, 30 and 35 °C) against S. litura eggs to enable the recognition of efficient biocontrol stages that could be utilized to suppress S. litura populations. In our findings, egg consumption depended on the growth stage of the predator as well as temperature. All stages consumed S. litura eggs, but more promising stages with active egg consumption were the 4th instar and adults (male and female) typically at higher temperatures (25–35 °C). We conclude that these stages may be exploited to suppress S. litura populations in fields and greenhouses. Abstract Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a major pest of several economically important crops with worldwide distribution. Use of insecticides is the principal strategy for its management, which has subsequently led to insecticide resistance and control failures. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) at larval and adult stages was evaluated in this study, using S. litura eggs as the prey at various temperatures varying between 15 and 35 °C. Based on logistic model findings, linear parameters of various predatory stages of H. axyridis at various temperatures were significantly negative, which indicate a type II functional response. The theoretical maximum number (T/Th) of eggs consumed increased with increasing temperature across all predatory stages. According to the random predator equation, the coefficients of attack rate increased and that of handling time decreased as the temperature increased. The 4th instar and adult stages were superior candidates for biocontrol of the target prey, typically at higher temperatures. The maximum attack rate (0.546 ± 0.058 h−1) and lowest handling time (0.189 ± 0.004 h) were exhibited by the females at 30 and 35 °C, respectively, whereas these parameters were inferior for early instars. These findings clearly depict that the 4th instar and adult predators are efficient egg consumers and can serve as potential suppressors of S. litura field populations. The limitations of the predictions formulated by functional response trials are also discussed.
Collapse
Affiliation(s)
- Yasir Islam
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.I.); (M.A.R.); (S.U.R.); (S.A.)
| | - Farhan Mahmood Shah
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - M. Abas Shah
- ICAR-Central Potato Research Institute-Regional Station, Jalandhar Punjab-144003, India;
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, China;
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, Guangzhou 510640, China
| | - Muhammad Asim Rasheed
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.I.); (M.A.R.); (S.U.R.); (S.A.)
| | - Shakeel Ur Rehman
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.I.); (M.A.R.); (S.U.R.); (S.A.)
| | - Shahzaib Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.I.); (M.A.R.); (S.U.R.); (S.A.)
| | - Xingmiao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.I.); (M.A.R.); (S.U.R.); (S.A.)
- Correspondence:
| |
Collapse
|