1
|
Beach SJ, Maselko M. Recombinant venom proteins in insect seminal fluid reduce female lifespan. Nat Commun 2025; 16:219. [PMID: 39774598 PMCID: PMC11707029 DOI: 10.1038/s41467-024-54863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The emergence of insecticide resistance has increased the need for alternative pest management tools. Numerous genetic biocontrol approaches, which involve the release of genetically modified organisms to control pest populations, are in various stages of development to provide highly targeted pest control. However, all current mating-based genetic biocontrol technologies function by releasing engineered males which skew sex-ratios or reduce offspring viability in subsequent generations which leaves mated females to continue to cause harm (e.g. transmit disease). Here, we demonstrate intragenerational genetic biocontrol, wherein mating with engineered males reduces female lifespan. The toxic male technique (TMT) involves the heterologous expression of insecticidal proteins within the male reproductive tract that are transferred to females via mating. In this study, we demonstrate TMT in Drosophila melanogaster males, which reduce the median lifespan of mated females by 37 - 64% compared to controls mated to wild type males. Agent-based models of Aedes aegypti predict that TMT could reduce rates of blood feeding by a further 40 - 60% during release periods compared to leading biocontrol technologies like fsRIDL. TMT is a promising approach for combatting outbreaks of disease vectors and agricultural pests.
Collapse
Affiliation(s)
- Samuel J Beach
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
2
|
Feng Z, Zhang L, Tang N, Li X, Xing W. Ensemble modeling of aquatic plant invasions and economic cost analysis in China under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177444. [PMID: 39522784 DOI: 10.1016/j.scitotenv.2024.177444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pistia stratiotes, Eichhornia crassipes, Alternanthera philoxeroides, and Cabomba caroliniana are officially recognized as invasive aquatic plants in China. Accurately predicting their invasion dynamics under climate change is crucial for the future safety of aquatic ecosystems. Compared to single prediction models, ensemble models that integrate multiple algorithms provide more accurate forecasts. However, there has been a notable lack of research utilizing ensemble models to collectively predict the invasive regions of these four species in China. To address this gap, we collected and analyzed comprehensive data on species distribution, climate, altitude, population density, and the normalized difference vegetation index to accurately predict the future invasive regions and potential warnings for aquatic systems concerning these species. Our results indicate that suitable areas for invasive aquatic plants in China are primarily located in the southeastern region. Significant differences exist in the suitable habitats for each species: P. stratiotes and E. crassipes have broad distribution areas, covering most water systems in southeastern China, while C. caroliniana is concentrated in the middle and lower reaches of the Yangtze River and the estuaries of the Yangtze and Pearl Rivers. A. philoxeroides has an extensive invasion area, with the North China Plain projected to become a suitable invasion region in the future. The main factors influencing future invasions are human activities and climate change. In addition, under climate change, the suitable habitats for these invasive aquatic plants are expected to expand towards higher latitudes. We also estimated the economic costs associated with invasive aquatic plants in China using the Invacost database, revealing cumulative costs of US$5525.17 million, where damage costs (89.70%) significantly exceed management costs (10.30%). Our innovative approach, employing various ensemble algorithms and water system invasion forecasts, aims to effectively mitigate the future invasions and economic impacts of these species.
Collapse
Affiliation(s)
- Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Na Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Roiz D, Pontifes PA, Jourdain F, Diagne C, Leroy B, Vaissière AC, Tolsá-García MJ, Salles JM, Simard F, Courchamp F. The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173054. [PMID: 38729373 DOI: 10.1016/j.scitotenv.2024.173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.
Collapse
Affiliation(s)
- David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico.
| | - Paulina A Pontifes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Fréderic Jourdain
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Santé Publique France (French National Public Health Agency), Montpellier, France
| | - Christophe Diagne
- CBGP, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34988 Montferrier-sur-Lez, France
| | - Boris Leroy
- Unité Biologie des Organismes et Écosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - Anne-Charlotte Vaissière
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France; ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, CNRS, Université de Rennes, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - María José Tolsá-García
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Jean-Michel Salles
- CEE-M, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Franck Courchamp
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
4
|
Tarkan AS, Bayçelebi E, Giannetto D, Özden ED, Yazlık A, Emiroğlu Ö, Aksu S, Uludağ A, Aksoy N, Baytaşoğlu H, Kaya C, Mutlu T, Kırankaya ŞG, Ergüden D, Per E, Üremiş İ, Candan O, Kekillioğlu A, Yoğurtçuoğlu B, Ekmekçi FG, Başak E, Özkan H, Kurtul I, Innal D, Killi N, Yapıcı S, Ayaz D, Çiçek K, Mol O, Çınar E, Yeğen V, Angulo E, Cuthbert RN, Soto I, Courchamp F, Haubrock PJ. Economic costs of non-native species in Türkiye: A first national synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120779. [PMID: 38599083 DOI: 10.1016/j.jenvman.2024.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.
Collapse
Affiliation(s)
- Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom.
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Emine Demir Özden
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Ayşe Yazlık
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Ahmet Uludağ
- Plant Protection Department, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Necmi Aksoy
- Department of Forest Botany, Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Hazel Baytaşoğlu
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Environmental Protection Technologies Department, Recep Tayyip Erdoğan University, Türkiye
| | | | - Deniz Ergüden
- Department of Marine Sciences, Faculty of Marine Sciences and Technology, İskenderun Technical University, İskenderun, Türkiye
| | - Esra Per
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | - İlhan Üremiş
- Plant Protection Department, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya, Hatay, Türkiye
| | - Onur Candan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Aysel Kekillioğlu
- Department of Biology, Faculty of Science and Literature, Nevşehir HBV University, Nevşehir, Türkiye
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - F Güler Ekmekçi
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - Esra Başak
- Project House Cooperative, Moda Caddesi Borucu Han No:20/204 Kadıköy, Istanbul, Türkiye
| | - Hatice Özkan
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom; Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
| | - Deniz Innal
- Department of Biology, Faculty of Sciences and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Nurçin Killi
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Sercan Yapıcı
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Dinçer Ayaz
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Kerim Çiçek
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye; Natural History Application and Research Centre, Ege University, Izmir, Türkiye
| | - Oğuzcan Mol
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Emre Çınar
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Vedat Yeğen
- Fisheries Research Institute, Eğirdir, Isparta, Türkiye
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092, Seville, Spain
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| |
Collapse
|
5
|
Heringer G, Fernandez RD, Bang A, Cordonnier M, Novoa A, Lenzner B, Capinha C, Renault D, Roiz D, Moodley D, Tricarico E, Holenstein K, Kourantidou M, Kirichenko NI, Adelino JRP, Dimarco RD, Bodey TW, Watari Y, Courchamp F. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170336. [PMID: 38280594 DOI: 10.1016/j.scitotenv.2024.170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.
Collapse
Affiliation(s)
- Gustavo Heringer
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622 Nürtingen, Germany; Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), CEP 37200-900 Lavras, MG, Brazil.
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha 442001, India; Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal 462022, India
| | - Marion Cordonnier
- Lehrstuhl für Zoologie/Evolutionsbiologie, Univ. Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ana Novoa
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; Associate Laboratory Terra, Portugal
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - David Roiz
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier 34394, France
| | - Desika Moodley
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Elena Tricarico
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Kathrin Holenstein
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark; UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Natalia I Kirichenko
- Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; All-Russian Plant Quarantine Center, Krasnoyarsk branch, Krasnoyarsk 660020, Russia
| | - José Ricardo Pires Adelino
- Laboratório de Ecologia Evolutiva e Conservação, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, CP 6001, Londrina 86051-970, Brazil
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA-CONICET), Bariloche, RN, Argentina
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-Sur-Yvette, France
| |
Collapse
|
6
|
Soto I, Balzani P, Oficialdegui FJ, Molinero C, Kouba A, Ahmed DA, Turbelin AJ, Hudgins EJ, Bodey TW, Gojery SA, Courchamp F, Cuthbert RN, Haubrock PJ. The wild cost of invasive feral animals worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169281. [PMID: 38101642 DOI: 10.1016/j.scitotenv.2023.169281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | | | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Anna J Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada; School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville 3010, Australia
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | | | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| |
Collapse
|
7
|
Hulme PE, Ahmed DA, Haubrock PJ, Kaiser BA, Kourantidou M, Leroy B, McDermott SM. Widespread imprecision in estimates of the economic costs of invasive alien species worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:167997. [PMID: 37914135 DOI: 10.1016/j.scitotenv.2023.167997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Several hundred studies have attempted to estimate the monetary cost arising from the management and/or impacts of invasive alien species. However, the diversity of methods used to estimate the monetary costs of invasive alien species, the types of costs that have been reported, and the spatial scales at which they have been assessed raise important questions as to the precision of these reported monetary costs. Benford's Law has been increasingly used as a diagnostic tool to assess the accuracy and reliability of estimates reported in financial accounts but has rarely been applied to audit data on environmental costs. Therefore, the distributions of first, second- and leading double-digits of the monetary costs arising from biological invasions, as reported in the InvaCost database, were compared with the null expectations under Benford's Law. There was strong evidence that the reported monetary costs of biological invasions departed considerably from Benford's Law and the departures were of a scale equal to that found in global macroeconomic data. The rounding upwards of costs appears to be widespread. Furthermore, numerical heaping, where values cluster around specific numbers was evident with only 901 unique cost values accounting for half of the 13,553 cost estimates within the InvaCost database. Irrespective of the currency, the value of 1,000,000 was the most common cost estimate. An investigation of anomalous data entries concluded that non-peer reviewed official government reports need to provide greater detail regarding how costs are estimated. Despite the undeniably high economic cost of biological invasions worldwide, individual records of costs were often found to be imprecise and possibly inflated and this emphasises the need for greater transparency and rigour when reporting the costs of biological invasions. Identifying whether the irregularities found for the costs of biological invasions are general for other types of environmental costs should be a research priority.
Collapse
Affiliation(s)
- Philip E Hulme
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Christchurch, Canterbury, New Zealand.
| | - Danish A Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Phillip J Haubrock
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Brooks A Kaiser
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark
| | - Melina Kourantidou
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark; Université de Bretagne Occidentale, UMR 6308 AMURE, IUEM, 29280, Plouzané, France
| | - Boris Leroy
- UMR 8067, Biologie Des Organismes Et Écosystèmes Aquatiques (BOREA), Sorbonne Université, Muséum National d'Histoire Naturelle, Université de Caen Normandie, Université Des Antilles, CNRS, IRD, CP26, 43 Rue Cuvier, 75005 Paris, France
| | - Shana M McDermott
- Department of Economics, Trinity University, San Antonio, TX 78216, USA
| |
Collapse
|
8
|
Macêdo RL, Haubrock PJ, Klippel G, Fernandez RD, Leroy B, Angulo E, Carneiro L, Musseau CL, Rocha O, Cuthbert RN. The economic costs of invasive aquatic plants: A global perspective on ecology and management gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168217. [PMID: 37952653 DOI: 10.1016/j.scitotenv.2023.168217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Safeguarding aquatic ecosystems from invasive species requires a comprehensive understanding and quantification of their impacts, as this information is crucial for developing effective management strategies. In particular, aquatic invasive plants cause profound alterations to aquatic ecosystem composition, structure and productivity. Monetary cost assessments have, however, lacked at large scales for this group. Here, we synthesize the global economic impacts of aquatic and semi-aquatic invasive plants to describe the distributions of these costs across taxa, habitat types, environments, impacted sectors, cost typologies, and geographic regions. We also examine the development of recorded costs over time using linear and non-linear models and infer the geographical gaps of recorded costs by superimposing cost and species distribution data. Between 1975 and 2020, the total cost of aquatic and semi-aquatic invasive plants to the global economy exceeded US$ 32 billion, of which the majority of recorded costs (57 %) was attributable to multiple or unspecified taxa. Submerged plants had $8.4 billion (25.5 %) followed by floating plants $4.7 billion (14.5 %), emergent $684 million (2.1 %) and semi-aquatic $306 million (0.9 %). Recorded costs were disproportionately high towards freshwater ecosystems, which have received the greatest cost research effort compared to marine and brackish systems. Public and social welfare and fisheries were the sectors most affected, while agriculture and health were most underreported. Cost attributed to management (4.8 %; $1.6 billion) represented only a fraction of damages (85.8 %; $28.2 billion). While recorded costs are rising over time, reporting issues e.g., robustness of data, lack of higher taxonomic resolution and geographical gaps likely have led to a dampening of trajectories. In particular, invasive taxa currently occupy regions where monetary cost reports are lacking despite well-known impacts. More robust and timely cost estimates will enhance interpretation of current and future impacts of aquatic invasive plants, assisting the long-term sustainability of our aquatic ecosystems and associated economic activities.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil; Laboratoire d'Ecologie Systématique et Evolution, IDEEV, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Gabriel Klippel
- Laboratoire d'Ecologie Systématique et Evolution, IDEEV, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Graduate Program in Neotropical Biodiversity, Department of Ecology and Natural Resources, Federal University of the State of Rio de Janeiro, RJ, Brazil
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC. 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 8067), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio 26, 41092 Seville, Spain
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Federal University of Paraná, UFPR, Curitiba, Brazil
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
9
|
Evans T, Angulo E, Bradshaw CJA, Turbelin A, Courchamp F. Global economic costs of alien birds. PLoS One 2023; 18:e0292854. [PMID: 37851652 PMCID: PMC10584179 DOI: 10.1371/journal.pone.0292854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023] Open
Abstract
The adverse impacts of alien birds are widespread and diverse, and associated with costs due to the damage caused and actions required to manage them. We synthesised global cost data to identify variation across regions, types of impact, and alien bird species. Costs amount to US$3.6 billion, but this is likely a vast underestimate. Costs are low compared to other taxonomic groups assessed using the same methods; despite underreporting, alien birds are likely to be less damaging and easier to manage than many other alien taxa. Research to understand why this is the case could inform measures to reduce costs associated with biological invasions. Costs are biassed towards high-income regions and damaging environmental impacts, particularly on islands. Most costs on islands result from actions to protect biodiversity and tend to be low and one-off (temporary). Most costs at mainland locations result from damage by a few, widespread species. Some of these costs are high and ongoing (permanent). Actions to restrict alien bird invasions at mainland locations might prevent high, ongoing costs. Reports increased sharply after 2010, but many are for local actions to manage expanding alien bird populations. However, the successful eradication of these increasingly widespread species will require a coordinated, international response.
Collapse
Affiliation(s)
- Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elena Angulo
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
- Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Corey J. A. Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, EpicAustralia.org.au, Australia
| | - Anna Turbelin
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Courchamp
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ahmed DA, Haubrock PJ, Cuthbert RN, Bang A, Soto I, Balzani P, Tarkan AS, Macêdo RL, Carneiro L, Bodey TW, Oficialdegui FJ, Courtois P, Kourantidou M, Angulo E, Heringer G, Renault D, Turbelin AJ, Hudgins EJ, Liu C, Gojery SA, Arbieu U, Diagne C, Leroy B, Briski E, Bradshaw CJA, Courchamp F. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 2023; 73:560-574. [PMID: 37680688 PMCID: PMC10481418 DOI: 10.1093/biosci/biad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023] Open
Abstract
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
Collapse
Affiliation(s)
- Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Phillip J Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt,Gelnhausen, Germany
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences at Queen's University Belfast, Belfast, NorthernIreland
| | - Alok Bang
- School of Arts and Sciences at Azim Premji University, Bangalore, India
- School of Arts and Sciences, Azim Premji University, Bhopal, India
- Society for Ecology, Evolution, and Development, Wardha, India
| | - Ismael Soto
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Paride Balzani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences in the Faculty of Fisheries at Muğla Sıtkı Koçman University, in Muğla, Turkey
- Department of Life and Environmental Sciences in the Faculty of Science and Technology at Bournemouth University, Poole, Dorset, England, United Kingdom
| | - Rafael L Macêdo
- Graduate Program in Conservation and Ecotourism at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brazil
- Institute of Biology at Freie Universität Berlin, Berlin, Germany
- Neotropical Limnology Group, at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brasil
| | - Laís Carneiro
- Laboratório de Ecologia e Conservação in the Departamento de Engenharia Ambiental, Setor de Tecnologia, at the Universidade Federal do Paraná, in Curitiba, Paraná, Brazil
| | - Thomas W Bodey
- School of Biological Sciences at King's College, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Francisco J Oficialdegui
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Pierre Courtois
- Centre for Environmental Economics—Montpellier, National Institute for Research in Agriculture and the Environment, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg Ø, Denmark
- Université de Bretagne Occidentale, Plouzané, France
| | | | - Gustavo Heringer
- Departamento de Ecologia e Conservação in the Instituto de Ciências Naturais at the Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Nürtingen-Geislingen University, Nürtingen, Germany
| | - David Renault
- Centre National de Recherche Scientifique's Ecosystèmes, Biodiversité, Evolution, University of Rennes, Rennes, France
| | - Anna J Turbelin
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Great Lakes Forestry Centre at Canadian Forestry Services, part of Natural Resources Canada, Sault Ste Marie, Ontario, Canada
| | - Emma J Hudgins
- Department of Biology at Carleton University, Ottawa, Ontario, Canada
| | - Chunlong Liu
- College of Fisheries at the Ocean University of China, Qingdao, China
- Institute of Hydrobiology at the Chinese Academy of Sciences, Wuhan, China
| | - Showkat A Gojery
- Department of Botany at the University of Kashmir, Kashmir, India
| | - Ugo Arbieu
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Smithsonian Conservation Biology Institute, at the National Zoological Park, Front Royal, Virginia, United States
| | - Christophe Diagne
- Centre de Biologie pour la Gestion des Populations, at Institut de Recherche pour le Développement, Montferrier-sur-Lez Cedex, France
| | - Boris Leroy
- Unité Biologie des Organismes et des Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, in Paris, France
| | | | - Corey J A Bradshaw
- Global Ecology Laboratory, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Franck Courchamp
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Henry M, Leung B, Cuthbert RN, Bodey TW, Ahmed DA, Angulo E, Balzani P, Briski E, Courchamp F, Hulme PE, Kouba A, Kourantidou M, Liu C, Macêdo RL, Oficialdegui FJ, Renault D, Soto I, Tarkan AS, Turbelin AJ, Bradshaw CJA, Haubrock PJ. Unveiling the hidden economic toll of biological invasions in the European Union. ENVIRONMENTAL SCIENCES EUROPE 2023; 35:43. [PMID: 37325080 PMCID: PMC10249565 DOI: 10.1186/s12302-023-00750-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Background Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. Results We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. Conclusions Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally. Supplementary Information The online version contains supplementary material available at 10.1186/s12302-023-00750-3.
Collapse
Affiliation(s)
- Morgane Henry
- Department of Biology, McGill University, Montréal, QC Canada
| | - Brian Leung
- Department of Biology, McGill University, Montréal, QC Canada
| | - Ross N. Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL UK
| | - Thomas W. Bodey
- School of Biological Sciences, King’s College, University of Aberdeen, Aberdeen, AB24 3FX UK
| | - Danish A. Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092 Seville, Spain
| | - Paride Balzani
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Philip E. Hulme
- Bioprotection Aotearoa, Lincoln University, Lincoln Canterbury, 7647 New Zealand
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark
- UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d’Urville, 29280 Plouzané, France
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Chunlong Liu
- College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Rafael L. Macêdo
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ Brazil
- Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, Rio de Janeiro, RJ 22290-240 Brazil
| | - Francisco J. Oficialdegui
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset UK
| | - Anna J. Turbelin
- Bioprotection Aotearoa, Lincoln University, Lincoln Canterbury, 7647 New Zealand
| | - Corey J. A. Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA 5001 Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW Australia
| | - Phillip J. Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
12
|
Fernandez RD, Haubrock PJ, Cuthbert RN, Heringer G, Kourantidou M, Hudgins EJ, Angulo E, Diagne CA, Courchamp F, Nuñez MA. Underexplored and growing economic costs of invasive alien trees. Sci Rep 2023; 13:8945. [PMID: 37268662 DOI: 10.1038/s41598-023-35802-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
The high ecological impacts of many invasive alien trees have been well documented. However, to date, we lacked synthesis of their economic impacts, hampering management actions. Here, we summarize the cost records of invasive trees to (I) identify invasive trees with cost information and their geographic locations, (II) investigate the types of costs recorded and sectors impacted by invasive trees and (III) analyze the relationships between categories of uses of invasive trees and the invasion costs attributed to these uses. We found reliable cost records only for 72 invasive trees, accumulating a reported total cost of $19.2 billion between 1960 and 2020. Agriculture was the sector with the highest cost records due to invasive trees. Most costs were incurred as resource damages and losses ($3.5 billion). Close attention to the ornamental sector is important for reducing the economic impact of invasive trees, since most invasive trees with cost records were introduced for that use. Despite massive reported costs of invasive trees, there remain large knowledge gaps on most invasive trees, sectors, and geographic scales, indicating that the real cost is severely underestimated. This highlights the need for further concerted and widely-distributed research efforts regarding the economic impact of invasive trees.
Collapse
Affiliation(s)
- Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC. 34, 4107, Yerba Buena, Tucumán, Argentina.
| | - Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571, Gelnhausen, Germany.
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hallawy, Kuwait.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Gustavo Heringer
- Department of Ecology and Conservation, Institute of Natural Sciences, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, 37200-900, Brazil
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622, Nürtingen, Germany
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705, Esbjerg Ø, Denmark
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Elena Angulo
- Estación Biológica de Doñana (CSIC), Avda. Americo Vespucio 26, 41092, Sevilla, Spain
| | - Christophe A Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif sur Yvette, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif sur Yvette, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
13
|
Bodey TW, Angulo E, Bang A, Bellard C, Fantle-Lepczyk J, Lenzner B, Turbelin A, Watari Y, Courchamp F. Economic costs of protecting islands from invasive alien species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14034. [PMID: 36349474 DOI: 10.1111/cobi.14034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Biological invasions represent a key threat to insular systems and have pronounced impacts across environments and economies. The ecological impacts have received substantial focus, but the socioeconomic impacts are poorly synthesized across spatial and temporal scales. We used the InvaCost database, the most comprehensive assessment of published economic costs of invasive species, to assess economic impacts on islands worldwide. We analyzed socioeconomic costs across differing expenditure types and examined temporal trends across islands that differ in their political geography-island nation states, overseas territories, and islands of continental countries. Over US$36 billion in total costs (including damages and management) has occurred on islands from 1965 to 2020 due to invasive species' impacts. Nation states incurred the greatest total and management costs, and islands of continental countries incurred costs of similar magnitude, both far higher than those in overseas territories. Damage-loss costs were significantly lower, but with qualitatively similar patterns across differing political geographies. The predominance of management spending differs from the pattern found for most countries examined and suggests important knowledge gaps in the extent of many damage-related socioeconomic impacts. Nation states spent the greatest proportion of their gross domestic products countering these costs, at least 1 order of magnitude higher than other locations. Most costs were borne by authorities and stakeholders, demonstrating the key role of governmental and nongovernmental bodies in addressing island invasions. Temporal trends revealed cost increases across all island types, potentially reflecting efforts to tackle invasive species at larger, more socially complex scales. Nevertheless, the already high total economic costs of island invasions substantiate the role of biosecurity in reducing and preventing invasive species arrivals to reduce strains on limited financial resources and avoid threats to sustainable development goals.
Collapse
Affiliation(s)
- Thomas W Bodey
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha, India
- School of Arts and Sciences, Azim Premji University, Bangalore, India
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Jean Fantle-Lepczyk
- School of Forestry & Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Bernd Lenzner
- Bioinvasions, Macroecology, Global Change Group, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
14
|
Wang S, Deng T, Zhang J, Li Y. Global economic costs of mammal invasions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159479. [PMID: 36265628 DOI: 10.1016/j.scitotenv.2022.159479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Invasive alien mammals cause huge adverse ecological impact on human society and natural ecosystems. Although studies have estimated economic costs of mammal invasions at regional scales, there is lacking the large-scale comprehensive assessment of currency costs for this taxon. Here, we estimated the economic cost of invasive alien mammals on a global scale using the most comprehensive global database compiling economic costs of invasive species (InvaCost). From 1960 to 2021, mammal invasions caused costs (summing damage costs and management costs) of US$ 462.49 billion to the global economy, while the total amount of robust costs reached US$ 52.49 billion. The majority of the total economic costs corresponded to damage costs (90.27 %), while only 7.43 % were related to management cost. Economic costs showed an increasing trend over time. The distribution of costs was uneven among taxonomic groups and regions, with the global total cost highly biasing toward to 5 species (European rabbit, Domestic cat, Black rat, Wild boar and Coypu), and North America reporting much higher costs (60.78 % of total economic costs) than other regions. The total costs were borne by agriculture, environment, authorities stakeholders and other sectors. Geographic and taxonomic biases suggested that total economic costs caused by invasive alien mammals were underestimated. Integrated research efforts are needed to fill in knowledge gaps in the economic costs generated by mammal invasions and to identify the drivers of the economic costs.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Teng Deng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Diagne C, Ballesteros-Mejia L, Cuthbert RN, Bodey TW, Fantle-Lepczyk J, Angulo E, Bang A, Dobigny G, Courchamp F. Economic costs of invasive rodents worldwide: the tip of the iceberg. PeerJ 2023; 11:e14935. [PMID: 36992943 PMCID: PMC10042159 DOI: 10.7717/peerj.14935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/31/2023] [Indexed: 03/31/2023] Open
Abstract
Background Rodents are among the most notorious invasive alien species worldwide. These invaders have substantially impacted native ecosystems, food production and storage, local infrastructures, human health and well-being. However, the lack of standardized and understandable estimation of their impacts is a serious barrier to raising societal awareness, and hampers effective management interventions at relevant scales. Methods Here, we assessed the economic costs of invasive alien rodents globally in order to help overcome these obstacles. For this purpose, we combined and analysed economic cost data from the InvaCost database-the most up-to-date and comprehensive synthesis of reported invasion costs-and specific complementary searches within and beyond the published literature. Results Our conservative analysis showed that reported costs of rodent invasions reached a conservative total of US$ 3.6 billion between 1930 and 2022 (annually US$ 87.5 million between 1980 and 2022), and were significantly increasing through time. The highest cost reported was for muskrat Ondatra zibethicus (US$ 377.5 million), then unspecified Rattus spp. (US$ 327.8 million), followed by Rattus norvegicus specifically (US$ 156.6 million) and Castor canadensis (US$ 150.4 million). Of the total costs, 87% were damage-related, principally impacting agriculture and predominantly reported in Asia (60%), Europe (19%) and North America (9%). Our study evidenced obvious cost underreporting with only 99 documents gathered globally, clear taxonomic gaps, reliability issues for cost assessment, and skewed breakdowns of costs among regions, sectors and contexts. As a consequence, these reported costs represent only a very small fraction of the expected true cost of rodent invasions (e.g., using a less conservative analytic approach would have led to a global amount more than 80-times higher than estimated here). Conclusions These findings strongly suggest that available information represents a substantial underestimation of the global costs incurred. We offer recommendations for improving estimates of costs to fill these knowledge gaps including: systematic distinction between native and invasive rodents' impacts; monetizing indirect impacts on human health; and greater integrative and concerted research effort between scientists and stakeholders. Finally, we discuss why and how this approach will stimulate and provide support for proactive and sustainable management strategies in the context of alien rodent invasions, for which biosecurity measures should be amplified globally.
Collapse
Affiliation(s)
- Christophe Diagne
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montferrier-sur-Lez, France
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - Ross N. Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Thomas W. Bodey
- School of Biological Sciences, King’s College, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
- Estación Biológica de Doñana (CSIC), Sevilla, Spain
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha, India
| | - Gauthier Dobigny
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montferrier-sur-Lez, France
- Unité Peste, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Avaradoha, 101 Antananarivo, Madagascar
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
16
|
Kourantidou M, Verbrugge LNH, Haubrock PJ, Cuthbert RN, Angulo E, Ahonen I, Cleary M, Falk-Andersson J, Granhag L, Gíslason S, Kaiser B, Kosenius AK, Lange H, Lehtiniemi M, Magnussen K, Navrud S, Nummi P, Oficialdegui FJ, Ramula S, Ryttäri T, von Schmalensee M, Stefansson RA, Diagne C, Courchamp F. The economic costs, management and regulation of biological invasions in the Nordic countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116374. [PMID: 36352726 DOI: 10.1016/j.jenvman.2022.116374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research.
Collapse
Affiliation(s)
- Melina Kourantidou
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg Ø, Denmark; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens, Greece.
| | - Laura N H Verbrugge
- Aalto University, Department of Built Environment, Water & Development Research Group, Aalto, Finland; University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France; Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Inkeri Ahonen
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Michelle Cleary
- Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Alnarp, Sweden
| | | | - Lena Granhag
- Chalmers University of Technology, Göteborg, Sweden
| | - Sindri Gíslason
- Southwest Iceland Nature Research Centre, Suðurnesjabær, Iceland
| | - Brooks Kaiser
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg Ø, Denmark
| | - Anna-Kaisa Kosenius
- University of Helsinki, Department of Economics and Management, P.O. Box 27, 00014 Helsinki, Finland
| | - Henrik Lange
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | | | | | - Ståle Navrud
- School of Economics and Business, Norwegian University of Life Sciences, Ås, Norway
| | - Petri Nummi
- University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | | | - Satu Ramula
- Department of Biology, University of Turku, Turku, Finland
| | | | | | | | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
17
|
Bodey TW, Carter ZT, Haubrock PJ, Cuthbert RN, Welsh MJ, Diagne C, Courchamp F. Building a synthesis of economic costs of biological invasions in New Zealand. PeerJ 2022; 10:e13580. [PMID: 35990909 PMCID: PMC9387519 DOI: 10.7717/peerj.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.
Collapse
Affiliation(s)
- Thomas W. Bodey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand,School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Zachary T. Carter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Phillip J. Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany,Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Ross N. Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany,School of Biological Sciences, The Queen’s University Belfast, Belfast, United Kingdom
| | | | - Christophe Diagne
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Franck Courchamp
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
18
|
Vaissière AC, Courtois P, Courchamp F, Kourantidou M, Diagne C, Essl F, Kirichenko N, Welsh M, Salles JM. The nature of economic costs of biological invasions. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|