1
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
3
|
Thiyagarajan R, Zhang L, Glover OD, Kwack KH, Ahmed S, Murray E, Yellapu NK, Bard J, Seldeen KL, Rosario SR, Troen BR, Kirkwood KL. Age-related increase of CD38 directs osteoclastogenic potential of monocytic myeloid-derived suppressor cells through mitochondrial dysfunction in male mice. Aging Cell 2024:e14298. [PMID: 39180173 DOI: 10.1111/acel.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/26/2024] Open
Abstract
An aged immune system undergoes substantial changes where myelopoiesis dominates within the bone marrow. Monocytic-MDSCs (M-MDSCs) have been found to play an important role in osteoclastogenesis and bone resorption. In this study, we sought to provide a more comprehensive understanding of the osteoclastogenic potential of bone marrow M-MDSCs during normal aging through transcriptomic and metabolic changes. Using young mature and aged mice, detailed immunophenotypic analyses of myeloid cells revealed that the M-MDSCs were not increased in bone marrow, however M-MDSCS were significantly expanded in peripheral tissues. Although aged mice exhibited a similar number of M-MDSCs in bone marrow, these M-MDSCs had significantly higher osteoclastogenic potential and greater demineralization activity. Intriguingly, osteoclast progenitors from aged bone marrow M-MDSCs exhibited greater mitochondrial respiration rate and glucose metabolism. Further, transcriptomic analyses revealed the upregulation of mitochondrial oxidative phosphorylation and glucose metabolism genes. Interestingly, there was 8-fold increase in Cd38 mRNA gene expression, consistent with the Mouse Aging Cell Atlas transcriptomic database, and confirmed by qRT-PCR. CD38 regulates NAD+ availability, and 78c, a small molecule inhibitor of CD38, reduced the mitochondrial oxygen consumption rate and glucose metabolism and inhibited the osteoclastogenic potential of aged mice bone marrow-derived M-MDSCs. These results indicate that the age-related increase in Cd38 expression in M-MDSCs bias the transcriptome of M-MDSCs towards osteoclastogenesis. This enhanced understanding of the mechanistic underpinnings of M-MDSCs and their osteoclastogenesis during aging could lead to new therapeutic approaches for age-related bone loss and promote healthy aging.
Collapse
Affiliation(s)
- Ramkumar Thiyagarajan
- Division of Geriatrics, Department of Internal Medicine and Landon Center on Aging, University of Kansas School of Medicine, Kansas City, Kansas, USA
- Research Service, Veteran Affairs Kansas City Healthcare System, Kansas City, Missouri, USA
| | - Lixia Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Omar D Glover
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Kyu Hwan Kwack
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Sara Ahmed
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Emma Murray
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan Bard
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kenneth L Seldeen
- Division of Geriatrics, Department of Internal Medicine and Landon Center on Aging, University of Kansas School of Medicine, Kansas City, Kansas, USA
- Research Service, Veteran Affairs Kansas City Healthcare System, Kansas City, Missouri, USA
| | - Spencer R Rosario
- Department of Biostatistics and Bioinformatics and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bruce R Troen
- Division of Geriatrics, Department of Internal Medicine and Landon Center on Aging, University of Kansas School of Medicine, Kansas City, Kansas, USA
- Research Service, Veteran Affairs Kansas City Healthcare System, Kansas City, Missouri, USA
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
4
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
5
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Shin EY, Jeong S, Lee JE, Jeong DS, Han DK, Hong SH, Lee DR. Multiple treatments with human embryonic stem cell-derived mesenchymal progenitor cells preserved the fertility and ovarian function of perimenopausal mice undergoing natural aging. Stem Cell Res Ther 2024; 15:58. [PMID: 38433223 PMCID: PMC10910829 DOI: 10.1186/s13287-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES Currently, no approved stem cell-based therapies for preserving ovarian function during aging. To solve this problem, we developed a long-term treatment for human embryonic stem cell-derived mesenchymal progenitor cells (hESC-MPCs). We investigated whether the cells retained their ability to resist ovarian aging, which leads to delayed reproductive senescence. MATERIALS AND METHODS In a middle-aged female model undergoing natural aging, we analyzed whether hESC-MPCs benefit the long-term maintenance of reproductive fecundity and ovarian reservoirs and how their transplantation regulates ovarian function. RESULTS The number of primordial follicles and mice with regular estrous cycles were increased in perimenopausal mice who underwent multiple introductions of hESC-MPCs compared to age-matched controls. The estradiol levels in the hESC-MPCs group were restored to those in the young and adult groups. Embryonic development and live birth rates were higher in the hESC-MPC group than in the control group, suggesting that hESC-MPCs delayed ovarian senescence. In addition to their direct effects on the ovary, multiple-treatments with hESC-MPCs reduced ovarian fibrosis by downregulating inflammation and fibrosis-related genes via the suppression of myeloid-derived suppressor cells (MDSCs) produced in the bone marrow. CONCLUSIONS Multiple introductions of hESC-MPCs could be a useful approach to prevent female reproductive senescence and that these cells are promising sources for cell therapy to postpone the ovarian aging and retain fecundity in perimenopausal women.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Seok Jeong
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24431, Gangwon-do, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
- CHA Advanced Research Institute, Bundang CHA Medical Center, 335 Pangyo-ro, Bundang- gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
9
|
Pilley SE, Esparza E, Mullen PJ. The aging tumor metabolic microenvironment. Curr Opin Biotechnol 2023; 84:102995. [PMID: 37783168 DOI: 10.1016/j.copbio.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Despite the higher incidence of cancer with increasing age, few preclinical or clinical studies incorporate age. This, coupled with an aging world population, requires that we improve our understanding of how aging affects cancer development, progression, and treatment. One key area will be how the tumor microenvironment (TME) changes with age. Metabolite levels are an essential component of the TME, and they are affected by the metabolic requirements of the cells present and systemic metabolite availability. These factors are affected by aging, causing different TME metabolic states between young and older adults. In this review, we will summarize what is known about how aging impacts the TME metabolic state, and suggest how we can improve our understanding of it.
Collapse
Affiliation(s)
- Steven E Pilley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Edgar Esparza
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter J Mullen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
11
|
Salminen A. The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J Mol Med (Berl) 2023; 101:1169-1189. [PMID: 37606688 PMCID: PMC10560181 DOI: 10.1007/s00109-023-02360-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which control the structural integrity of the extracellular matrix (ECM). Fibroblasts possess a remarkable plasticity to allow them to adapt to the changes in the microenvironment and thus maintain tissue homeostasis. Several stresses, also those associated with the aging process, convert quiescent fibroblasts into myofibroblasts which not only display fibrogenic properties but also act as immune regulators cooperating both with tissue-resident immune cells and those immune cells recruited into affected tissues. TGF-β cytokine and reactive oxygen species (ROS) are major inducers of myofibroblast differentiation in pathological conditions either from quiescent fibroblasts or via transdifferentiation from certain other cell types, e.g., macrophages, adipocytes, pericytes, and endothelial cells. Intriguingly, TGF-β and ROS are also important signaling mediators between immunosuppressive cells, such as MDSCs, Tregs, and M2 macrophages. It seems that in pathological states, myofibroblasts are able to interact with the immunosuppressive network. There is clear evidence that a low-grade chronic inflammatory state in aging tissues is counteracted by activation of compensatory immunosuppression. Interestingly, common enhancers of the aging process, such as oxidative stress, loss of DNA integrity, and inflammatory insults, are inducers of myofibroblasts, whereas anti-aging treatments with metformin and rapamycin suppress the differentiation of myofibroblasts and thus prevent age-related tissue fibrosis. I will examine the reciprocal interactions between myofibroblasts and immunosuppressive cells within aging tissues. It seems that the differentiation of myofibroblasts with age-related harmful stresses enhances the activity of the immunosuppressive network which promotes tissue fibrosis and degeneration in elderly individuals.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
12
|
Moss CE, Phipps H, Wilson HL, Kiss-Toth E. Markers of the ageing macrophage: a systematic review and meta-analysis. Front Immunol 2023; 14:1222308. [PMID: 37520567 PMCID: PMC10373068 DOI: 10.3389/fimmu.2023.1222308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Ageing research is establishing macrophages as key immune system regulators that undergo functional decline. Due to heterogeneity between species and tissue populations, a plethora of data exist and the power of scientific conclusions can vary substantially. This meta-analysis by information content (MAIC) and systematic literature review (SLR) aims to determine overall changes in macrophage gene and protein expression, as well as function, with age. Methods PubMed was utilized to collate peer-reviewed literature relating to macrophage ageing. Primary studies comparing macrophages in at least two age groups were included. Data pertaining to gene or protein expression alongside method used were extracted for MAIC analysis. For SLR analysis, data included all macrophage-specific changes with age, as well as species, ontogeny and age of groups assessed. Results A total of 240 studies were included; 122 of which qualified for MAIC. The majority of papers focussed on changes in macrophage count/infiltration as a function of age, followed by gene and protein expression. The MAIC found iNOS and TNF to be the most commonly investigated entities, with 328 genes and 175 proteins showing consistent dysregulation with age across the literature. Overall findings indicate that cytokine secretion and phagocytosis are reduced and reactive oxygen species production is increased in the ageing macrophage. Discussion Collectively, our analysis identifies critical regulators in macrophage ageing that are consistently dysregulated, highlighting a plethora of targets for further investigation. Consistent functional changes with age found here can be used to confirm an ageing macrophage phenotype in specific studies and experimental models.
Collapse
Affiliation(s)
- Charlotte E. Moss
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Hew Phipps
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Heather L. Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, Stec MJ, Negron N, Ni M, Wei Y, Atwal GS, Bai Y, Glass DJ. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle 2023; 13:11. [PMID: 37438807 DOI: 10.1186/s13395-023-00321-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models. METHODS AND RESULTS To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse. CONCLUSIONS This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kun Xiong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shawn Mishra
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corissa McEwen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Abhilash Gadi
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew Wakai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Hunter Salmon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Michael J Stec
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Nicole Negron
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David J Glass
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
14
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
15
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin Rev Allergy Immunol 2023; 64:123-144. [PMID: 35031957 PMCID: PMC8760106 DOI: 10.1007/s12016-021-08909-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy.
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
18
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
19
|
Research Progress of Macrophages in Bone Regeneration. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/1512966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.
Collapse
|
20
|
Branigan GP, Casado-Medrano V, O’Neill AB, Ricarte-Filho JC, Massoll N, Salwen M, Spangler Z, Scheerer M, Williamson EK, Bauer AJ, Franco AT. Development of Novel Murine BRAF V600E-Driven Papillary Thyroid Cancer Cell Lines for Modeling of Disease Progression and Preclinical Evaluation of Therapeutics. Cancers (Basel) 2023; 15:879. [PMID: 36765847 PMCID: PMC9913801 DOI: 10.3390/cancers15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023] Open
Abstract
The Cancer Genome Atlas study in thyroid cancer exposed the genomic landscape of ~500 PTCs and revealed BRAFV600E-mutant tumors as having different prognosis, contrasting indolent cases and those with more invasive disease. Here, we describe the generation and characterization of six novel BRAFV600E-driven papillary thyroid cancer (PTC) cell lines established from a BrafV600E+/-/Pten+/-/TPO-Cre mouse model that spontaneously develop thyroid tumors. The novel cell lines were obtained from animals representing a range of developmental stages and both sexes, with the goal of establishing a heterogeneous panel of PTC cell lines sharing a common driver mutation. These cell lines recapitulate the genetics and diverse histopathological features of BRAFV600E-driven PTC, exhibiting differing degrees of growth, differentiation, and invasive potential that may help define mechanisms of pathogenesis underlying the heterogeneity present in the patient population. We demonstrate that these cell lines can be used for a variety of in vitro applications and can maintain the potential for in vivo transplantation into immunocompetent hosts. We believe that these novel cell lines will provide powerful tools for investigating the molecular basis of thyroid cancer progression and will lead to the development of more personalized diagnostic and treatment strategies for BRAFV600E-driven PTC.
Collapse
Affiliation(s)
- Grace Purvis Branigan
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alison B. O’Neill
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julio C. Ricarte-Filho
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole Massoll
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Madeleine Salwen
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zachary Spangler
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michele Scheerer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aime T. Franco
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis. Open Life Sci 2023; 18:20220567. [PMID: 36789002 PMCID: PMC9896167 DOI: 10.1515/biol-2022-0567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease affecting approximately 10% of men and 18% of women older than 60. Its pathogenesis is still not fully understood; however, emerging evidence has suggested that chronic low-grade inflammation is associated with OA progression. The pathological features of OA are articular cartilage degeneration in the focal area, including new bone formation at the edge of the joint, subchondral bone changes, and synovitis. Conventional drug therapy aims to prevent further cartilage loss and joint dysfunction. However, the ideal treatment for the pathogenesis of OA remains to be defined. Macrophages are the most common immune cells in inflamed synovial tissues. In OA, synovial macrophages undergo proliferation and activation, thereby releasing pro-inflammatory cytokines, including interleukin-1 and tumor necrosis factor-α, among others. The review article discusses (1) the role of synovial macrophages in the pathogenesis of OA; (2) the progress of immunoregulation of synovial macrophages in the treatment of OA; (3) novel therapeutic targets for preventing the progress of OA or promoting cartilage repair and regeneration.
Collapse
Affiliation(s)
- Mingze Xu
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yunhan Ji
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| |
Collapse
|
22
|
Li Y, Zhao Y, Gao Y, Li Y, Liu M, Xu N, Zhu H. Age-related macrophage alterations are associated with carcinogenesis of colorectal cancer. Carcinogenesis 2022; 43:1039-1049. [PMID: 36346184 DOI: 10.1093/carcin/bgac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Older age is a major risk factor for colorectal cancer. Macrophage is one of the most abundant immune cell types infiltrated in colorectal cancer, but the contribution of macrophages in elder tumor microenvironment is far from clear. In this study, we first detected the expression of CD206, CD68 in colorectal cancer tissues by multiplex fluorescence immunohistochemical staining. The infiltration of CD68+/CD206+ cells in tumor tissues from old patients was higher than those from young patients. When mixed with CT26 cells, both young and aged TAMs enhanced tumor growth of CT26 cells, but CT26 mixed with aged TAMs form larger tumors compared with young TAMs. CT26 formed more and larger tumors in the abdominal cavity of aged mice compared with young. Total macrophage infiltration and the CD206+ macrophages infiltration were both higher in aged mice compared with young mice. The expression signatures of tumor-associated macrophages altered with ageing and p-NF-κB translocation to nucleus was more significant in TAMs from aged mice compared with young. Our results showed that infiltration of macrophages in colorectal cancer tissues increased with ageing. Macrophages from aged host were more likely to polarize to pro-tumor phenotype, and more powerful in promoting tumor cell proliferation.
Collapse
Affiliation(s)
- Yinuo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yang Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Ningzhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Hongxia Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| |
Collapse
|
23
|
Macrophages Are Polarized toward an Inflammatory Phenotype by their Aged Microenvironment in the Human Skin. J Invest Dermatol 2022; 142:3136-3145.e11. [PMID: 35850208 DOI: 10.1016/j.jid.2022.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/05/2023]
Abstract
Aging of the skin is accompanied by cellular as well as tissue environmental changes, ultimately reducing the ability of the tissue to regenerate and adequately respond to external stressors. Macrophages are important gatekeepers of tissue homeostasis, and it has been reported that their number and phenotype change during aging in a site-specific manner. How aging affects human skin macrophages and what implications this has for the aging process in the tissue are still not fully understood. Using single-cell RNA-sequencing analysis, we show that there is at least a 50% increase of macrophages in human aged skin, which appear to have developed from monocytes and exhibit more proinflammatory M1-like characteristics. In contrast, the cell-intrinsic ability of aged monocytes to differentiate into M1 macrophages was reduced. Using coculture experiments with aged dermal fibroblasts, we show that it is the aged microenvironment that drives a more proinflammatory phenotype of macrophages in the skin. This proinflammatory M1-like phenotype in turn negatively influenced the expression of extracellular matrix proteins by fibroblasts, emphasizing the impact of the aged macrophages on the skin phenotype.
Collapse
|
24
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
25
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
The Central Nervous Mechanism of Stress-Promoting Cancer Progression. Int J Mol Sci 2022; 23:ijms232012653. [PMID: 36293510 PMCID: PMC9604265 DOI: 10.3390/ijms232012653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s immune response, causing tumor cells to escape the “surveillance” of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.
Collapse
|
27
|
Kwack KH, Zhang L, Kramer ED, Thiyagarajan R, Lamb NA, Arao Y, Bard JE, Seldeen KL, Troen BR, Blackshear PJ, Abrams SI, Kirkwood KL. Tristetraprolin limits age-related expansion of myeloid-derived suppressor cells. Front Immunol 2022; 13:1002163. [PMID: 36263047 PMCID: PMC9573970 DOI: 10.3389/fimmu.2022.1002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Elliot D. Kramer
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ramkumar Thiyagarajan
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Natalie A. Lamb
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Jonathan E. Bard
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kenneth L. Seldeen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Bruce R. Troen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, United States
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Keith L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
28
|
Proksch SF, Matthysen CP, Jardine JE, Wyatt KM, Finlay JR, Nelson DJ. Developing a translational murine-to-canine pathway for an IL-2/agonist anti-CD40 antibody cancer immunotherapy. Vet Comp Oncol 2022; 20:602-612. [PMID: 35315197 PMCID: PMC9540797 DOI: 10.1111/vco.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Human and canine sarcomas are difficult to treat soft tissue malignancies with an urgent need for new improved therapeutic options. Local recurrence rates for humans are between 10%-30%, and 30%-40% develop metastases. Outcomes for dogs with sarcoma vary with grade but can be similar. Pet dogs share the human environment and represent human cancer with genetic variation in hosts and tumours. We asked if our murine studies using genetically identical mice and cloned tumour cells were translatable to larger, genetically diverse domestic dogs with naturally occurring tumours, to (i) develop a canine cancer therapeutic, and (ii) to use as a translational pathway to humans. Our murine studies showed that intra-tumoral delivery of interleukin-2 (IL-2) plus an agonist anti-CD40 antibody (Ab) induces long-term curative responses ranging from 30% to 100%, depending on tumour type. We developed an agonist anti-canine-CD40 Ab and conducted a phase I dose finding/toxicology 3 + 3 clinical trial in dogs (n = 27) with soft tissue sarcomas on account of suitability for intratumoral injection and straightforward monitoring. Dogs were treated with IL-2 plus anti-CD40 antibody for 2 weeks. Three dose levels induced tumour regression with minimal side effects, measured by monitoring, haematological and biochemical assays. Importantly, our mouse and canine studies provide encouraging fundamental proof-of-concept data upon which we can develop veterinary and human immunotherapeutic strategies.
Collapse
Affiliation(s)
- Stephen Francis Proksch
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- CHIRI BiosciencesCurtin UniversityBentleyWestern AustraliaAustralia
- Selvax Pty LtdWest PerthWestern AustraliaAustralia
| | - Clinton Petrus Matthysen
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- CHIRI BiosciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | | | - Ken Mark Wyatt
- Perth Veterinary Specialists (PVS)Osborne ParkWestern AustraliaAustralia
| | | | - Delia Jane Nelson
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
- CHIRI BiosciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
29
|
Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol 2022; 10:962990. [PMID: 36092716 PMCID: PMC9458961 DOI: 10.3389/fcell.2022.962990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.
Collapse
Affiliation(s)
- Yi-ning Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| | - Ying-ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| |
Collapse
|
30
|
Xue S, Ge W, Wang K, Mao T, Zhang X, Xu H, Wang Y, Yao J, Li S, Yue M, Ma J, Wang Y, Shentu D, Cui J, Wang L. Association of aging-related genes with prognosis and immune infiltration in pancreatic adenocarcinoma. Front Cell Dev Biol 2022; 10:942225. [PMID: 36003146 PMCID: PMC9393218 DOI: 10.3389/fcell.2022.942225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies. Aging is described as the degeneration of physiological function, which is complexly correlated with cancer. It is significant to explore the influences of aging-related genes (ARGs) on PAAD. Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets, we used univariate Cox regression analysis and acquired eight differentially expressed ARGs with prognostic values. Two molecular subtypes were identified based on these ARGs to depict PAAD patients’ overall survival (OS) and immune microenvironments preliminarily. Cluster 1 had a poor OS as well as a worse immune microenvironment. Through least absolute shrinkage and selection operator (LASSO) regression analysis, we constructed a seven-ARG risk signature based on the TCGA dataset and verified it in Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) to predict the prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients. The high-risk group possessed an unfavorable OS compared with that of the low-risk group. We also verified the independence and clinical availability of the risk signature by Cox regression analyses and the establishment of a nomogram, respectively. The higher risk score was associated with several clinical factors such as higher grade and advanced tumor stage as well as lower immunoscore and cluster 1. The negative associations of risk scores with immune, stroma, and estimate scores proved the terrible immune microenvironment in the high-risk group. Relationships between risk score and immune checkpoint gene expression as well as signal pathways provided several therapeutic targets. PAAD patients in the low-risk group possessed lower tumor mutations as well as a higher susceptibility to axitinib and vorinostat. The high-risk group bore a higher TMB and cisplatin and dasatinib may be better options. We used immunohistochemistry and qPCR to confirm the expression of key ARGs with their influences on OS. In conclusion, we identified two ARG-mediated molecular subtypes and a novel seven-ARG risk signature to predict prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients.
Collapse
Affiliation(s)
- Shengbai Xue
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiyu Ge
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kexuan Wang
- Department of Nursing, School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Tiebo Mao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofei Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiyan Xu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongchao Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayu Yao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shumin Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ming Yue
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingyu Ma
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanling Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Daiyuan Shentu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Jiujie Cui, ; Liwei Wang,
| | - Liwei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Jiujie Cui, ; Liwei Wang,
| |
Collapse
|
31
|
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front Immunol 2022; 13:917972. [PMID: 35874716 PMCID: PMC9296838 DOI: 10.3389/fimmu.2022.917972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
Collapse
Affiliation(s)
- Andreas Schroeter
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian J. Roesel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yao Xiao
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
33
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
34
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
35
|
Duong L, Pixley FJ, Nelson DJ, Jackaman C. Aging Leads to Increased Monocytes and Macrophages With Altered CSF-1 Receptor Expression and Earlier Tumor-Associated Macrophage Expansion in Murine Mesothelioma. FRONTIERS IN AGING 2022; 3:848925. [PMID: 35821822 PMCID: PMC9261395 DOI: 10.3389/fragi.2022.848925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
Abstract
Increased cancer incidence occurs with the emergence of immunosenescence, highlighting the indispensability of the immune system in preventing cancer and its dysregulation with aging. Tumor-associated macrophages (TAMs) are often present in high numbers and are associated with poor clinical outcomes in solid cancers, including mesothelioma. Monocytes and macrophages from the bone marrow and spleen can respond to tumor-derived factors, such as CSF-1, and initiation of the CSF-1R signaling cascade results in their proliferation, differentiation, and migration to the tumor. Age-related changes occur in monocytes and macrophages in terms of numbers and function, which in turn can impact tumor initiation and progression. Whether this is due to changes in CSF-1R expression with aging is currently unknown and was investigated in this study. We examined monocytes and macrophages in the bone marrow and spleen during healthy aging in young (3–4 months) and elderly (20–24 months) female C57BL/6J mice. Additionally, changes to these tissues and in TAMs were examined during AE17 mesothelioma tumor growth. Healthy aging resulted in an expansion of Ly6Chigh monocytes and macrophages in the bone marrow and spleen. CSF-1R expression levels were reduced in elderly splenic macrophages only, suggesting differences in CSF-1R signaling between both cell type and tissue site. In tumor-bearing mice, Ly6Chigh monocytes increased with tumor growth in the spleen in the elderly and increased intracellular CSF-1R expression occurred in bone marrow Ly6Chigh monocytes in elderly mice bearing large tumors. Age-related changes to bone marrow and splenic Ly6Chigh monocytes were reflected in the tumor, where we observed increased Ly6Chigh TAMs earlier and expansion of Ly6Clow TAMs later during AE17 tumor growth in the elderly compared to young mice. F4/80high TAMs increased with tumor growth in both young and elderly mice and were the largest subset of TAMs in the tumor. Together, this suggests there may be a faster transition of Ly6Chigh towards F4/80high TAMs with aging. Amongst TAM subsets, expression of CSF-1R was lowest in F4/80high TAMs, however Ly6Clow TAMs had higher intracellular CSF-1R expression. This suggests downstream CSF-1R signaling may vary between macrophage subsets, which can have implications towards CSF-1R blockade therapies targeting macrophages in cancer.
Collapse
Affiliation(s)
- Lelinh Duong
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Fiona J. Pixley
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Delia J. Nelson
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: Connie Jackaman,
| |
Collapse
|
36
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
37
|
Witkowski JM, Fulop T, Bryl E. Immunosenescence and COVID-19. Mech Ageing Dev 2022; 204:111672. [PMID: 35378106 PMCID: PMC8975602 DOI: 10.1016/j.mad.2022.111672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
38
|
Hirata H, Zhang N, Ueno M, Barati D, Kushioka J, Shen H, Tsubosaka M, Toya M, Lin T, Huang E, Yao Z, Wu JY, Zwingenberger S, Yang F, Goodman SB. Ageing attenuates bone healing by mesenchymal stem cells in a microribbon hydrogel with a murine long bone critical-size defect model. Immun Ageing 2022; 19:14. [PMID: 35279175 PMCID: PMC8917642 DOI: 10.1186/s12979-022-00272-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite the high incidence of fractures and pseudoarthrosis in the aged population, a potential role for the use of mesenchymal stem cells (MSCs) in the treatment of bone defects in elderly patients has not been elucidated. Inflammation and the innate immune system, including macrophages, play crucial roles in the differentiation and activation of MSCs. We have developed lentivirus-transduced interleukin 4 (IL4) over-expressing MSCs (IL4-MSCs) to polarize macrophages to an M2 phenotype to promote bone healing in an established young murine critical size bone defect model. In the current study, we explore the potential of IL4-MSCs in aged mice. METHODS A 2 mm femoral diaphyseal bone defect was created and fixed with an external fixation device in 15- to 17-month-old male and female BALB/c mice. Microribbon (µRB) scaffolds (Sc) with or without encapsulation of MSCs were implanted in the defect sites. Accordingly, the mice were divided into three treatment groups: Sc-only, Sc + MSCs, and Sc + IL4-MSCs. Mice were euthanized six weeks after the surgery; subsequently, MicroCT (µCT), histochemical and immunohistochemical analyses were performed. RESULTS µCT analysis revealed that bone formation was markedly enhanced in the IL4-MSC group. Compared with the Sc-only, the amount of new bone increased in the Sc + MSCs and Sc + IL4-MSC groups. However, no bridging of bone was observed in all groups. H&E staining showed fibrous tissue within the defect in all groups. Alkaline phosphatase (ALP) staining was increased in the Sc + IL4-MSC group. The Sc + IL4-MSCs group showed a decrease in the number of M1 macrophages and an increase in the number of M2 macrophages, with a significant increase in the M2/M1 ratio. DISCUSSION IL4 promotes macrophage polarization to an M2 phenotype, facilitating osteogenesis and vasculogenesis. The addition of IL4-MSCs in the µRB scaffold polarized macrophages to an M2 phenotype and increased bone formation; however, complete bone bridging was not observed in any specimens. These results suggest that IL4-MSCs are insufficient to heal a critical size bone defect in aged mice, as opposed to younger animals. Additional therapeutic strategies are needed in this challenging clinical scenario.
Collapse
Affiliation(s)
- Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Saga University, Saga, Japan
| | - Danial Barati
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Joy Y Wu
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA. .,Department of Bioengineering, Stanford University, Stanford, California, USA.
| |
Collapse
|
39
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
40
|
Thomas AL, Alarcon PC, Divanovic S, Chougnet CA, Hildeman DA, Moreno-Fernandez ME. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. FRONTIERS IN AGING 2021; 2:732414. [PMID: 35822048 PMCID: PMC9261339 DOI: 10.3389/fragi.2021.732414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.
Collapse
Affiliation(s)
- Alyssa L. Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Transplant Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
41
|
Salminen A, Kaarniranta K, Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases. Inflamm Res 2021; 70:1043-1061. [PMID: 34476533 PMCID: PMC8572812 DOI: 10.1007/s00011-021-01498-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process. METHODS Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar. RESULTS The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling. CONCLUSIONS Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
42
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
43
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
44
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
45
|
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021; 20:102893. [PMID: 34237417 DOI: 10.1016/j.autrev.2021.102893] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa M Villar
- Red Española de Esclerosis Múltiple (REEM), Spain; Servicio de Inmunología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
46
|
Okano M, Oshi M, Mukhopadhyay S, Qi Q, Yan L, Endo I, Ohtake T, Takabe K. Octogenarians' Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival. Cancers (Basel) 2021; 13:2933. [PMID: 34208219 PMCID: PMC8230790 DOI: 10.3390/cancers13122933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/26/2023] Open
Abstract
Elderly patients are known to have a worse prognosis for breast cancer. This is commonly blamed on their medical comorbidities and access to care. However, in addition to these social issues, we hypothesized that the extreme elderly (octogenarians-patients over 80 years old) have biologically worse cancer with unfavorable tumor immune microenvironment. The Cancer Genomic Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were analyzed. The control (aged 40-65) and octogenarians numbered 668 and 53 in TCGA and 979 and 118 in METABRIC, respectively. Octogenarians had significantly worse breast cancer-specific survival in both cohorts (p < 0.01). Octogenarians had a higher ER-positive subtype rate than controls in both cohorts. Regarding PAM50 classification, luminal-A and -B subtypes were significantly higher in octogenarians, whereas basal and claudin-low subtypes were significantly lower (p < 0.05) in octogenarians. There was no difference in tumor mutation load, intratumor heterogeneity, or cytolytic activity by age. However, the octogenarian cohort was significantly associated with high infiltration of pro-cancer immune cells, M2 macrophage, and regulatory T cells in both cohorts (p < 0.05). Our results demonstrate that octogenarians' breast cancer is associated with worse survival and with an unfavorable tumor immune microenvironment.
Collapse
Affiliation(s)
- Maiko Okano
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Swagoto Mukhopadhyay
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Q.Q.); (L.Y.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Q.Q.); (L.Y.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Toru Ohtake
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
47
|
G-MDSCs promote aging-related cardiac fibrosis by activating myofibroblasts and preventing senescence. Cell Death Dis 2021; 12:594. [PMID: 34103476 PMCID: PMC8187421 DOI: 10.1038/s41419-021-03874-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Aging is one of the most prominent risk factors for heart failure. Myeloid-derived suppressor cells (MDSCs) accumulate in aged tissue and have been confirmed to be associated with various aging-related diseases. However, the role of MDSCs in the aging heart remains unknown. Through RNA-seq and biochemical approaches, we found that granulocytic MDSCs (G-MDSCs) accumulated significantly in the aging heart compared with monocytic MDSCs (M-MDSCs). Therefore, we explored the effects of G-MDSCs on the aging heart. We found that the adoptive transfer of G-MDSCs of aging mice to young hearts resulted in cardiac diastolic dysfunction by inducing cardiac fibrosis, similar to that in aging hearts. S100A8/A9 derived from G-MDSCs induced inflammatory phenotypes and increased the osteopontin (OPN) level in fibroblasts. The upregulation of fibroblast growth factor 2 (FGF2) expression in fibroblasts mediated by G-MDSCs promoted antisenescence and antiapoptotic phenotypes of fibroblasts. SOX9 is the downstream gene of FGF2 and is required for FGF2-mediated and G-MDSC-mediated profibrotic effects. Interestingly, both FGF2 levels and SOX9 levels were upregulated in fibroblasts but not in G-MDSCs and were independent of S100A8/9. Therefore, a novel FGF2-SOX9 signaling axis that regulates fibroblast self-renewal and antiapoptotic phenotypes was identified. Our study revealed the mechanism by which G-MDSCs promote cardiac fibrosis via the secretion of S100A8/A9 and the regulation of FGF2-SOX9 signaling in fibroblasts during aging.
Collapse
|
48
|
Traba J, Sack MN, Waldmann TA, Anton OM. Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance. Front Immunol 2021; 12:657293. [PMID: 34079545 PMCID: PMC8166297 DOI: 10.3389/fimmu.2021.657293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Constitutive activity of the immune surveillance system detects and kills cancerous cells, although many cancers have developed strategies to avoid detection and to resist their destruction. Cancer immunotherapy entails the manipulation of components of the endogenous immune system as targeted approaches to control and destroy cancer cells. Since one of the major limitations for the antitumor activity of immune cells is the immunosuppressive tumor microenvironment (TME), boosting the immune system to overcome the inhibition provided by the TME is a critical component of oncotherapeutics. In this article, we discuss the main effects of the TME on the metabolism and function of immune cells, and review emerging strategies to potentiate immune cell metabolism to promote antitumor effects either as monotherapeutics or in combination with conventional chemotherapy to optimize cancer management.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Michael N. Sack
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Olga M. Anton
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
49
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
50
|
Bloomer SA, Moyer ED. Hepatic macrophage accumulation with aging: cause for concern? Am J Physiol Gastrointest Liver Physiol 2021; 320:G496-G505. [PMID: 33470190 DOI: 10.1152/ajpgi.00286.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging is associated with chronic, low-grade inflammation that adversely affects physiological function. The liver regulates systemic inflammation; it is a source of cytokine production and also scavenges bacteria from the portal circulation to prevent infection of other organs. The cells with primary roles in these functions, hepatic macrophages, become more numerous in the liver with "normal" aging (i.e., in the absence of disease). Here, we demonstrate evidence and potential mechanisms for this phenomenon, which include augmented tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) expression in the liver. Also, we discuss how an age-related impairment in autophagy within macrophages leads to a pro-oxidative state and ensuing production of proinflammatory cytokines, particularly interleukin 6 (IL-6). Given that the liver is a rich source of macrophages, we posit that it represents a major source of the elevated systemic IL-6 observed with aging, which is associated with physiological dysfunction. Testing a causal role for liver macrophage production of IL-6 during aging remains a challenge, yet interventions that have targeted macrophages and/or IL-6 have demonstrated promise in treating age-related diseases. These studies have demonstrated an age-related, deleterious reprogramming of macrophage function, which worsens pathology. Therefore, hepatic macrophage accrual is indeed a cause for concern, and therapies that attenuate the aged phenotype of macrophages will likely prove useful in promoting healthy aging.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, Abington, Pennsylvania
| | - Eric D Moyer
- Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|