1
|
Li H, Lin S, Wang Y, Shi Y, Fang X, Wang J, Cui H, Bian Y, Qi X. Immunosenescence: A new direction in anti-aging research. Int Immunopharmacol 2024; 141:112900. [PMID: 39137628 DOI: 10.1016/j.intimp.2024.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.
Collapse
Affiliation(s)
- Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China
| | - Shan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuexuan Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jida Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China.
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
2
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
3
|
Dou L, Peng Y, Zhang B, Yang H, Zheng K. Immune Remodeling during Aging and the Clinical Significance of Immunonutrition in Healthy Aging. Aging Dis 2024; 15:1588-1601. [PMID: 37815906 PMCID: PMC11272210 DOI: 10.14336/ad.2023.0923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is associated with changes in the immune system and the gut microbiota. Immunosenescence may lead to a low-grade, sterile chronic inflammation in a multifactorial and dynamic way, which plays a critical role in most age-related diseases. Age-related changes in the gut microbiota also shape the immune and inflammatory responses. Nutrition is a determinant of immune function and of the gut microbiota. Immunonutrion has been regarded as a new strategy for disease prevention and management, including many age-related diseases. However, the understanding of the cause-effect relationship is required to be more certain about the role of immunonutrition in supporting the immune homeostasis and its clinical relevance in elderly individuals. Herein, we review the remarkable quantitative and qualitative changes during aging that contribute to immunosenescence, inflammaging and microbial dysbiosis, and the effects on late-life health conditions. Furthermore, we discuss the clinical significance of immunonutrition in the treatment of age-related diseases by systematically reviewing its modulation of the immune system and the gut microbiota to clarify the effect of immunonutrition-based interventions on the healthy aging.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bin Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Conway J, Acharjee A, Duggal NA. Integrated analysis revealing novel associations between dietary patterns and the immune system in older adults. Integr Biol (Camb) 2024; 16:zyae010. [PMID: 38811367 DOI: 10.1093/intbio/zyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
With the expanding ageing population, there is a growing interest in the maintenance of immune health to support healthy ageing. Enthusiasm exists for unravelling the impact of diet on the immune system and its therapeutic potential. However, a key challenge is the lack of studies investigating the effect of dietary patterns and nutrients on immune responses. Thus, we have used an integrative analysis approach to improve our understanding of diet-immune system interactions in older adults. To do so, dietary data were collected in parallel with performing immunophenotyping and functional assays from healthy older (n = 40) participants. Food Frequency Questionnaire (FFQ) was utilised to derive food group intake and multi-colour flow cytometry was performed for immune phenotypic and functional analysis. Spearman correlation revealed the strength of association between all combinations of dietary components, micronutrients, and hallmarks of immunesenescence. In this study, we propose for the first time that higher adherence to the Mediterranean diet is associated with a positive immune-ageing trajectory (Lower IMM-AGE score) in older adults due to the immune protective effects of high dietary fibre and PUFA intake in combating accumulation or pro-inflammatory senescent T cells. Furthermore, a diet rich in Vit A, Vit B6 and Vit B12 is associated with fewer features of immunesenescence [such as accumulation of terminally differentiated memory CD8 T cells] in older adults. Based on our findings we propose a future nutrition-based intervention study evaluating the efficacy of adherence to the MED diet alongside a multi-nutrient supplementation on immune ageing in older adults to set reliable dietary recommendations with policymakers that can be given to geriatricians and older adults. Insight box: There is a growing interest in the maintenance of immune health to boost healthy ageing. However, a key challenge is the lack of studies investigating the effect of dietary patterns and nutrients on immune responses. Thus, to do so we collected dietary data in parallel with performing immunophenotyping and functional assays on healthy older (n = 40) participants, followed by an integrative analysis approach to improve our understanding of diet-immune system interactions in older adults. We strongly believe that these new findings are appropriate for IB and will be of considerable interest to its broad audience.
Collapse
Affiliation(s)
- Jessica Conway
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Lord JM, Veenith T, Sullivan J, Sharma-Oates A, Richter AG, Greening NJ, McAuley HJC, Evans RA, Moss P, Moore SC, Turtle L, Gautam N, Gilani A, Bajaj M, Wain LV, Brightling C, Raman B, Marks M, Singapuri A, Elneima O, Openshaw PJM, Duggal NA. Accelarated immune ageing is associated with COVID-19 disease severity. Immun Ageing 2024; 21:6. [PMID: 38212801 PMCID: PMC10782727 DOI: 10.1186/s12979-023-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
Collapse
Affiliation(s)
- Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Tonny Veenith
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Neil J Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Hamish J C McAuley
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Rachael A Evans
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nandan Gautam
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ahmed Gilani
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Manan Bajaj
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Louise V Wain
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Omer Elneima
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK.
| |
Collapse
|
6
|
Thakolwiboon S, Mills EA, Yang J, Doty J, Belkin MI, Cho T, Schultz C, Mao-Draayer Y. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. FRONTIERS IN AGING 2023; 4:1234572. [PMID: 37900152 PMCID: PMC10603254 DOI: 10.3389/fragi.2023.1234572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Elizabeth A. Mills
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Doty
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Martin I. Belkin
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Thomas Cho
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Schultz
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
- Autoimmune Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Schifferli A, Moulis G, Godeau B, Leblanc T, Aladjidi N, Michel M, Leverger G, Elalfy M, Grainger J, Chitlur M, Heiri A, Holzhauer S, Le Gavrian G, Imbach P, Kühne T. Adolescents and young adults with newly diagnosed primary immune thrombocytopenia. Haematologica 2023; 108:2783-2793. [PMID: 37051753 PMCID: PMC10542823 DOI: 10.3324/haematol.2022.282524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Current immune thrombocytopenia (ITP) guidelines target children and adults, leading to oversimplification. Adolescents and young adults (AYAS) comprise a separate group with distinct health and psychosocial issues. This study aimed to describe the clinical presentation and therapeutic strategies of ITP among AYAS. We analyzed data from two large ITP registries (PARC-ITP; CARMEN-France) and included newly diagnosed ITP patients (aged 12-25 years) with an initial platelet counts of <100×109/L. Patients with secondary ITP or non-immune thrombocytopenia (n=57) and pregnant women (n=10) were excluded. Of the 656 cases of AYAS with primary ITP registered from 2004 up to 2021, 12-month follow-up data were available for 72%. The initial median platelet count was 12×109/L. In 109 patients (17%), the diagnosis was incidental, without documented bleeding. Apart from gynecological bleeding, the clinical and therapeutical characteristics of females and males were similar. Platelet-enhancing drugs were reported in 66%, 45%, and 30% of patients at diagnosis, 1-6 months, and 6-12 months after diagnosis, respectively. Corticosteroids were the preferred treatment at all time points. At 12 months, 50% of all patients developed chronic ITP. In the subgroup of patients with initial severe thrombocytopenia (<20×109/L), those receiving frontline treatment had a higher remission rate at 1 year than those who followed an initial watch-and-wait strategy (53% and 32%; P<0.05). Our analysis indicates that the remission rate at 1 year may be associated with the initial treatment strategy. This hypothesis must be confirmed in prospective studies.
Collapse
Affiliation(s)
- Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland.
| | - Guillaume Moulis
- Service de Médecine Interne, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Centre d'Investigation Clinique 1436, équipe PEPSS, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Bertrand Godeau
- Department of Internal Medicine, National Reference Center for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Est Créteil, France
| | - Thierry Leblanc
- Department of Hematology, APHP-Robert Debré Hospital, Paris, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE), Pediatric Hematologic Unit, Centre d'Investigation Clinique Plurithématique (CICP) INSERM 1401, University Hospital of Bordeaux, Bordeaux, France
| | - Marc Michel
- Department of Internal Medicine, National Reference Center for Adult Immune Cytopenias, Henri Mondor University Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Est Créteil, France
| | - Guy Leverger
- Hôpital Armand-Trousseau AP-HP, Sorbonne université, service d'hémato-oncologie pédiatrique, Paris, France
| | - Mohsen Elalfy
- Department of Pediatric Hematology/Oncology, Ain Shams University, Cairo, Egypt
| | - John Grainger
- Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Meera Chitlur
- Carmen and Ann Adams Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Andrea Heiri
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Susanne Holzhauer
- Department of Pediatric Hematology and Oncology, Charité, Berlin, Germany
| | - Gautier Le Gavrian
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Paul Imbach
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Thomas Kühne
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Meng F, Zhou Y, Wagner A, Bülow JM, Köhler K, Neunaber C, Bundkirchen K, Relja B. Impact of age on liver damage, inflammation, and molecular signaling pathways in response to femoral fracture and hemorrhage. Front Immunol 2023; 14:1239145. [PMID: 37691959 PMCID: PMC10484338 DOI: 10.3389/fimmu.2023.1239145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background Trauma causes disability and mortality globally, leading to fractures and hemorrhagic shock. This can trigger an irregular inflammatory response that damages remote organs, including liver. Aging increases the susceptibility to dysregulated immune responses following trauma, raising the risk of organ damage, infections, and higher morbidity and mortality in elderly patients. This study investigates how aging affects liver inflammation and damage post-trauma. Methods 24 male C57BL/6J mice were randomly divided into four groups. Twelve young (17-26 weeks) and 12 aged (64-72 weeks) mice were included. Mice further underwent either hemorrhagic shock (trauma/hemorrhage, TH), and femoral fracture (osteotomy) with external fixation (Fx) (THFx, n=6) or sham procedures (n=6). After 24 hours, mice were sacrificed. Liver injury and apoptosis were evaluated using hematoxylin-eosin staining and activated caspase-3 immunostaining. CXCL1 and infiltrating polymorphonuclear leukocytes (PMNL) in the liver were assessed by immunostaining, and concentrations of CXCL1, TNF, IL-1β, and IL-10 in the liver tissue were determined by ELISA. Gene expression of Tnf, Cxcl1, Il-1β, and Cxcl2 in the liver tissue was determined by qRT-PCR. Finally, western blot was used to determine protein expression levels of IκBα, Akt, and their phosphorylated forms. Results THFx caused liver damage and increased presence of active caspase-3-positive cells compared to the corresponding sham group. THFx aged group had more severe liver injury than the young group. CXCL1 and PMNL levels were significantly higher in both aged groups, and THFx caused a greater increase in CXCL and PMNL levels in aged compared to the young group. Pro-inflammatory TNF and IL-1β levels were elevated in aged groups, further intensified by THFx. Anti-inflammatory IL-10 levels were lower in aged groups. Tnf and Cxcl1 gene expression was enhanced in the aged sham group. Phosphorylation ratio of IκBα was significantly increased in the aged sham group versus young sham group. THFx-induced IκBα phosphorylation in the young group was significantly reduced in the aged THFx group. Akt phosphorylation was significantly reduced in the THFx aged group compared to the THFx young group. Conclusion The findings indicate that aging may lead to increased vulnerability to liver injury and inflammation following trauma due to dysregulated immune responses.
Collapse
Affiliation(s)
- Fanshuai Meng
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
- Department of Trauma and Reconstructive Surgery, Uniklinik RWTH Aachen, Aachen, Germany
| | - Yuzhuo Zhou
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Alessa Wagner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Maria Bülow
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Feng R, Zhao J, Sun F, Miao M, Sun X, He J, Li Z. Comparison of the deep immune profiling of B cell subsets between healthy adults and Sjögren's syndrome. Ann Med 2022; 54:472-483. [PMID: 35098838 PMCID: PMC8812739 DOI: 10.1080/07853890.2022.2031272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Detailed analysis targeting B cell subgroups was considered crucial in monitoring autoimmune diseases and treatment responses. Thus, precisely describing the phenotypes of B cell differentiation and their variation in primary Sjögren's syndrome (pSS) is particularly needed. METHODS To characterize the proportions and absolute counts of B cell subsets, peripheral blood from 114 healthy adults of China (age range: 19-73 years) and 55 patients with pSS were performed by flow cytometry and CD19, CD20, CD24, CD27, CD38 and IgD were used as surface markers to identify B cell mature process. Age- and gender-stratified analyses were then carried out to improve the interpretation of B cell subsets. RESULTS The assessments from healthy adults showed that the proportion of naive B cells presented a significant increase with age. A reversal trend was noted that the percentage of B10 decreased markedly with age. In addition, analysis based on gender showed that the relative percentage and number of naive B cells were higher in females than in males whereas the proportions of switched memory B cells and B10 cells were decreased in female. Patients with pSS exhibited a significant expansion in naïve B cells and unswitched memory B cells, accompanied with decreased switched memory B cells and B10 cells, which were identified to be associated with autoantibody production. CONCLUSIONS Our study presented a reliable analysis by flow cytometry to cover the principal B cell subtypes. These different stages of B lymphocytes may have implications for evaluating the activation of pSS and other autoimmune diseases and treatment efficacy.KEY MESSAGESB cell subsets play a pivotal role in the pathogenesis of primary Sjögren's syndrome (pSS) and other autoimmune diseases. A practical and accurate flow cytometry method to profile B cell phenotypes in peripheral blood of healthy adults is especially essential.Additionally, we presented reliable reference ranges for B cell subsets in regards to the local population. Age- and gender-related analyses are available to better understand their influence in immune status and treatment outcome.The distribution of B-cell subsets is found substantially altered in patients with pSS, bringing novel avenues for pSS research in the future.
Collapse
Affiliation(s)
- Ruiling Feng
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Jing Zhao
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Feng Sun
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Miao Miao
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Wang C, Xu H, Gao R, Leng F, Huo F, Li Y, Liu S, Xu M, Bai J. CD19 +CD24 hiCD38 hi regulatory B cells deficiency revealed severity and poor prognosis in patients with sepsis. BMC Immunol 2022; 23:54. [PMID: 36357845 PMCID: PMC9648441 DOI: 10.1186/s12865-022-00528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background Sepsis still remains a major challenge in intensive care medicine with unacceptably high mortality among patients with septic shock. Due to current limitations of human CD19+CD24hiCD38hi Breg cells (Bregs) studies among sepsis, here, we tried to evaluate Bregs in severity and prognostic value in patients with sepsis. Methods Peripheral blood from 58 patients with sepsis and 22 healthy controls was analyzed using flow cytometry to evaluate the frequency and number of Bregs. All cases were divided into non-survived or survived group after 28 days followed up. Spearman's correlation analysis was performed on Bregs frequency and clinical indices. The area under the curve was acquired using the receiver operating characteristic analysis to assess the sensitivity and specificity of Bregs for outcome of sepsis. Survival curve analysis and binary logistic regression were applied to estimate the value of Bregs in prognosis among cases with sepsis. Results Sepsis patients had decreased proportions and number of Bregs. Sepsis patients with low frequency of Bregs were associated with an increased risk of septic shock. Bregs frequency is inversely associated with lactate, SOFA, and APACHE II and positively correlated with Tregs frequency. Low levels of Bregs closely correlated with septic outcomes. Numbers of Bregs were prediction factors for poor prognosis. Conclusions Frequency and number of Bregs decreased, and Bregs deficiency revealed poor prognosis in patients with sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00528-x.
Collapse
Affiliation(s)
- Chunmei Wang
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Huihui Xu
- grid.9227.e0000000119573309Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gao
- grid.452252.60000 0004 8342 692XDepartment of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272067 Shandong Province China
| | - Fengying Leng
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi’an No. 4 Hospital, Xi’an, 710004 Shanxi Province China
| | - Yinzhen Li
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China ,grid.24516.340000000123704535Medical School, Tongji University, Shanghai, 200120 China
| | - Siting Liu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Mingzheng Xu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Jianwen Bai
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
13
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
15
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Zeng F, Zhang J, Jin X, Liao Q, Chen Z, Luo G, Zhou Y. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J Cell Physiol 2022; 237:2796-2807. [PMID: 35486480 DOI: 10.1002/jcp.30760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
CD38 is a multifunctional receptor and enzyme present on the surface of B lymphocytes, which can induce B lymphocytes proliferation and apoptosis by crosslinking related cytokines to affect the function of B cells, thus affecting immune regulation in humans and promoting tumorigenesis. The level of CD38 expression in B cells has become an important factor in the clinical diagnosis, treatment, and prognosis of malignant tumors and other related diseases. Therefore, studying the relationship between CD38 expression on the surface of B cells and the occurrence of the disease is of great significance for elucidating its association with disease pathogenesis and the clinical targeted therapy. In this paper, we review the effects of CD38 on B-cell activation, proliferation, and differentiation, and elaborate the functional role and mechanism of CD38 expression on B cells. We also summarize the relationship between the level of CD38 expression on the surface of B cells and the diagnosis, treatment, and prognosis of various diseases, as well as the potential use of targeted CD38 treatment for related diseases. This will provide an important theoretical basis for the scientific research and clinical diagnosis and treatment of B-cell-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Zhang
- Senile Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
19
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
20
|
Monaghan TM, Duggal NA, Rosati E, Griffin R, Hughes J, Roach B, Yang DY, Wang C, Wong K, Saxinger L, Pučić-Baković M, Vučković F, Klicek F, Lauc G, Tighe P, Mullish BH, Blanco JM, McDonald JAK, Marchesi JR, Xue N, Dottorini T, Acharjee A, Franke A, Li Y, Wong GKS, Polytarchou C, Yau TO, Christodoulou N, Hatziapostolou M, Wang M, Russell LA, Kao DH. A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection. Cells 2021; 10:3234. [PMID: 34831456 PMCID: PMC8624539 DOI: 10.3390/cells10113234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.
Collapse
Affiliation(s)
- Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Niharika A. Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Ruth Griffin
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jamie Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Brandi Roach
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - David Y. Yang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Christopher Wang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Lynora Saxinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada;
| | - Maja Pučić-Baković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Frano Vučković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Filip Klicek
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Julie A. K. McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK;
| | - Andre Franke
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Yingrui Li
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Minkun Wang
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
- Innovation Lab, Innovent Biologics, Inc., Suzhou 215011, China
| | - Lindsey A. Russell
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Dina H. Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| |
Collapse
|
21
|
Boldison J, Wong FS. Regulatory B Cells: Role in Type 1 Diabetes. Front Immunol 2021; 12:746187. [PMID: 34616408 PMCID: PMC8488343 DOI: 10.3389/fimmu.2021.746187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory B cells (Bregs) have an anti-inflammatory role and can suppress autoimmunity, by employing both cytokine secretion and cell-contact mediated mechanisms. Numerous Breg subsets have been described and have overlapping phenotypes in terms of their immune expression markers or cytokine production. A hallmark feature of Bregs is the secretion of IL-10, although IL-35 and TGFβ−producing B cells have also been identified. To date, few reports have identified an impaired frequency or function of Bregs in individuals with type 1 diabetes; thus our understanding of the role played by these Breg subsets in the pathogenesis of this condition is limited. In this review we will focus on how regulatory B cells are altered in the development of type 1 diabetes, highlighting both frequency and function and discuss both human and animal studies.
Collapse
Affiliation(s)
- Joanne Boldison
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, United Kingdom
| | - F Susan Wong
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Predictors of the CD24/CD11b Biomarker among Healthy Subjects. J Pers Med 2021; 11:jpm11090939. [PMID: 34575716 PMCID: PMC8471999 DOI: 10.3390/jpm11090939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
The CD24 gene has raised considerable interest in tumor biology as a new prognostic factor and a biomarker for the early detection of cancer. There are currently no studies that assess predictors of CD24 in blood tests among healthy individuals. Our aims were (1) to evaluate predictors of the CD24/CD11b biomarker among healthy subjects and (2) to assess CD24/CD11b levels of participants with and without benign tumors. Our cohort included 1640 healthy subjects, aged 20-85, recruited at the Health Promotion and Integrated Cancer Prevention Center (ICPC) in the Tel Aviv Medical Center. Eligible subjects completed a detailed questionnaire on medical history and other epidemiologic information. CD24/CD11b expression in peripheral blood leukocytes (PBLs) obtained from blood samples of participants was analyzed by flow cytometry. Our results showed that the average levels of CD24/CD11b in healthy patients (22.8 ± 9.3) was statistically significant lower compared to subjects with benign cancers (26.1 ± 10.5, p < 0.001). Our multivariable analysis demonstrated that elevated levels of CRP (coefficient β: 1.98, p = 0.011) were significantly associated with high levels of CD24/CD11b expression among healthy participants. Other risk factors of cancer were not associated with elevated CD24 levels among healthy subjects. In conclusion, our findings may assist in further development and optimization of the CD24/CD11b biomarker to serve as a cancer screening test for early detection of cancer among the healthy population.
Collapse
|
24
|
Conway J, A Duggal N. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev 2021; 68:101323. [PMID: 33771720 DOI: 10.1016/j.arr.2021.101323] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Advancing age is accompanied by changes in the gut microbiota characterised by a loss of beneficial commensal microbes that is driven by intrinsic and extrinsic factors such as diet, medications, sedentary behaviour and chronic health conditions. Concurrently, ageing is accompanied by an impaired ability to mount a robust immune response, termed immunesenescence, and age-associated inflammation, termed inflammaging. The microbiome has been proposed to impact the immune system and is a potential determinant of healthy aging. In this review we summarise the knowledge on the impact of ageing on microbial dysbiosis, intestinal permeability, inflammaging, and the immune system and investigate whether dysbiosis of the gut microbiota could be a potential mechanism underlying the decline in immune function, overall health and longevity with advancing age. Furthermore, we examine the potential of altering the gut microbiome composition as a novel intervention strategy to reverse the immune ageing clock and possibly support overall good health during old age.
Collapse
|
25
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|
26
|
Xie X, Shrimpton J, Doody GM, Conaghan PG, Ponchel F. B-cell capacity for differentiation changes with age. Aging Cell 2021; 20:e13341. [PMID: 33711204 PMCID: PMC8045946 DOI: 10.1111/acel.13341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background Age‐related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin. Aims To compare the intrinsic B‐cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T‐cell help or activation via TLR engagement. Methods B cells were isolated from healthy individuals, in younger (30–38 years) and older (60–64 years) donors. An in vitro model system of B‐cell differentiation was used, analysing 5 differentiation markers by flow cytometry, under T‐dependent (TD: CD40/BCR stimulation) or T‐independent (TI: TLR7/BCR activation) conditions. Antibody secretion was measured by ELISA and gene expression using qPCR. Results TI and TD differentiation resulted in effective proliferation of B cells followed by their differentiation into PC. B‐cell‐executed TI differentiation was faster, all differentiation marker and genes being expressed earlier than under TD differentiation (day 6), although generating less viable cells and lower antibody levels (day 13). Age‐related differences in B‐cell capacity for differentiation were minimal in TD differentiation. In contrast, in TI differentiation age significantly affected proliferation, viability, differentiation, antibody secretion and gene expression, older donors being more efficient. Conclusion Altogether, B‐cell differentiation into PC appeared similar between age groups when provided with T‐cell help, in contrast to TI differentiation, where multiple age‐related changes suggest better capacities in older donors. These new findings may help explain the emergence of autoantibodies in ageing.
Collapse
Affiliation(s)
- Xuanxiao Xie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Jennifer Shrimpton
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Gina M. Doody
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Philip G. Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| |
Collapse
|
27
|
Takahashi Y, Suzuki S, Hamada K, Nakada T, Oya Y, Sakakura N, Matsushita H, Kuroda H. Sarcopenia is poor risk for unfavorable short- and long-term outcomes in stage I non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:325. [PMID: 33708952 PMCID: PMC7944314 DOI: 10.21037/atm-20-4380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Sarcopenia characterized by skeletal muscle loss may influence postoperative outcomes through physical decline and weakened immunity. We aimed to investigate clinical significance of sarcopenia in resected early-stage non-small cell lung cancer (NSCLC). Methods We retrospectively reviewed 315 consecutive patients with pathologic stage I NSCLC who had undergone lobectomy with systematic nodal dissection. Sarcopenia was defined as the lowest quartile of psoas muscle area on the 3rd vertebra on the high-resolution computed tomography (HRCT) image. Clinicopathological variables were used to investigate the correlation to postoperative complications as well as overall and recurrence-free survival. Results Upon multivariable analysis, male sex [odds ratio (OR) =5.780, 95% confidence interval (CI): 2.681–12.500, P<0.001], and sarcopenia (OR =21.00, 95% CI: 10.30–42.80, P<0.001) were independently associated with postoperative complications. The sarcopenia group showed significantly lower 5-over all survival (84.4% vs. 69.1%, P<0.001) and recurrence-free survival (77.2% vs. 62.0%, P<0.001) comparing with the non-sarcopenia group. In a multivariable analysis, sarcopenia was an independent prognostic factor [hazard ratio (HR) =1.978, 95% CI: 1.177–3.326, P=0.010] together with age ≥70 years (HR =1.956, 95% CI: 1.141–3.351, P=0.015) and non-adenocarcinoma histology (HR =1.958, 95% CI: 1.159–3.301, P=0.016). Conclusions This is the first study which demonstrates that preoperative sarcopenia is significantly associated with unfavorable postoperative complications as well as long-term survival in pathologic stage I NSCLC. This readily available factor on HRCT may provide valuable information to consider possible choice of surgical procedure and perioperative management.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Sagamihara Kyodo Hospital, Sagamihara, Kanagawa, Japan.,Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan.,Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Shigeki Suzuki
- Department of General Thoracic Surgery, Sagamihara Kyodo Hospital, Sagamihara, Kanagawa, Japan
| | - Kenichi Hamada
- Department of General Thoracic Surgery, Sagamihara Kyodo Hospital, Sagamihara, Kanagawa, Japan
| | - Takeo Nakada
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Yuko Oya
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan.,Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Noriaki Sakakura
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
28
|
Menon M, Hussell T, Ali Shuwa H. Regulatory B cells in respiratory health and diseases. Immunol Rev 2021; 299:61-73. [PMID: 33410165 PMCID: PMC7986090 DOI: 10.1111/imr.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL‐10, IL‐35, and tumor growth factor‐β (TGF‐β), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
29
|
Moskalec OV. Characteristics of the Immunoresponse in Elderly People and Autoimmunity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Moro F, Fania L, Sinagra JLM, Salemme A, Di Zenzo G. Bullous Pemphigoid: Trigger and Predisposing Factors. Biomolecules 2020; 10:E1432. [PMID: 33050407 PMCID: PMC7600534 DOI: 10.3390/biom10101432] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bullous pemphigoid (BP) is the most frequent autoimmune subepidermal blistering disease provoked by autoantibodies directed against two hemidesmosomal proteins: BP180 and BP230. Its pathogenesis depends on the interaction between predisposing factors, such as human leukocyte antigen (HLA) genes, comorbidities, aging, and trigger factors. Several trigger factors, such as drugs, thermal or electrical burns, surgical procedures, trauma, ultraviolet irradiation, radiotherapy, chemical preparations, transplants, and infections may induce or exacerbate BP disease. Identification of predisposing and trigger factors can increase the understanding of BP pathogenesis. Furthermore, an accurate anamnesis focused on the recognition of a possible trigger factor can improve prognosis by promptly removing it.
Collapse
Affiliation(s)
- Francesco Moro
- Correspondence: (F.M.); (L.F.); Tel.: +39-(342)-802-0004 (F.M.)
| | - Luca Fania
- Correspondence: (F.M.); (L.F.); Tel.: +39-(342)-802-0004 (F.M.)
| | | | | | | |
Collapse
|
31
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
32
|
Andersson SEM, Lange E, Kucharski D, Svedlund S, Önnheim K, Bergquist M, Josefsson E, Lord JM, Mårtensson IL, Mannerkorpi K, Gjertsson I. Moderate- to high intensity aerobic and resistance exercise reduces peripheral blood regulatory cell populations in older adults with rheumatoid arthritis. IMMUNITY & AGEING 2020; 17:12. [PMID: 32467712 PMCID: PMC7229606 DOI: 10.1186/s12979-020-00184-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022]
Abstract
Objective Exercise can improve immune health and is beneficial for physical function in patients with rheumatoid arthritis (RA), but the immunological mechanisms are largely unknown. We evaluated the effect of moderate- to high intensity exercise with person-centred guidance on cells of the immune system, with focus on regulatory cell populations, in older adults with RA. Methods Older adults (≥65 years) with RA were randomized to either 20-weeks of moderate – to high intensity aerobic and resistance exercise (n = 24) or to an active control group performing home-based exercise of light intensity (n = 25). Aerobic capacity, muscle strength, DAS28 and CRP were evaluated. Blood samples were collected at baseline and after 20 weeks. The frequency of immune cells defined as adaptive regulatory populations, CD4 + Foxp3 + CD25 + CD127- T regulatory cells (Tregs) and CD19 + CD24hiCD38hi B regulatory cells (Bregs) as well as HLA-DR−/lowCD33 + CD11b + myeloid derived suppressor cells (MDSCs), were assessed using flow cytometry. Results After 20 weeks of moderate- to high intensity exercise, aerobic capacity and muscle strength were significantly improved but there were no significant changes in Disease Activity Score 28 (DAS28) or CRP. The frequency of Tregs and Bregs decreased significantly in the intervention group, but not in the active control group. The exercise intervention had no effect on MDSCs. The reduction in regulatory T cells in the intervention group was most pronounced in the female patients. Conclusion Moderate- to high intensity exercise in older adults with RA led to a decreased proportion of Tregs and Bregs, but that was not associated with increased disease activity or increased inflammation. Trial registration Improved Ability to Cope With Everyday Life Through a Person-centered Training Program in Elderly Patients With Rheumatoid Arthritis - PEP-walk Study, NCT02397798. Registered at ClinicalTrials.gov March 19, 2015.
Collapse
Affiliation(s)
- Sofia E M Andersson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Elvira Lange
- 2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden.,3Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Kucharski
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Sara Svedlund
- 4Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Önnheim
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Maria Bergquist
- 5Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Elisabet Josefsson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Janet M Lord
- 6MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Inga-Lill Mårtensson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden
| | - Kaisa Mannerkorpi
- 2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden.,3Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- 1Department of Rheumatology and Inflammation research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Göteborg, Sweden.,2University of Gothenburg Centre for Person-Centred Care, Gothenburg, Sweden
| |
Collapse
|
33
|
Bartlett DB, Duggal NA. Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of IL15. Age Ageing 2020; 49:368-373. [PMID: 32221610 DOI: 10.1093/ageing/afaa035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION ageing is accompanied by impairments in immune responses due to remodelling of the immune system (immunesenescence). Additionally, a decline in habitual physical activity has been reported in older adults. We have recently published that specific features of immunesenescence, such as thymic involution and naïve/memory T-cell ratio, are prevented by maintenance of a high level of physical activity. This study compares immune ageing between sedentary and physically active older adults. METHODS a cross-sectional study recruited 211 healthy older adults (60-79 years) and assessed their physical activity levels using an actigraph. We compared T- and B-cell immune parameters between relatively sedentary (n = 25) taking 2,000-4,500 steps/day and more physically active older adults (n = 25) taking 10,500-15,000 steps/day. RESULTS we found a higher frequency of naïve CD4 (P = 0.01) and CD8 (P = 0.02) and a lower frequency of memory CD4 cells (P = 0.01) and CD8 (P = 0.04) T cells in the physically active group compared with the sedentary group. Elevated serum IL7 (P = 0.03) and IL15 (P = 0.003), cytokines that play an essential role in T-cell survival, were seen in the physically active group. Interestingly, a positive association was observed between IL15 levels and peripheral CD4 naïve T-cell frequency (P = 0.023). DISCUSSION we conclude that a moderate level of physical activity may be required to give a very broad suppression of immune ageing, though 10,500-15,000 steps/day has a beneficial effect on the naïve T-cell pool.
Collapse
Affiliation(s)
- David B Bartlett
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, NC 27701, USA
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University, Birmingham B15 2TT, UK
| |
Collapse
|
34
|
Malinina A, Dikeman D, Westbrook R, Moats M, Gidner S, Poonyagariyagorn H, Walston J, Neptune ER. IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung. Aging Cell 2020; 19:e13130. [PMID: 32170906 PMCID: PMC7189990 DOI: 10.1111/acel.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.
Collapse
Affiliation(s)
- Alla Malinina
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Dustin Dikeman
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Reyhan Westbrook
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Michelle Moats
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
- Departments of Biology and Chemistry and Biochemistry Florida International University Miami FL USA
| | - Sarah Gidner
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | | | - Jeremy Walston
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| |
Collapse
|
35
|
Yang W, Zhou W, Zhang BK, Kong LS, Zhu XX, Wang RX, Yang Y, Chen YF, Chen LR. Association between CD24 Ala/Val polymorphism and multiple sclerosis risk: A meta analysis. Medicine (Baltimore) 2020; 99:e19530. [PMID: 32282702 PMCID: PMC7440312 DOI: 10.1097/md.0000000000019530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the association between CD24 Ala/Val polymorphism and susceptibility of multiple sclerosis (MS). METHODS A comprehensive literature search for relevant studies was performed on google scholar, PubMed, Web of science, Embase, the Chinese National Knowledge Infrastructure and the Chinese Biology Medicine. This meta-analysis was conducted using the STATA 11.0 software and the pooled odds ratio with 95% confidence interval was calculated. RESULTS Seven case-control studies were included in this meta-analysis. The results showed significant association between CD24 Ala/Val polymorphism and susceptibility to MS. Stratified analysis by areas also showed significant association in Asians. However, no association was found in Europeans. CONCLUSION This study suggested that the CD24 Val allele was associated with an increased risk of MS and larger-scale studies of populations are needed to explore the role of CD24 Ala/Val polymorphism during the pathogenesis of MS.
Collapse
Affiliation(s)
- Wan Yang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Wang Zhou
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Bo-Kang Zhang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Ling-Suo Kong
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Xing-Xing Zhu
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Rui-Xiang Wang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Yue Yang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Yun-Fei Chen
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Lan-Ren Chen
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei
- Department of Anesthesiology, West District of Anhui Provincial Hospital, Hefei
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei
| |
Collapse
|
36
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
37
|
Muggen AF, de Jong M, Wolvers-Tettero ILM, Kallemeijn MJ, Teodósio C, Darzentas N, Stadhouders R, IJspeert H, van der Burg M, van IJcken WF, Verhaar JAN, Abdulahad WH, Brouwer E, Boots AMH, Hendriks RW, van Dongen JJM, Langerak AW. The presence of CLL-associated stereotypic B cell receptors in the normal BCR repertoire from healthy individuals increases with age. IMMUNITY & AGEING 2019; 16:22. [PMID: 31485252 PMCID: PMC6714092 DOI: 10.1186/s12979-019-0163-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023]
Abstract
Background Aging is known to induce immunosenescence, resulting in alterations in both the innate and adaptive immune system. Here we evaluated the effects of aging on B cell subsets in peripheral blood of 155 immunologically healthy individuals in four age categories (range 20-95y) via multi-parameter flow cytometry. Furthermore, we studied the naive and antigen-experienced B cell receptor (BCR) repertoire of different age groups and compared it to the clonal BCR repertoire of chronic lymphocytic leukemia (CLL), a disease typically presenting in elderly individuals. Results Total numbers and relative frequencies of B cells were found to decline upon aging, with reductions in transitional B cells, memory cell types, and plasma blasts in the 70 + y group. The BCR repertoire of naive mature B cells and antigen-experienced B cells did not clearly alter until age 70y. Clear changes in IGHV gene usage were observed in naive mature B cells of 70 + y individuals, with a transitional pattern in the 50-70y group. IGHV gene usage of naive mature B cells of the 50-70y, but not the 70 + y, age group resembled that of both younger (50-70y) and older (70 + y) CLL patients. Additionally, CLL-associated stereotypic BCR were found as part of the healthy control BCR repertoire, with an age-associated increase in frequency of several stereotypic BCR (particularly subsets #2 and #5). Conclusion Composition of the peripheral B cell compartment changes with ageing, with clear reductions in non-switched and CD27 + IgG+ switched memory B cells and plasma blasts in especially the 70 + y group. The BCR repertoire is relatively stable until 70y, whereafter differences in IGHV gene usage are seen. Upon ageing, an increasing trend in the occurrence of particular CLL-associated stereotypic BCR is observed. Electronic supplementary material The online version of this article (10.1186/s12979-019-0163-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice F Muggen
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Madelon de Jong
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ingrid L M Wolvers-Tettero
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martine J Kallemeijn
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Cristina Teodósio
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,2Present Address: Department Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikos Darzentas
- 3Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,4Department Internal Medicine, University Schleswig-Holstein, Kiel, Germany
| | - Ralph Stadhouders
- 5Department Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Hanna IJspeert
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Mirjam van der Burg
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,6Present Address: Department Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jan A N Verhaar
- 8Department Orthopedics, Erasmus MC, Rotterdam, The Netherlands
| | - Wayel H Abdulahad
- 9Department Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- 9Department Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- 9Department Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi W Hendriks
- 5Department Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,2Present Address: Department Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- 1Department Immunology, Laboratory Medical Immunology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
38
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
39
|
Wang H, Liu C, Chen W, Ding G. The skewed frequency of B-cell subpopulation CD19 + CD24 hi CD38 hi cells in peripheral blood mononuclear cells is correlated with the elevated serum sCD40L in patients with active systemic lupus erythematosus. J Cell Biochem 2019; 120:11490-11497. [PMID: 30771230 DOI: 10.1002/jcb.28427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
CD19+ CD24hi CD38hi cells play an essential role in maintaining immune homeostasis. CD40 signaling is involved in regulating the induction and function of CD19+ CD24hi CD38hi cells. Changes in B-cell subpopulations and CD19+ CD24hi CD38hi cells have been observed in systemic lupus erythematosus (SLE) patients. Whether changes in the B-cell subpopulation are related to the aberrant CD40 signaling in SLE patients remains unclear. In this study, we examined changes in the levels of CD19+ CD24hi CD38hi cells and CD19+ CD24hi CD38low cells in peripheral blood mononuclear cells and the serum level of soluble CD40 ligand (sCD40L) in 30 patients with SLE. Through routine biochemical assays and flow cytometry assay, we found that (1) the CD19+ CD24hi CD38hi cell subset was upregulated in SLE patients compared to that in healthy controls (HCs) (P < 0.05); (2) the CD19+ CD24hi CD38low cell subset was downregulated in SLE patients compared with that in HCs; and (3) CD38 expression was positively correlated with SLE manifestations and the serum sCD40L level (P < 0.05). In conclusion, the relative level of Bregs is significantly higher in SLE patients than in HCs and is positively correlated with disease activity and sCD40L level.
Collapse
Affiliation(s)
- Huiming Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Changxuan Liu
- Division of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenli Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Wiest M, Upchurch K, Hasan MM, Cardenas J, Lanier B, Millard M, Turner J, Oh S, Joo H. Phenotypic and functional alterations of regulatory B cell subsets in adult allergic asthma patients. Clin Exp Allergy 2019; 49:1214-1224. [PMID: 31132180 DOI: 10.1111/cea.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND IL-10-producing regulatory B cells (Bregs) are widely ascribed immune regulatory functions. However, Breg subsets in human asthma have not been fully investigated. OBJECTIVE We studied Breg subsets in adult allergic asthma patients by assessing two major parameters, frequency and IL-10 expression. We then investigated factors that affect these two parameters in patients. METHODS Peripheral blood mononuclear cells (PBMCs) of adult allergic asthma patients (N = 26) and non-asthmatic controls (N = 28) were used to assess the frequency of five subsets of transitional B cells (TBs), three subsets of CD24high CD27+ B cells and B1 cells. In addition to clinical data, IL-10 expression by individual Breg subsets was assessed by flow cytometry. RESULTS Asthma patients had decreases of CD5+ and CD1d+ CD5+ , but an increase of CD27+ TBs which was significant in patients with moderate asthma (60 < FEV1 < 80). Regardless of asthma severity, there was no significant alteration in the frequencies of 6 other Breg subsets tested. However, we found that oral corticosteroid (OCS) significantly affected the frequency of Bregs in Breg subset-specific manners. OCS decreased CD5+ and CD1d+ CD5+ TBs, but increased CD27+ TBs and CD10+ CD24high CD27+ cells. Furthermore, OCS decreased IL-10 expression by CD27+ TBs, all 3 CD24high CD27+ B cell subsets (CD5+ , CD10+ and CD1d+ ) and B1 cells. OCS-mediated inhibition of IL-10 expression was not observed in the other Breg subsets tested. CONCLUSION & CLINICAL RELEVANCE Alterations in the frequency of Bregs and their ability to express IL-10 are Breg subset-specific. OCS treatment significantly affects the frequency as well as their ability to express IL-10 in Breg subset-specific manners.
Collapse
Affiliation(s)
- Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | | | - Md Mahmudul Hasan
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | | | - Bobby Lanier
- North Texas Institute for Clinical Trials, Ft Worth, Texas
| | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, Texas
| | - Jacob Turner
- Baylor Institute for Immunology Research, Dallas, Texas
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| |
Collapse
|
41
|
Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019; 19:563-572. [DOI: 10.1038/s41577-019-0177-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Naismith E, Pangrazzi L. The impact of oxidative stress, inflammation, and senescence on the maintenance of immunological memory in the bone marrow in old age. Biosci Rep 2019; 39:BSR20190371. [PMID: 31018996 PMCID: PMC6522741 DOI: 10.1042/bsr20190371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bone marrow (BM) provides a preferential survival environment for the long-term maintenance of antigen-experienced adaptive immune cells. After the contact with antigens, effector/memory T cells and plasma cell precursors migrate to the BM, in which they can survive within survival niches in an antigen-independent manner. Despite this, the phenotype of adaptive immune cells changes with aging, and BM niches themselves are affected, leading to impaired long-term maintenance of immunological memory in the elderly as a result. Oxidative stress, age-related inflammation (inflammaging), and cellular senescence appear to play a major role in this process. This review will summarize the age-related changes in T and B cell phenotype, and in the BM niches, discussing the possibility that the accumulation of highly differentiated, senescent-like T cells in the BM during aging may cause inflammation in the BM and promote oxidative stress and senescence. In addition, senescent-like T cells may compete for space with other immune cells within the marrow, partially excluding effector/memory T cells and long-lived plasma cells from the niches.
Collapse
Affiliation(s)
- Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| |
Collapse
|
43
|
Aversa T, Corica D, Zirilli G, Pajno GB, Salzano G, De Luca F, Wasniewska M. Phenotypic Expression of Autoimmunity in Children With Autoimmune Thyroid Disorders. Front Endocrinol (Lausanne) 2019; 10:476. [PMID: 31354636 PMCID: PMC6640617 DOI: 10.3389/fendo.2019.00476] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
Autoimmune thyroid diseases (AITDs), including Hashimoto's thyroiditis (HT) and Graves' disease (GD), tend to aggregate with other non-thyroidal autoimmune diseases (NTADs). Aim of this Mini-review is to report the most recent insights concerning the clustering of NTADs in pediatric patients with either HT or GD, the pathophysiology of AITDs and the metamorphic thyroid autoimmunity. A systematic literature research of the last 15 years, according to EQUATOR statement, was carried out through MEDLINE via PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) Embase, CINAHL, Cochrane Library, based on the following keywords: (autoimmune thyroid disease OR Hashimoto thyroiditis OR Grave's disease) AND (autoimmune comorbidities OR extra-thyroidal autoimmune disorders) AND (children OR adolescents OR pediatrics) AND (celiac disease OR type 1 diabetes mellitus OR arthropathies OR cutaneous diseases) AND (Turner syndrome OR Down syndrome). One-hundred and twenty-eight manuscripts were extrapolated but only seventeen were eligible. On the basis of the available reports it may be inferred that clustering of NTADs can be significantly modified by both patients' age at AITDs presentation and association with Down's syndrome (DS). Particularly, the association of AITDs with celiac disease and type 1 diabetes was most commonly reported in children than in adults. A sequential shifting from HT to GD has been described in children with AITDs, and it seems to be more frequent in children with DS than in those without DS. Coexistence of autoimmune diseases might be the result of a complex interaction among genetics, environment and epigenetic modifications that are able to affect gene expression, immune system response and, finally, the pathogenesis of autoimmune diseases.
Collapse
|
44
|
Older Human B Cells and Antibodies. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121151 DOI: 10.1007/978-3-319-99375-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cells have a number of different roles in the immune response. Their excellent antigen presentation potential can contribute to the activation of other cells of the immune system, and evidence is emerging that specialized subsets of these cells, that may be increased with age, can influence the cell-mediated immune system in antitumor responses. They can also regulate immune responses, to avoid autoreactivity and excessive inflammation. Deficiencies in regulatory B cells may be beneficial in cancer but will only exacerbate the inflammatory environment that is a hallmark of aging. The B cell role as antibody producers is particularly important, since antibodies perform numerous different functions in different environments. Although studying tissue responses in humans is not as easy as in mice, we do know that certain classes of antibodies are more suited to protecting the mucosal tissues (IgA) or responding to T-independent bacterial polysaccharide antigens (IgG2) so we can make some inference with respect to tissue-specific immunity from a study of peripheral blood. We can also make inferences about changes in B cell development with age by looking at the repertoire of different B cell populations to see how age affects the selection events that would normally occur to avoid autoreactivity, or increase specificity, to antigen.
Collapse
|
45
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2018; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
46
|
Zwang NA, Ganesh BB, Cardenas KT, Chong AS, Finn PW, Perkins DL. An optimized protocol to quantify signaling in human transitional B cells by phospho flow cytometry. J Immunol Methods 2018; 463:112-121. [PMID: 30321549 DOI: 10.1016/j.jim.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Phospho flow cytometry is a powerful technique to analyze signaling in rare cell populations. This technique, however, requires harsh conditions for cell fixation and permeabilization, which can denature surface antigens or antibody-conjugated fluorochromes. These are among several technical limitations which have been a barrier to quantify signaling in unique B cell subsets. One such immature subset, transitional B cells (TrBs), may play a role in suppressing solid organ transplant rejection, graft-versus-host disease, autoimmunity, and even the immune response to malignancy. Here we sought to optimize a protocol for quantification of signaling in human TrBs compared with mature B cell subsets. RESULTS TrBs were defined by surface marker expression as CD19+CD24hiCD38hi. Key parameters optimized included antibody clone selection, sequence of surface epitope labeling in relation to paraformaldehyde-based fixation and methanol-based permeabilization, photomultiplier tube (PMT) voltages, and compensation. Special attention was paid to labeling of CD38 with regard to these parameters, and an optimized protocol enabled reliable identification of TrBs, naïve (CD24+CD38+), early memory (CD24hiCD38-), and late memory (CD24-CD38-) B cells. Phospho flow cytometry enabled simultaneous quantification of phosphorylation among at least three different signaling molecules within the same sample. Among normal donors, transitional B cells exhibited diminished mitogen activated protein kinase/extracellular signal-regulated kinase and Akt phospho signaling upon nonspecific stimulation with phorbol 12-myristate 13-acetateand ionomycin stimulation. CONCLUSIONS We optimized an effective protocol to quantify B cell subset signaling upon stimulation. Such a protocol may ultimately serve as the basis for assessing dysfunctional B cell signaling in disease, predict clinical outcomes, and monitor response to B cell-directed therapies.
Collapse
Affiliation(s)
- Nicholas A Zwang
- Division of Nephrology, Department of Medicine, The University of Illinois at Chicago, 820 South Wood Street (MC 793), Chicago, IL 60612, USA.
| | - Balaji B Ganesh
- Flow Cytometry Core, The University of Illinois at Chicago, Medical Science Building, 835 South Wolcott Avenue (E-25C), Chicago, IL 60612, USA
| | - Kim T Cardenas
- BioLegend, 9727 Pacific Heights Blvd, San Diego, CA 92121, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation Surgery, The University of Chicago, 5841 South Maryland Avenue (SBRI J547/MC 5026), Chicago, IL 60637, USA
| | - Patricia W Finn
- Department of Medicine, The University of Illinois at Chicago, 840 South Wood Street Suite 1020N (MC 787), Chicago, IL 60612, USA
| | - David L Perkins
- Division of Nephrology, Department of Medicine, The University of Illinois at Chicago, 820 South Wood Street (MC 793), Chicago, IL 60612, USA
| |
Collapse
|
47
|
Duggal NA. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology 2018; 19:481-496. [PMID: 30269199 PMCID: PMC6223743 DOI: 10.1007/s10522-018-9771-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
It is widely accepted that ageing is accompanied by remodelling of the immune system, including reduced numbers of naïve T cells, increased senescent or exhausted T cells, compromise to monocyte, neutrophil and natural killer cell function and an increase in systemic inflammation. In combination these changes result in increased risk of infection, reduced immune memory, reduced immune tolerance and immune surveillance, with significant impacts upon health in old age. More recently it has become clear that the rate of decline in the immune system is malleable and can be influenced by environmental factors such as physical activity as well as pharmacological interventions. This review discusses briefly our current understanding of immunesenescence and then focuses on lifestyle interventions and therapeutic strategies that have been shown to restore immune functioning in aged individuals.
Collapse
Affiliation(s)
- Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University, Birmingham, UK.
| |
Collapse
|
48
|
Thuraisingam T, Mirmirani P. Erosive Pustular Dermatosis: A Manifestation of Immunosenescence A Report of 8 Cases. Skin Appendage Disord 2018; 4:180-186. [PMID: 30197899 DOI: 10.1159/000484488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Erosive pustular dermatosis (EPD) is a rare condition of the scalp and legs that is marked by crusted erosions or superficial ulcerations that may result in scarring alopecia and chronic wounds. The condition predominantly affects elderly female as compared to male patients. Its pathogenesis remains poorly understood. The majority of the cases in the literature are from the United Kingdom and continental Europe. In this series, we present 8 North American patients with EPD of the scalp, one of whom also had involvement of the legs and another with the involvement of the face. All our patients were advanced in age and had a predisposition to chronic actinic damage, which are common characteristics of EPD previously reported in the literature. We hypothesize that immunosenescence leads to an aberrant immune response to wound healing and, along with other factors such as a loss of the normal epidermal barrier, ultraviolet damage, and hormonal factors, may contribute to the development of this condition.
Collapse
Affiliation(s)
| | - Paradi Mirmirani
- The Permanente Medical Group, Vallejo, CA.,Case Western Reserve University, Cleveland, OH.,University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Innate and adaptive immune dysregulation in critically ill ICU patients. Sci Rep 2018; 8:10186. [PMID: 29976949 PMCID: PMC6033948 DOI: 10.1038/s41598-018-28409-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate whether ICU patients who developed persistent critical illness displayed an immune profile similar to an aged immune phenotype and any associations with patient outcomes. Twenty two critically ill ICU patients (27–76 years, 15 males), at day 5 of mechanical ventilation, and 22 healthy age-matched controls (27–77 years, 13 males) were recruited. Frequency and phenotype of innate and adaptive immune cells and telomere length in peripheral blood mononuclear cells (PBMCs) were measured. An elevated granulocyte count (p < 0.0001), increased numbers of immature granulocytes (p < 0.0001), increased CD16++ve monocytes (p = 0.003) and CD14+ve HLADRdim/low monocytes (p = 0.004) and lower NK cell numbers (p = 0.007) were observed in ICU patients compared to controls. Critically ill patients also had lower numbers of total T lymphocytes (p = 0.03), naïve CD4 T cells (p = 0.003) and PTK7+ve recent thymic emigrants (p = 0.002), and increased senescent CD28−ve CD57+ve CD4 T cells (p = 0.02), but there was no difference in PBMC telomere length. Regulatory immune cell frequency was affected with reduced circulating CD19+veCD24hiCD38hi regulatory B cells (p = 0.02). However, only a raised neutrophil:lymphocyte ratio and reduced frequency of CD14+ve HLADRdim/low monocytes were associated with poor outcomes. We conclude that persistent critical illness results in changes to immune cell phenotype only some of which are similar to that seen in physiological ageing of the immune system.
Collapse
|
50
|
Wagner A, Garner-Spitzer E, Jasinska J, Kollaritsch H, Stiasny K, Kundi M, Wiedermann U. Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Sci Rep 2018; 8:9825. [PMID: 29959387 PMCID: PMC6026142 DOI: 10.1038/s41598-018-28111-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Immunosenescence is characterised by reduced B and T cell responses. Evidence shows that booster vaccinations are less effective in elderly people, but data on the efficacy of primary immunisation are sparse. We conducted a monocentric, open label, phase IV trial to compare immune responses to primary vaccinations using the inactivated, adjuvanted Japanese Encephalitis vaccine by 30 elderly people (mean 69, range 61-78 years) and 30 younger people (mean 24, range 18-30 years). Humoral and cellular immune responses were analysed in relation to age and cytomegalovirus (CMV) seropositivity. Vaccine-specific antibody titres were significantly lower in elderly participants and 47% of them were non- or low responders after the two doses of the vaccine neo-antigen. The reduced humoral immune responses in elderly people correlated with reduced cytokine production, such as interferon gamma (IFN-γ) in vitro, as well as higher frequencies of late-differentiated effector and effector memory T cells and T regulatory cells. These cellular changes and lower antibody titres were particularly prominent in CMV-seropositive elderly participants. If primary vaccination before the age of 60 is not possible, elderly patients may require different vaccination strategies to ensure sufficient long-lasting immunity, such as adapted or accelerated schedules and the use of different adjuvants.
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Joanna Jasinska
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Herwig Kollaritsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Karin Stiasny
- Center of Virology, Medical University of Vienna, Vienna, 1090, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, 1090, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|