1
|
Dermitzakis I, Kyriakoudi SA, Chatzianagnosti S, Chatzi D, Vakirlis E, Meditskou S, Manthou ME, Theotokis P. Epigenetics in Skin Homeostasis and Ageing. EPIGENOMES 2025; 9:3. [PMID: 39846570 PMCID: PMC11755608 DOI: 10.3390/epigenomes9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence. The dynamic nature of the skin, characterized by constant cellular turnover and responsiveness to environmental stimuli, requires precise gene activity control. This control is largely mediated by epigenetic modifications such as DNA methylation, histone modification, and regulation by non-coding RNAs. The present review endeavours to provide a comprehensive exploration and elucidation of the role of epigenetic mechanisms in regulating skin homeostasis and ageing. By integrating our current knowledge of epigenetic modifications with the latest advancements in dermatological research, we can gain a deeper comprehension of the complex regulatory networks that govern skin biology. Understanding these mechanisms also presents promising avenues for therapeutic interventions aimed at improving skin health and mitigating age-related skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Sofia Chatzianagnosti
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece;
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
3
|
Giacconi R, Piacenza F, Aversano V, Zampieri M, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Weinberger B, Sikora E, Toussaint O, Debacq-Chainiaux F, Stuetz W, Slagboom PE, Bernhardt J, Fernández-Sánchez ML, Provinciali M, Malavolta M. Uncovering the Relationship between Selenium Status, Age, Health, and Dietary Habits: Insights from a Large Population Study including Nonagenarian Offspring from the MARK-AGE Project. Nutrients 2023; 15:2182. [PMID: 37432362 PMCID: PMC10180750 DOI: 10.3390/nu15092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 07/12/2023] Open
Abstract
An inadequate selenium (Se) status can accelerate the aging process, increasing the vulnerability to age-related diseases. The study aimed to investigate plasma Se and Se species in a large population, including 2200 older adults from the general population (RASIG), 514 nonagenarian offspring (GO), and 293 GO Spouses (SGO). Plasma Se levels in women exhibit an inverted U-shaped pattern, increasing with age until the post-menopausal period and then declining. Conversely, men exhibit a linear decline in plasma Se levels with age. Subjects from Finland had the highest plasma Se values, while those from Poland had the lowest ones. Plasma Se was influenced by fish and vitamin consumption, but there were no significant differences between RASIG, GO, and SGO. Plasma Se was positively associated with albumin, HDL, total cholesterol, fibrinogen, and triglycerides and negatively associated with homocysteine. Fractionation analysis showed that Se distribution among plasma selenoproteins is affected by age, glucometabolic and inflammatory factors, and being GO or SGO. These findings show that sex-specific, nutritional, and inflammatory factors play a crucial role in the regulation of Se plasma levels throughout the aging process and that the shared environment of GO and SGO plays a role in their distinctive Se fractionation.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Valentina Aversano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, P.O. Box 628, 78457 Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, P.O. Box 628, 78457 Konstanz, Germany
- Human Performance Research Centre, Department of Sport Science, Universityof Konstanz, P.O. Box 30, 78457 Konstanz, Germany
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany
| | - Efstathios S. Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 11635 Athens, Greece
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, Lobachevsky State University, 603105 Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center—Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, 40126 Bologna, Italy
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Olivier Toussaint
- URBC-NARILIS, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | - Maria Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería, 8, 33006 Oviedo, Spain
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| |
Collapse
|
4
|
Światowy WJ, Zieliński J, Osielska MA, Kusy K, Wieliński D, Pławski A, Jagodziński PP. No dynamic changes in the expression of genes related to the epigenetic mechanism during acute exercise. J Appl Genet 2023; 64:81-87. [PMID: 36352208 PMCID: PMC9836983 DOI: 10.1007/s13353-022-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Physical exercise results in structural remodeling in tissues and modifies cellular metabolism. Changes in gene expression lie at the root of these adaptations. Epigenetic changes are one of the factors responsible for such exercise-related alterations. One-hour acute exercise will change DNMT1, HDAC1, and JHDM1D transcriptions in PBMC. This study examined changes in the expression of genes responsible for epigenetic modifications (HDAC1, DNMT1, and JHDM1D) during and after an incremental exercise test on a treadmill and a 30-min recovery. Blood samples from 9 highly trained triathletes were tested. Examination of the transcripts showed no significant changes. Correlations between transcript results and biochemical indices revealed a significant (p = 0.007) relationship between JHDM1D mRNA and the number of monocytes at peak exercise intensity (exhaustion), while there was no significant (p = 0.053) correlation at rest. There are no rapid changes in the mRNA levels of the genes studied in blood cells in competitive athletes during acute exercise and recovery. Due to the small group of subjects studied, more extensive research is needed to verify correlations between transcription and biochemical variables.
Collapse
Affiliation(s)
- Witold Józef Światowy
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland
| | - Maria Aleksandra Osielska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznan, Poland
| | - Krzysztof Kusy
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland
| | - Dariusz Wieliński
- Department of Anthropology and Biometry, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland
| | - Andrzej Pławski
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland ,Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznan, Poland
| |
Collapse
|
5
|
Mishra S, Raval M, Kachhawaha AS, Tiwari BS, Tiwari AK. Aging: Epigenetic modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:171-209. [PMID: 37019592 DOI: 10.1016/bs.pmbts.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aging is one of the most complex and irreversible health conditions characterized by continuous decline in physical/mental activities that eventually poses an increased risk of several diseases and ultimately death. These conditions cannot be ignored by anyone but there are evidences that suggest that exercise, healthy diet and good routines may delay the Aging process significantly. Several studies have demonstrated that Epigenetics plays a key role in Aging and Aging-associated diseases through methylation of DNA, histone modification and non-coding RNA (ncRNA). Comprehension and relevant alterations in these epigenetic modifications can lead to new therapeutic avenues of age-delaying contrivances. These processes affect gene transcription, DNA replication and DNA repair, comprehending epigenetics as a key factor in understanding Aging and developing new avenues for delaying Aging, clinical advancements in ameliorating aging-related diseases and rejuvenating health. In the present article, we have described and advocated the epigenetic role in Aging and associated diseases.
Collapse
|
6
|
DNMT1 Gene Expression in Patients with Helicobacter pylori Infection. ScientificWorldJournal 2022; 2022:2386891. [PMID: 36147796 PMCID: PMC9489387 DOI: 10.1155/2022/2386891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNMT1, as a critical enzyme affecting epigenetics through methylation of DNA cytosine-rich sequences, regulates gene expression. Exterior factors including long-term infections, in this study Helicobacter pylori infection, could change host cells' epigenetics by affecting DNMT1 gene expression. This study investigated the statistical correlation between H. pylori virulence genes and DNMT1 gene expression in gastric antral epithelial cells of gastric adenocarcinoma and gastritis patients. In a case-control study, 50 and 53 gastritis and gastric adenocarcinoma antral biopsies, including 23 and 21 patients with H. pylori infection, respectively, were collected from hospitals in the west of Iran. Having extracted total RNA from gastric biopsy samples, cDNA was synthesized and virulence genes of H. pylori were detected by using the PCR method. Relative real-time RT PCR was used to detect ΔΔCt fold changes of the DNMT1 gene expression in divided groups of patients based on H. pylori infection and clinical manifestations. The results showed that along with increasing patients' age, the DNMT1 gene expression will increase in gastric antral epithelial cells of gastric cancer patients (P ≤ 0.05). On the other hand, the biopsy samples with infection of H. pylori cagA, cagY, and cagE genotypes revealed a direct correlation along with increased DNMT1 gene expression. This study revealed the correlations of H. pylori cag pathogenicity island genes with increased DNMT1 gene expression.
Collapse
|
7
|
Şerifoğlu N, Erbaba B, Adams MM, Arslan-Ergül A. TERT distal promoter GC islands are critical for telomerase and together with DNMT3B silencing may serve as a senescence-inducing agent in gliomas. J Neurogenet 2022; 36:89-97. [PMID: 35997487 DOI: 10.1080/01677063.2022.2106371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter. Therefore, in this study, we investigated the proximal and distal TERT promoter, in terms of DNA methylation. We did bisulfite sequencing in zebrafish tissue samples for the distal tert promoter. In the zebrafish brain tissues, we identified a hypomethylation site in the tert promoter, and found that this hypomethylation was associated with aging and shortened telomeres. Through site directed mutagenesis in glioma cell lines, we changed 10 GC spots individually, cloned into a reporter vector, and measured promoter activity. Finally, we silenced DNMT3B and measured telomerase activity along with vidaza and adriamycin treatments. Site directed mutagenesis of glioma cell lines revealed that each of the 10 GC spots are critical for telomerase activity. Changing GC to AT abolished promoter activity in all spots when transfected into glioma cell lines. Then, through silencing of DNMT3B, we observed a reduction in hTERT expression levels, while hTR remained the same, and a major increase in senescence-associated beta-galactosidase activity. Finally, we propose a model regarding the efficacy of two chemotherapeutic drugs, adriamycin and azacytidine, on gliomas. Here, we show that distal TERT promoter is critical; changing even one GC to AT abolishes TERT promoter activity. DNMT3B, a de novo methyltransferase, together with GC islands in distal TERT promoter plays an important role in regulation of telomerase expression and senescence.
Collapse
Affiliation(s)
- Naz Şerifoğlu
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Institute for Research on Cancer and Aging of Nice, French National Centre for Scientific Research, Paris, France
| | - Begün Erbaba
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
8
|
Giacconi R, D’Aquila P, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Gradinaru D, Grubeck-Loebenstein B, Sikora E, Stuetz W, Weber D, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Duncan T, Passarino G, Bellizzi D, Provinciali M. Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association With Redox Biomarkers: Results From MARK-AGE Study. J Gerontol A Biol Sci Med Sci 2022; 78:42-50. [PMID: 35914804 PMCID: PMC9879758 DOI: 10.1093/gerona/glac154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 02/02/2023] Open
Abstract
Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI ≥ 2 compared with those with CCI ≤ 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants.
Collapse
Affiliation(s)
- Robertina Giacconi
- Address correspondence to: Robertina Giacconi, Advanced Technology Center for Aging Research, IRCCS INRCA, via birarelli 8 Ancona, 60121 Ancona, Italy. E-mail:
| | | | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy,Interdepartmental Center—Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Daniela Gradinaru
- Ana Aslan National Institute of Gerontology and Geriatrics, Bucharest, Romania,Faculty of Pharmacy, Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Stuttgart, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | | | | | - Antti Hervonen
- The Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Hurme
- The Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | | |
Collapse
|
9
|
Xu Y, Zhong L, Wei H, Li Y, Xie J, Xie L, Chen X, Guo X, Yin P, Li S, Zeng J, Li XJ, Lin L. Brain Region- and Age-Dependent 5-Hydroxymethylcytosine Activity in the Non-Human Primate. Front Aging Neurosci 2022; 14:934224. [PMID: 35912074 PMCID: PMC9326314 DOI: 10.3389/fnagi.2022.934224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (juvenile), 8 (young adult), and 17 (old) years. We found that genomic 5hmC distribution was accumulated in the monkey brain as age increased and displayed unique patterns in the cerebellum and striatum in an age-dependent manner. We also observed a correlation between differentially hydroxymethylated regions (DhMRs) and genes that contribute to brain region-related functions and diseases. Our studies revealed, for the first time, the brain-region and age-dependent 5hmC modifications in the non-human primate and the association of these 5hmC modifications with brain region-specific function and potentially aging-related brain diseases.
Collapse
Affiliation(s)
- Yanru Xu
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liying Zhong
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Huixian Wei
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuwei Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiaxiang Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Leijie Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junwei Zeng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Li Lin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- *Correspondence: Li Lin
| |
Collapse
|
10
|
Joshi RO, Kukshal P, Chellappan S, Guhathakurta S. "The study of expression levels of DNA methylation regulators in patients affected with congenital heart defects (CHDs)". Birth Defects Res 2022; 114:228-237. [PMID: 35191222 DOI: 10.1002/bdr2.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenial heart defects (CHDs) have multifactorial etiology with complex interplay of genetic and environmental factors. Environmental impact can have epigenetic mechanism of CHD development. Many studies have reported the causal association between CHD and distinct DNA methylation profile which is one of the key epigenetic events, which has vital role in normal embryonic development. The products of DNMT1, DNMT3A, DNMT3B, and MBD2 are important regulators of DNA methylation process. Changes in the expression of these genes are implicated in congenital structural cardiac defects. Hence, in this proof-of-concept study, we have compared the expression levels of these genes in the blood samples of healthy controls and CHD cases while investigating the etiology of CHD. METHODS In this study with 48 CHD cases and 47 healthy controls, total RNA was isolated from the whole blood samples using TRI reagent. Quantitative RT PCR (qRT-PCR) was used to analyze the mRNA levels of DNMT1, DNMT3A, DNMT3B, and MBD2. The expression levels have been analyzed by relative quantification. RESULTS We observed that DNMT3B (fold change = -2.563; p = .0018) and DNMT3A (fold change = -2.169; p = .05) were significantly downregulated in CHD patients, whereas the expression of DNMT1 and MBD2 was not significantly different between cases and controls. CONCLUSIONS Lower expression of de novo methyltransferases, namely, DNMT3B and DNMT3A in CHD cases, may be an important contributor to the mechanism of CHD pathogenesis. Further studies with age-matched controls and analysis of global DNA methylation profile are required to investigate the proposed causal association.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Subramanian Chellappan
- Department of Anaesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, India
| | - Soma Guhathakurta
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| |
Collapse
|
11
|
Sobhani I. DNA Methylation Is a Main Key for Bacteria-Related Colon Carcinogenesis. Microorganisms 2021; 9:microorganisms9122574. [PMID: 34946175 PMCID: PMC8707774 DOI: 10.3390/microorganisms9122574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined [...].
Collapse
Affiliation(s)
- Iradj Sobhani
- Department of Gastroenterology Henri Mondor Hospital APHP, 94010 Créteil, France;
- EC2M3-EA7375, Université Paris-Est Créteil, 94010 Créteil, France
| |
Collapse
|
12
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
13
|
Zagkos L, Roberts J, Auley MM. A mathematical model which examines age-related stochastic fluctuations in DNA maintenance methylation. Exp Gerontol 2021; 156:111623. [PMID: 34774717 DOI: 10.1016/j.exger.2021.111623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Due to its complexity and its ubiquitous nature the ageing process remains an enduring biological puzzle. Many molecular mechanisms and biochemical process have become synonymous with ageing. However, recent findings have pinpointed epigenetics as having a key role in ageing and healthspan. In particular age related changes to DNA methylation offer the possibility of monitoring the trajectory of biological ageing and could even be used to predict the onset of diseases such as cancer, Alzheimer's disease and cardiovascular disease. At the molecular level emerging evidence strongly suggests the regulatory processes which govern DNA methylation are subject to intracellular stochasticity. It is challenging to fully understand the impact of stochasticity on DNA methylation levels at the molecular level experimentally. An ideal solution is to use mathematical models to capture the essence of the stochasticity and its outcomes. In this paper we present a novel stochastic model which accounts for specific methylation levels within a gene promoter. Uncertainty of the eventual site-specific methylation levels for different values of methylation age, depending on the initial methylation levels were analysed. Our model predicts the observed bistable levels in CpG islands. In addition, simulations with various levels of noise indicate that uncertainty predominantly spreads through the hypermethylated region of stability, especially for large values of input noise. A key outcome of the model is that CpG islands with high to intermediate methylation levels tend to be more susceptible to dramatic DNA methylation changes due to increasing methylation age.
Collapse
Affiliation(s)
- Loukas Zagkos
- Department of Mathematics, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK.
| | - Jason Roberts
- Department of Mathematics, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Mark Mc Auley
- Department of Chemical Engineering, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| |
Collapse
|
14
|
Zupkovitz G, Kabiljo J, Kothmayer M, Schlick K, Schöfer C, Lagger S, Pusch O. Analysis of Methylation Dynamics Reveals a Tissue-Specific, Age-Dependent Decline in 5-Methylcytosine Within the Genome of the Vertebrate Aging Model Nothobranchius furzeri. Front Mol Biosci 2021; 8:627143. [PMID: 34222326 PMCID: PMC8242171 DOI: 10.3389/fmolb.2021.627143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Erosion of the epigenetic DNA methylation landscape is a widely recognized hallmark of aging. Emerging advances in high throughput sequencing techniques, in particular DNA methylation data analysis, have resulted in the establishment of precise human and murine age prediction tools. In vertebrates, methylation of cytosine at the C5 position of CpG dinucleotides is executed by DNA methyltransferases (DNMTs) whereas the process of enzymatic demethylation is highly dependent on the activity of the ten-eleven translocation methylcytosine dioxygenase (TET) family of enzymes. Here, we report the identification of the key players constituting the DNA methylation machinery in the short-lived teleost aging model Nothobranchius furzeri. We present a comprehensive spatio-temporal expression profile of the methylation-associated enzymes from embryogenesis into late adulthood, thereby covering the complete killifish life cycle. Data mining of the N. furzeri genome produced five dnmt gene family orthologues corresponding to the mammalian DNMTs (DNMT1, 2, 3A, and 3B). Comparable to other teleost species, N. furzeri harbors multiple genomic copies of the de novo DNA methylation subfamily. A related search for the DNMT1 recruitment factor UHRF1 and TET family members resulted in the identification of N. furzeri uhrf1, tet1, tet2, and tet3. Phylogenetic analysis revealed high cross-species similarity on the amino acid level of all individual dnmts, tets, and uhrf1, emphasizing a high degree of functional conservation. During early killifish development all analyzed dnmts and tets showed a similar expression profile characterized by a strong increase in transcript levels after fertilization, peaking either at embryonic day 6 or at the black eye stage of embryonic development. In adult N. furzeri, DNA methylation regulating enzymes showed a ubiquitous tissue distribution. Specifically, we observed an age-dependent downregulation of dnmts, and to some extent uhrf1, which correlated with a significant decrease in global DNA methylation levels in the aging killifish liver and muscle. The age-dependent DNA methylation profile and spatio-temporal expression characteristics of its enzymatic machinery reported here may serve as an essential platform for the identification of an epigenetic aging clock in the new vertebrate model system N. furzeri.
Collapse
Affiliation(s)
- Gordin Zupkovitz
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.,Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,City of Vienna Competence Team Aging Tissue, Vienna, Austria
| | - Julijan Kabiljo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.,Department of General Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Katharina Schlick
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Christian Schöfer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Zhang HQ, Wang JY, Li ZF, Cui L, Huang SS, Zhu LB, Sun Y, Yang R, Fan HH, Zhang X, Zhu JH. DNA Methyltransferase 1 Is Dysregulated in Parkinson's Disease via Mediation of miR-17. Mol Neurobiol 2021; 58:2620-2633. [PMID: 33483902 DOI: 10.1007/s12035-021-02298-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Aberrant DNA methylation is closely associated with the pathogenesis of Parkinson's disease (PD). DNA methyltransferases (DNMTs) are the enzymes for establishment and maintenance of DNA methylation patterns. It has not been clearly defined how DNMTs respond in PD and what mechanisms are associated. Models of PD were established by treatment of five different neurotoxins in cells and intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Plasma samples of PD patients were also used. Western blot, real-time PCR, immunostaining, and/or luciferase reporter were employed. DNA methylation was analyzed by the bisulfite sequencing analysis. Protein expression of DNMT1, but not of DNMT3A and DNMT3B, was reduced in the cellular and mouse models of PD. Paradoxically, mRNA levels of DNMT1 were increased in these models. After ruling out the possibility of protein degradation, we screened a set of miRNAs that potentially targeted DNMT1 3'-UTR by luciferase reporters and expression abundancies. miR-17 was identified for further investigation with miR-19a of low expression as a parallel comparison. Although exogenous transfection of either miR-17 or miR-19a mimics could inhibit DNMT1 expression, results of miRNA inhibitors showed that miR-17, but not miR-19a, endogenously regulated DNMT1 and the subsequent DNA methylation. Furthermore, levels of miR-17 were elevated in the neurotoxin-induced PD models and the plasma of PD patients. This study demonstrates that the miR-17-mediated DNMT1 downregulation underlies the aberrant DNA methylation in PD. Our results provide a link bridging environmental insults and epigenetic changes and implicate miR-17 in therapeutical modulation of DNA methylation in PD.
Collapse
Affiliation(s)
- Hong-Qiu Zhang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jian-Yong Wang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhao-Feng Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shi-Shi Huang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lan-Bing Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yue Sun
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rui Yang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
16
|
McCauley BS, Dang W. Loosening chromatin and dysregulated transcription: a perspective on cryptic transcription during mammalian aging. Brief Funct Genomics 2021; 21:56-61. [PMID: 34050364 DOI: 10.1093/bfgp/elab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cryptic transcription, the initiation of transcription from non-promoter regions within a gene body, is a type of transcriptional dysregulation that occurs throughout eukaryotes. In mammals, cryptic transcription is normally repressed at the level of chromatin, and this process is increased upon perturbation of complexes that increase intragenic histone H3 lysine 4 methylation or decrease intragenic H3 lysine 36 methylation, DNA methylation, or nucleosome occupancy. Significantly, similar changes to chromatin structure occur during aging, and, indeed, recent work indicates that cryptic transcription is elevated during aging in mammalian stem cells. Although increased cryptic transcription is known to promote aging in yeast, whether elevated cryptic transcription also contributes to mammalian aging is unclear. There is ample evidence that perturbations known to increase cryptic transcription are deleterious in embryonic and adult stem cells, and in some cases phenocopy certain aging phenotypes. Furthermore, an increase in cryptic transcription requires or impedes pathways that are known to have reduced function during aging, potentially exacerbating other aging phenotypes. Thus, we propose that increased cryptic transcription contributes to mammalian stem cell aging.
Collapse
|
17
|
Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A, Moreno-Villanueva M, Dollé MET, Jansen E, Grune T, Weber D, Stuetz W, Gonos ES, Schön C, Bernhardt J, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Franceschi C, Capri M, Hervonen A, Hurme M, Slagboom E, Breusing N, Mocchegiani E, Malavolta M. Age, sex and BMI influence on copper, zinc and their major serum carrier proteins in a large European population including Nonagenarian Offspring from MARK-AGE study. J Gerontol A Biol Sci Med Sci 2021; 76:2097-2106. [PMID: 33983441 DOI: 10.1093/gerona/glab134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
The analysis of copper (Cu) and zinc (Zn) along with their major serum carriers, albumin (Alb) and ceruloplasmin (Cp), could provide information on the capacity of humans to maintain homeostasis of metals (metallostasis). However, their relationship with aging, sex, BMI, as well as with nutritional and inflammatory markers was never investigated in a large-scale study. Here, we report results from the European large-scale cross-sectional study MARK-AGE in which Cu, Zn, Alb, Cp as well as nutritional and inflammatory parameters were determined in 2424 age-stratified subjects (35-75 years) including the general population (RASIG), nonagenarian offspring (GO), a well-studied genetic model of longevity, and spouses of GO (SGO). In RASIG, Cu to Zn ratio and Cp to Alb ratio were higher in women than in men. Both ratios increased with aging because Cu and Cp increased and Alb and Zn decreased. Cu, Zn, Alb and Cp were found associated with several inflammatory as well as nutritional biomarkers.GO showed higher Zn levels and higher Zn to Alb ratio compared to RASIG, but we did not observe significant differences with SGO, likely as a consequence of the low sample size of SGO and the shared environment. Our results show that aging, sex, BMI and GO status are characterized by different levels of Cu, Zn and their serum carrier proteins. These data and their relationship with inflammatory biomarkers support the concept that loss of metallostasis is a characteristic of inflammaging.
Collapse
Affiliation(s)
- Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | | | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia. Lobachevsky State University of Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.CIG-Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eugenio Mocchegiani
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
18
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Ageing affects subtelomeric DNA methylation in blood cells from a large European population enrolled in the MARK-AGE study. GeroScience 2021; 43:1283-1302. [PMID: 33870444 PMCID: PMC8190237 DOI: 10.1007/s11357-021-00347-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
Ageing leaves characteristic traces in the DNA methylation make-up of the genome. However, the importance of DNA methylation in ageing remains unclear. The study of subtelomeric regions could give promising insights into this issue. Previously reported associations between susceptibility to age-related diseases and epigenetic instability at subtelomeres suggest that the DNA methylation profile of subtelomeres undergoes remodelling during ageing. In the present work, this hypothesis has been tested in the context of the European large-scale project MARK-AGE. In this cross-sectional study, we profiled the DNA methylation of chromosomes 5 and 21 subtelomeres, in more than 2000 age-stratified women and men recruited in eight European countries. The study included individuals from the general population as well as the offspring of nonagenarians and Down syndrome subjects, who served as putative models of delayed and accelerated ageing, respectively. Significant linear changes of subtelomeric DNA methylation with increasing age were detected in the general population, indicating that subtelomeric DNA methylation changes are typical signs of ageing. Data also show that, compared to the general population, the dynamics of age-related DNA methylation changes are attenuated in the offspring of centenarian, while they accelerate in Down syndrome individuals. This result suggests that subtelomeric DNA methylation changes reflect the rate of ageing progression. We next attempted to trace the age-related changes of subtelomeric methylation back to the influence of diverse variables associated with methylation variations in the population, including demographics, dietary/health habits and clinical parameters. Results indicate that the effects of age on subtelomeric DNA methylation are mostly independent of all other variables evaluated.
Collapse
|
20
|
Cui J, Zheng L, Zhang Y, Xue M. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci Rep 2021; 11:2267. [PMID: 33500531 PMCID: PMC7838186 DOI: 10.1038/s41598-021-81971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of malignancy in the world. DNA cytosine-5-methyltransferase 1 (DNMT1) play key roles in carcinogenesis and regulation of the immune micro-environment, but the gene expression and the role of DNMT1 in HNSCC is unknown. In this study, we utilized online tools and databases for pan-cancer and HNSCC analysis of DNMT1 expression and its association with clinical cancer characteristics. We also identified genes that positively and negatively correlated with DNMT1 expression and identified eight hub genes based on protein–protein interaction (PPI) network analysis. Enrichment analyses were performed to explore the biological functions related with of DNMT1. The Tumor Immune Estimation Resource (TIMER) database was performed to explore the relationship between DNMT1 expression and immune-cell infiltration. We demonstrated that DNMT1 gene expression was upregulated in HNSCC and associated with poor prognosis. Based on analysis of the eight hub genes, we determined that DNMT1 may be involved in cell cycle, proliferation and metabolic related pathways. We also found that significant difference of B cells infiltration based on TP 53 mutation. These findings suggest that DNMT1 related epigenetic alterations have close relationship with HNSCC progression, and DNMT1 could be a novel diagnostic biomarker and a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jili Cui
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuanyuan Zhang
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Hearn J, Plenderleith F, Little TJ. DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 2021; 14:4. [PMID: 33407738 PMCID: PMC7789248 DOI: 10.1186/s13072-020-00379-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna. RESULTS Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that are highly correlated with chronological age. CONCLUSIONS Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age positions, which is exciting but requires confirmation.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fiona Plenderleith
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom J. Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
23
|
Zhang F, Icyuz M, Bartke A, Sun LY. The effects of early-life growth hormone intervention on tissue specific histone H3 modifications in long-lived Ames dwarf mice. Aging (Albany NY) 2020; 13:1633-1648. [PMID: 33378746 PMCID: PMC7880366 DOI: 10.18632/aging.202451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022]
Abstract
Histone modifications, specifically in the lysine residues of histone H3, have been implicated in lifespan regulation in several model organisms. Our previous studies showed that growth hormone (GH) treatment during early life can dramatically influence lifespan in long-lived Ames dwarf mice. However, the effects of this hormonal intervention on epigenetic modifications have never been examined. In this study, we sought to compare tissue-specific histone H3 lysine methylation and acetylation markers in Ames dwarf and wild type (WT) mice and to determine how these markers are affected by early-life GH intervention. Ames dwarf mice exhibited suppressed H3K4me in both hepatic and brain tissues, while showing elevated H3K27me in the brain. Early-life GH intervention significantly altered the histone H3 markers in those tissues. Furthermore, early GH intervention increased expression of histone H3 acetylation at multiple lysine residues in a tissue-specific manner. This included changes in H3K14ac and H3K18ac in the liver and brain, H3K18ac in visceral adipose tissue and H3K9ac, H3K14ac and H3K27ac in subcutaneous adipose tissue. This study serves as an initial, but important step in elucidating the epigenetic mechanisms by which hormonal signals during early life can influence aging and longevity in mammals.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Mert Icyuz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| |
Collapse
|
24
|
Ait Boujmia OK, Nadifi S, Dehbi H, Lamchahab M, Quessar A. The influence of DNMT3A and DNMT3B gene polymorphisms on acute myeloid leukemia risk in a Moroccan population. Curr Res Transl Med 2020; 68:191-195. [PMID: 32912818 DOI: 10.1016/j.retram.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/22/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very complex disease that is linked to environmental, genetic and epigenetic factors. Several Studies have found that aberrations in DNA methylation process play a crucial role in leukemogenesis. The aim of this case control study was to evaluate the association between rs1569686, rs2424913 polymorphisms located in DNMT3B gene and rs7590760 polymorphism located in DNMT3A gene and AML risk in a Moroccan population. MATERIALS AND METHODS The present study was conducted in 142 cases of AML and 179 control subjects from the Moroccan population. Genomic DNA was isolated from whole blood samples by salting-out method and the genotype of the three polymorphisms was determined by the PCR-RFLP technique. RESULTS The study results indicated that rs1569686 polymorphism was significantly associated with the risk of AML in dominant model (OR=1.72, 95 % CI 1.01-2.95, P=0.04), but not in recessive model. In stratified analysis by gender, statistically significant association between the rs2424913 CT genotype and AML was found among males (OR=2.05, 95 % CI 1.00-4.19, P=0.04). Similarly, the rs1569686 TT genotype was associated with an increase risk of AML (OR=3.21, 95 % CI 1.15-8. 98, P=0.02), this association was also found under dominant genetic model (OR=2.47, 95 % CI 1.07-5. 67, P=0.03) among males. However, the rs2424913 polymorphism was not associated with AML. CONCLUSION Our findings have shown that rs1569686 polymorphism might be a risk factor of AML in males. While, the rs2424913 polymorphism was not associated with AML. Further studies with a large sample size are needed to validate our results.
Collapse
Affiliation(s)
- Oum Kaltoum Ait Boujmia
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco.
| | - Sellama Nadifi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Mouna Lamchahab
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asma Quessar
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
25
|
Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020; 43:1373-1389. [PMID: 32358737 PMCID: PMC7481162 DOI: 10.1007/s40618-020-01255-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders may represent a state of accelerated ageing. MATERIALS AND METHODS A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target either senescent cells or DNA methylation. RESULTS In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronological ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence and DNA methylation. CONCLUSION Finally, we highlight the need for further research focused on targeting these mechanisms.
Collapse
Affiliation(s)
- R Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - L Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - M Longo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - P Florese
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - A Desiderio
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Zatterale
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - C Miele
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - G Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| |
Collapse
|
26
|
Saravanaraman P, Selvam M, Ashok C, Srijyothi L, Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020; 176:85-102. [PMID: 32659446 DOI: 10.1016/j.biochi.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications govern gene expression by guiding the human genome on 'what to express and what not to'. DNA methyltransferases (DNMTs) establish methylation patterns on DNA, particularly in CpG islands, and such patterns play a major role in gene silencing. DNMTs are a family of proteins/enzymes (DNMT1, 2, 3A, 3B, and 3L), among which, DNMT1 (maintenance methyltransferase) and DNMT3 (de novo methyltransferases) that direct mammalian development and genome imprinting are highly investigated. In recent decades, many studies revealed a strong association of DNA methylation patterns with gene expression in various clinical conditions. Differential expression of DNMT3 family proteins and their splice variants result in changes in methylation patterns and such alterations have been associated with the initiation and progression of various diseases, especially cancer. This review will discuss the aberrant modifications generated by DNMT3 proteins under various clinical conditions, suggesting a potential signature for de novo methyltransferases in targeted disease therapy. Further, this review discusses the possibility of using 'CpG island methylation signatures' as promising biomarkers and emphasizes 'targeted hypomethylation' by disrupting the interaction of specific DNMT-protein complexes as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Ponne Saravanaraman
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Loudu Srijyothi
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India.
| |
Collapse
|
27
|
Amenyah SD, Ward M, Strain JJ, McNulty H, Hughes CF, Dollin C, Walsh CP, Lees-Murdock DJ. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr 2020; 4:nzaa097. [PMID: 32666030 PMCID: PMC7335360 DOI: 10.1093/cdn/nzaa097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent advances in epigenetic research have enabled the development of epigenetic clocks, which have greatly enhanced our ability to investigate molecular processes that contribute to aging and age-related disease. These biomarkers offer the potential to measure the effect of environmental exposures linked to dynamic changes in DNA methylation, including nutrients, as factors in age-related disease. They also offer a compelling insight into how imbalances in the supply of nutrients, particularly B-vitamins, or polymorphisms in regulatory enzymes involved in 1-carbon metabolism, the key pathway that supplies methyl groups for epigenetic reactions, may influence epigenetic age and interindividual disease susceptibility. Evidence from recent studies is critically reviewed, focusing on the significant contribution of the epigenetic clock to nutritional epigenomics and its impact on health outcomes and age-related disease. Further longitudinal studies and randomized nutritional interventions are required to advance the field.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Caitlin Dollin
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Colum P Walsh
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| |
Collapse
|
28
|
Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020; 10:E882. [PMID: 32526825 PMCID: PMC7355435 DOI: 10.3390/biom10060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans. Here, we discuss key pathways and molecular mechanisms that underpin the evolutionarily conserved aging process and summarize the current understanding and clinical applicability of its trajectories. Gathering critical information on aging biology would pave the way for future investigation targeted at the discovery of aging interventions.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
29
|
Amenyah SD, McMahon A, Ward M, Deane J, McNulty H, Hughes CF, Strain JJ, Horigan G, Purvis J, Walsh CP, Lees-Murdock DJ. Riboflavin supplementation alters global and gene-specific DNA methylation in adults with the MTHFR 677 TT genotype. Biochimie 2020; 173:17-26. [PMID: 32334045 DOI: 10.1016/j.biochi.2020.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is important in regulating gene expression and genomic stability while aberrant DNA methylation is associated with disease. Riboflavin (FAD) is a cofactor for methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate recycling, which generates methyl groups for homocysteine remethylation to methionine, the pre-cursor to the universal methyl donor S-adenosylmethionine (SAM). A polymorphism (C677T) in MTHFR results in decreased MTHFR activity and increased homocysteine concentration. Previous studies demonstrated that riboflavin modulates this phenotype in homozygous adults (MTHFR 677 TT genotype), however, DNA methylation was not considered. This study examined DNA methylation, globally and at key MTHFR regulatory sites, in adults stratified by MTHFR genotype and the effect of riboflavin supplementation on DNA methylation in individuals with the 677 TT genotype. Samples were accessed from participants, screened for the MTHFR C677T polymorphism, who participated in observational (n = 80) and targeted riboflavin (1.6 mg/day) RCTs (n = 80). DNA methylation at LINE-1 and key regulatory regions of the MTHFR locus were analysed by pyrosequencing in peripheral blood leukocytes. LINE-1 (+1.6%; p = 0.011) and MTHFR south shelf (+4.7%, p < 0.001) were significantly hypermethylated in individuals with the MTHFR 677 TT compared to CC genotype. Riboflavin supplementation resulted in decreased global methylation, albeit only significant at one CpG. A significant reduction in DNA methylation at the MTHFR north shore (-1.2%, p < 0.001) was also observed in TT adults following intervention with riboflavin. This provides the first RCT evidence that DNA methylation may be modulated by riboflavin in adults with the MTHFR 677 TT genotype.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom; Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Amy McMahon
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Jennifer Deane
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Geraldine Horigan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - John Purvis
- Department of Cardiology, Altnagelvin Area Hospital, Londonderry, Northern Ireland, United Kingdom
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom.
| |
Collapse
|
30
|
Mensà E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, Ferracin M, Fulgenzi G, Graciotti L, Prattichizzo F, Sorci L, Battistelli M, Monsurrò V, Bonfigli AR, Cardelli M, Recchioni R, Marcheselli F, Latini S, Maggio S, Fanelli M, Amatori S, Storci G, Ceriello A, Stocchi V, De Luca M, Magnani L, Rippo MR, Procopio AD, Sala C, Budimir I, Bassi C, Negrini M, Garagnani P, Franceschi C, Sabbatinelli J, Bonafè M, Olivieri F. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles 2020; 9:1725285. [PMID: 32158519 PMCID: PMC7048230 DOI: 10.1080/20013078.2020.1725285] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Ancona, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Iva Budimir
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Personal Genomics S.r.l., Verona, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
31
|
Borkowska J, Domaszewska-Szostek A, Kołodziej P, Wicik Z, Połosak J, Buyanovskaya O, Charzewski L, Stańczyk M, Noszczyk B, Puzianowska-Kuznicka M. Alterations in 5hmC level and genomic distribution in aging-related epigenetic drift in human adipose stem cells. Epigenomics 2020; 12:423-437. [PMID: 32031421 DOI: 10.2217/epi-2019-0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To clarify mechanisms affecting the level and distribution of 5-hydroxymethylcytosine (5hmC) during aging. Materials & methods: We examined levels and genomic distribution of 5hmC along with the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) in adipose stem cells in young and age-advanced individuals. Results: 5hmC levels were higher in adipose stem cells of age-advanced than young individuals (p = 0.0003), but were not associated with age-related changes in expression of TETs. 5hmC levels correlated with population doubling time (r = 0.62; p = 0.01). We identified 58 differentially hydroxymethylated regions. Hypo-hydroxymethylated differentially hydroxymethylated regions were approximately twofold enriched in CCCTC-binding factor binding sites. Conclusion: Accumulation of 5hmC in aged cells can result from inefficient active demethylation due to altered TETs activity and reduced passive demethylation due to slower proliferation.
Collapse
Affiliation(s)
- Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Paulina Kołodziej
- Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Zofia Wicik
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Jacek Połosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Olga Buyanovskaya
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Lukasz Charzewski
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Marek Stańczyk
- Department of General Surgery, Wolski Hospital, 17 Kasprzaka Street, 01-211 Warsaw, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland.,Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| |
Collapse
|
32
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
33
|
Nutritional Factors Modulating Alu Methylation in an Italian Sample from The Mark-Age Study Including Offspring of Healthy Nonagenarians. Nutrients 2019; 11:nu11122986. [PMID: 31817660 PMCID: PMC6950565 DOI: 10.3390/nu11122986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Alu hypomethylation promotes genomic instability and is associated with aging and age-related diseases. Dietary factors affect global DNA methylation, leading to changes in genomic stability and gene expression with an impact on longevity and the risk of disease. This preliminary study aims to investigate the relationship between nutritional factors, such as circulating trace elements, lipids and antioxidants, and Alu methylation in elderly subjects and offspring of healthy nonagenarians. Alu DNA methylation was analyzed in sixty RASIG (randomly recruited age-stratified individuals from the general population) and thirty-two GO (GeHA offspring) enrolled in Italy in the framework of the MARK-AGE project. Factor analysis revealed a different clustering between Alu CpG1 and the other CpG sites. RASIG over 65 years showed lower Alu CpG1 methylation than those of GO subjects in the same age class. Moreover, Alu CpG1 methylation was associated with fruit and whole-grain bread consumption, LDL2-Cholesterol and plasma copper. The preserved Alu methylation status in GO, suggests Alu epigenetic changes as a potential marker of aging. Our preliminary investigation shows that Alu methylation may be affected by food rich in fibers and antioxidants, or circulating LDL subfractions and plasma copper.
Collapse
|
34
|
Costa D, Scognamiglio M, Fiorito C, Benincasa G, Napoli C. Genetic background, epigenetic factors and dietary interventions which influence human longevity. Biogerontology 2019; 20:605-626. [PMID: 31309340 DOI: 10.1007/s10522-019-09824-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Longevity is mainly conditioned by genetic, epigenetic and environmental factors. Different genetic modifications seem to be positively associated to longevity, including SNPs in SIRT1, APOE, FOXO3A, ACE, ATM, NOS1 and NOS2 gene. Epigenetic changes as DNA hyper- and hypo-methylation influence significantly human longevity by activating/deactivating different genes involved in physiological mechanisms. Several studies have confirmed that centenarians have a lower DNA methylation content compared to young subjects, which showed more homogeneously methylated DNA region. Also the up-regulation of miR-21 seems to be more associated with longevity in different populations of long-lived subjects, suggesting its role as potential epigenetic biomarkers. A non-pharmacological treatment that seems to contrast age-related diseases and promote longevity is represented by dietary intervention. It has been evaluated the effects of dietary restriction of both single nutrients or total calories to extend lifespan. However, in daily practice it is very difficult to guarantee adherence/compliance of the subjects to dietary restriction and at the same time avoid dangerous nutritional deficiencies. As consequence, the attention has focused on a variety of substances both drugs and natural compounds able to mime the beneficial effects of caloric restriction, including resveratrol, quercetin, rapamycin, metformin and 2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Dario Costa
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Michele Scognamiglio
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Carmela Fiorito
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
35
|
Matsuyama M, WuWong DJ, Horvath S, Matsuyama S. Epigenetic clock analysis of human fibroblasts in vitro: effects of hypoxia, donor age, and expression of hTERT and SV40 largeT. Aging (Albany NY) 2019; 11:3012-3022. [PMID: 31113906 PMCID: PMC6555444 DOI: 10.18632/aging.101955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Aging is associated with a genome-wide change of DNA methylation (DNAm). "DNAm age" is defined as the predicted chronological age by the age estimator based on DNAm. The estimator is called the epigenetic clock. The molecular mechanism underlining the epigenetic clock is still unknown. Here, we evaluated the effects of hypoxia and two immortalization factors, hTERT and SV40-LargeT (LT), on the DNAm age of human fibroblasts in vitro. We detected the cell division-associated progression of DNAm age after >10 population doublings. Moreover, the progression of DNAm age was slower under hypoxia (1% oxygen) compared to normoxia (21% oxygen), suggesting that oxygen levels determine the speed of the epigenetic aging. We show that the speed of cell division-associated DNAm age progression depends on the chronological age of the cell donor. hTERT expression did not arrest cell division-associated progression of DNAm age in most cells. SV40LT expression produced inconsistent effects, including rejuvenation of DNAm age. Our results show that a) oxygen and the targets of SV40LT (e.g. p53) modulate epigenetic aging rates and b) the chronological age of donor cells determines the speed of mitosis-associated DNAm age progression in daughter cells.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David J. WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Int J Mol Sci 2019; 20:ijms20082022. [PMID: 31022953 PMCID: PMC6515465 DOI: 10.3390/ijms20082022] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is characterized by an extensive remodeling of epigenetic patterns, which has been implicated in the physiopathology of age-related diseases. Nutrition plays a significant role in modulating the epigenome, and a growing amount of data indicate that dietary changes can modify the epigenetic marks associated with aging. In this review, we will assess the current advances in the relationship between caloric restriction, a proven anti-aging intervention, and epigenetic signatures of aging. We will specifically discuss the impact of caloric restriction on epigenetic regulation and how some of the favorable effects of caloric restriction on lifespan and healthspan could be mediated by epigenetic modifications.
Collapse
|
37
|
DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell 2019; 71:882-895. [PMID: 30241605 DOI: 10.1016/j.molcel.2018.08.008] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.
Collapse
|
38
|
Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici Ö, Meisel R, Sorg RV, Oreffo ROC, Adjaye J. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 2019; 10:100. [PMID: 30885246 PMCID: PMC6423778 DOI: 10.1186/s13287-019-1209-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary mesenchymal stem cells (MSCs) are fraught with aging-related shortfalls. Human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been shown to be a useful clinically relevant source of MSCs that circumvent these aging-associated drawbacks. To date, the extent of the retention of aging-hallmarks in iMSCs differentiated from iPSCs derived from elderly donors remains unclear. METHODS Fetal femur-derived MSCs (fMSCs) and adult bone marrow MSCs (aMSCs) were isolated, corresponding iPSCs were generated, and iMSCs were differentiated from fMSC-iPSCs, from aMSC-iPSCs, and from human embryonic stem cells (ESCs) H1. In addition, typical MSC characterization such as cell surface marker expression, differentiation capacity, secretome profile, and trancriptome analysis were conducted for the three distinct iMSC preparations-fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs. To verify these results, previously published data sets were used, and also, additional aMSCs and iMSCs were analyzed. RESULTS fMSCs and aMSCs both express the typical MSC cell surface markers and can be differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. However, the transcriptome analysis revealed overlapping and distinct gene expression patterns and showed that fMSCs express more genes in common with ESCs than with aMSCs. fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs met the criteria set out for MSCs. Dendrogram analyses confirmed that the transcriptomes of all iMSCs clustered together with the parental MSCs and separated from the MSC-iPSCs and ESCs. iMSCs irrespective of donor age and cell type acquired a rejuvenation-associated gene signature, specifically, the expression of INHBE, DNMT3B, POU5F1P1, CDKN1C, and GCNT2 which are also expressed in pluripotent stem cells (iPSCs and ESC) but not in the parental aMSCs. iMSCs expressed more genes in common with fMSCs than with aMSCs. Independent real-time PCR comparing aMSCs, fMSCs, and iMSCs confirmed the differential expression of the rejuvenation (COX7A, EZA2, and TMEM119) and aging (CXADR and IGSF3) signatures. Importantly, in terms of regenerative medicine, iMSCs acquired a secretome (e.g., angiogenin, DKK-1, IL-8, PDGF-AA, osteopontin, SERPINE1, and VEGF) similar to that of fMSCs and aMSCs, thus highlighting their ability to act via paracrine signaling. CONCLUSIONS iMSCs irrespective of donor age and cell source acquire a rejuvenation gene signature. The iMSC concept could allow circumventing the drawbacks associated with the use of adult MSCs und thus provide a promising tool for use in various clinical settings in the future.
Collapse
Affiliation(s)
- Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jörg Otte
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Roland Meisel
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger Volker Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr, 5, 40225, Düsseldorf, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Fukui T, Soda K, Takao K, Rikiyama T. Extracellular Spermine Activates DNA Methyltransferase 3A and 3B. Int J Mol Sci 2019; 20:E1254. [PMID: 30871110 PMCID: PMC6429523 DOI: 10.3390/ijms20051254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 01/10/2023] Open
Abstract
We first demonstrated that long-term increased polyamine (spermine, spermidine, putrescine) intake elevated blood spermine levels in mice and humans, and lifelong consumption of polyamine-rich chow inhibited aging-associated increase in aberrant DNA methylation, inhibited aging-associated pathological changes, and extend lifespan of mouse. Because gene methylation status is closely associated with aging-associated conditions and polyamine metabolism is closely associated with regulation of gene methylation, we investigated the effects of extracellular spermine supplementation on substrate concentrations and enzyme activities involved in gene methylation. Jurkat cells and human mammary epithelial cells were cultured with spermine and/or D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase. Spermine supplementation inhibited enzymatic activities of adenosylmethionine decarboxylase in both cells. The ratio of decarboxylated S-adenosylmethionine to S-adenosyl-L-methionine increased by DFMO and decreased by spermine. In Jurkat cells cultured with DFMO, the protein levels of DNA methyltransferases (DNMTs) 1, 3A and 3B were not changed, however the activity of the three enzymes markedly decreased. The protein levels of these enzymes were not changed by addition of spermine, DNMT 3A and especially 3B were activated. We show that changes in polyamine metabolism dramatically affect substrate concentrations and activities of enzymes involved in gene methylation.
Collapse
Affiliation(s)
- Taro Fukui
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| | - Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| | - Koichi Takao
- Laboratory of Cellular Physiology, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| |
Collapse
|
40
|
Xiao FH, Wang HT, Kong QP. Dynamic DNA Methylation During Aging: A "Prophet" of Age-Related Outcomes. Front Genet 2019; 10:107. [PMID: 30833961 PMCID: PMC6387955 DOI: 10.3389/fgene.2019.00107] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
The biological markers of aging used to predict physical health status in older people are of great interest. Telomere shortening, which occurs during the process of cell replication, was initially considered a promising biomarker for the prediction of age and age-related outcomes (e.g., diseases, longevity). However, the high instability in detection and low correlation with age-related outcomes limit the extension of telomere length to the field of prediction. Currently, a growing number of studies have shown that dynamic DNA methylation throughout human lifetime exhibits strong correlation with age and age-related outcomes. Indeed, many researchers have built age prediction models with high accuracy based on age-dependent methylation changes in certain CpG loci. For now, DNA methylation based on epigenetic clocks, namely epigenetic or DNA methylation age, serves as a new standard to track chronological age and predict biological age. Measures of age acceleration (Δage, DNA methylation age – chronological age) have been developed to assess the health status of a person. In addition, there is evidence that an accelerated epigenetic age exists in patients with certain age-related diseases (e.g., Alzheimer’s disease, cardiovascular disease). In this review, we provide an overview of the dynamic signatures of DNA methylation during aging and emphasize its practical utility in the prediction of various age-related outcomes.
Collapse
Affiliation(s)
- Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
41
|
Joseph DB, Strand DW, Vezina CM. DNA methylation in development and disease: an overview for prostate researchers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:197-218. [PMID: 30697577 PMCID: PMC6334199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms including DNA methylation are critical regulators of organismal development and tissue homeostasis. DNA methylation is the transfer of methyl groups to cytosines, which adds an additional layer of complexity to the genome. DNA methylation marks are recognized by the cellular machinery to regulate transcription. Disruption of DNA methylation with aging or exposure to environmental toxins can change susceptibility to disease or trigger processes that lead to disease. In this review, we provide an overview of the DNA methylation machinery. More specifically, we describe DNA methylation in the context of prostate development, prostate cancer, and benign prostatic hyperplasia (BPH) as well as the impact of dietary and environmental factors on DNA methylation in the prostate.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical CenterDallas, TX 75390, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI 53706, USA
| |
Collapse
|
42
|
Nardini C, Moreau JF, Gensous N, Ravaioli F, Garagnani P, Bacalini MG. The epigenetics of inflammaging: The contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. Semin Immunol 2018; 40:49-60. [PMID: 30396810 DOI: 10.1016/j.smim.2018.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
A growing amount of evidences indicates that inflammaging - the chronic, low grade inflammation state characteristic of the elderly - is the result of genetic as well as environmental or stochastic factors. Some of these, such as the accumulation of senescent cells that are persistent during aging or accompany its progression, seem to be sufficient to initiate the aging process and to fuel it. Others, like exposure to environmental compounds or infections, are temporary and resolve within a (relatively) short time. In both cases, however, a cellular memory of the event can be established by means of epigenetic modulation of the genome. In this review we will specifically discuss the relationship between epigenetics and inflammaging. In particular, we will show how age-associated epigenetic modifications concerned with heterochromatin loss and gene-specific remodelling, can promote inflammaging. Furthermore, we will recall how the exposure to specific nutritional, environmental and microbial stimuli can affect the rate of inflammaging through epigenetic mechanisms, touching also on the recent insight given by the concept of trained immunity.
Collapse
Affiliation(s)
- Christine Nardini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; CNR IAC "Mauro Picone", Roma, Italy; Personal Genomics S.r.l., Verona, Italy
| | - Jean-Francois Moreau
- University of Bordeaux, CNRS-UMR5164, 146 rue Léo Saignat, 33076 Bordeaux, France; CHU Bordeaux, Place Amélie Raba-Léon, Bordeaux, France
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.
| | | |
Collapse
|
43
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
44
|
Goronzy JJ, Hu B, Kim C, Jadhav RR, Weyand CM. Epigenetics of T cell aging. J Leukoc Biol 2018; 104:691-699. [PMID: 29947427 PMCID: PMC6162101 DOI: 10.1002/jlb.1ri0418-160r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
T cells are a heterogeneous population of cells that differ in their differentiation stages. Functional states are reflected in the epigenome that confers stability in cellular identity and is therefore important for naïve as well as memory T cell function. In many cellular systems, changes in chromatin structure due to alterations in histone expression, histone modifications and DNA methylation are characteristic of the aging process and cause or at least contribute to cellular dysfunction in senescence. Here, we review the epigenetic changes in T cells that occur with age and discuss them in the context of canonical epigenetic marks in aging model systems as well as recent findings of chromatin accessibility changes in T cell differentiation. Remarkably, transcription factor networks driving T cell differentiation account for many of the age-associated modifications in chromatin structures suggesting that loss of quiescence and activation of differentiation pathways are major components of T cell aging.
Collapse
Affiliation(s)
- Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Rohit R. Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
45
|
DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
|
46
|
Moreno-Villanueva M, Bürkle A. Epigenetic and redox biomarkers: Novel insights from the MARK-AGE study. Mech Ageing Dev 2018; 177:128-134. [PMID: 29969595 DOI: 10.1016/j.mad.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial process that affects most, if not all, of the body's tissues and organs and can be defined as the accumulation of physical and psychological changes in a human being over time. The rate of ageing differs between individuals of the same chronological age, meaning that 'biological age' of a person may be different from 'chronological age'. Furthermore, ageing represents a very potent risk factor for diseases and disability in humans. Therefore, establishment of markers of biological ageing is important for preventing age-associated diseases and extending health span. MARK-AGE, a large-scale European study, aimed at identifying a set of biomarkers which, as a combination of parameters with appropriate weighting, would measure biological age better than any marker in isolation. But beyond the identification of useful biomarkers, MARK-AGE provided new insights in age-associated specific cellular processes, such as DNA methylation, oxidative stress and the regulation of zinc homeostasis.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
47
|
Ciccarone F, Valentini E, Malavolta M, Zampieri M, Bacalini MG, Calabrese R, Guastafierro T, Reale A, Franceschi C, Capri M, Breusing N, Grune T, Moreno‐Villanueva M, Bürkle A, Caiafa P. DNA Hydroxymethylation Levels Are Altered in Blood Cells From Down Syndrome Persons Enrolled in the MARK-AGE Project. J Gerontol A Biol Sci Med Sci 2018; 73:737-744. [PMID: 29069286 PMCID: PMC5946825 DOI: 10.1093/gerona/glx198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the aging process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work, we investigated the levels of 5-hydroxymethylcytosine and of the Ten-eleven translocation dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in aging. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease in 5-hydroxymethylcytosine, TET1, and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome “Tor Vergata,” Rome
| | - Elisabetta Valentini
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Marco Malavolta
- National Institute of Health and Science on Aging (INRCA), Nutrition and Ageing Centre, Scientific and Technological Research Area, Ancona
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | | | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Tiziana Guastafierro
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Anna Reale
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
- CIG-Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
- CIG-Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicolle Breusing
- Institute of Nutritional Medicine (180c), University of Hohenheim, Stuttgart
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal
| | - María Moreno‐Villanueva
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| |
Collapse
|
48
|
Bürkle A. In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage. Mech Ageing Dev 2018. [DOI: 10.1016/j.mad.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Unnikrishnan A, Hadad N, Masser DR, Jackson J, Freeman WM, Richardson A. Revisiting the genomic hypomethylation hypothesis of aging. Ann N Y Acad Sci 2018; 1418:69-79. [PMID: 29363785 DOI: 10.1111/nyas.13533] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
Abstract
The genomic hypomethylation hypothesis of aging proposes that an overall decrease in global DNA methylation occurs with age, and it has been argued that the decrease in global DNA methylation could be an important factor in aging, resulting in the relaxation of gene expression regulation and abnormal gene expression. Since it was initially observed that DNA methylation decreased with age in 1974, 16 articles have been published describing the effect of age on global DNA methylation in various tissues from rodents and humans. We critically reviewed the publications on the effect of age on DNA methylation and the expression of the enzymes involved in DNA methylation to evaluate the validity of the hypomethylation hypothesis of aging. On the basis of the current scientific literature, we conclude that a decrease in the global methylation of the genome occurs in most if not all tissues/cells as an animal ages. However, age-related changes in DNA methylation in specific regions or at specific sites in the genome occur even though the global DNA methylation does not change.
Collapse
Affiliation(s)
- Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Jackson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Oklahoma City VA Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Valentini E, Zampieri M, Malavolta M, Bacalini MG, Calabrese R, Guastafierro T, Reale A, Franceschi C, Hervonen A, Koller B, Bernhardt J, Slagboom PE, Toussaint O, Sikora E, Gonos ES, Breusing N, Grune T, Jansen E, Dollé MET, Moreno-Villanueva M, Sindlinger T, Bürkle A, Ciccarone F, Caiafa P. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Aging (Albany NY) 2017; 8:1896-1922. [PMID: 27587280 PMCID: PMC5076444 DOI: 10.18632/aging.101022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022]
Abstract
Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project 'MARK-AGE'. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy.,Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy.,Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Marco Malavolta
- National Institute of Health and Science on Aging (INRCA), Nutrition and Ageing Centre, Scientific and Technological Research Area, 60100 Ancona, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy.,CIG-Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy.,Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Tiziana Guastafierro
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy.,Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Anna Reale
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy.,CIG-Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Antti Hervonen
- The School of Medicine, The University of Tampere, 33014 Tampere, Finland
| | - Bernhard Koller
- Department for Internal Medicine, University Teaching Hospital Hall in Tirol, Tirol, Austria
| | | | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olivier Toussaint
- University of Namur, Research Unit on Cellular Biology, Namur B-5000, Belgium
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Nicolle Breusing
- Institute of Nutritional Medicine (180c), University of Hohenheim, 70599 Stuttgart, Gemany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Thilo Sindlinger
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.,Shared senior authorship
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome 00161, Italy.,Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy.,Shared senior authorship
| |
Collapse
|