1
|
Maggiorani D, Santin Y, Formoso K, Drapé E, Martini H, Brun S, Cousin G, Lairez O, Lezoualc'h F, Parini A, Douin‐Echinard V, Mialet‐Perez J. Identification of Prominin-2 as a new player of cardiomyocyte senescence in the aging heart. Aging Cell 2024; 23:e14204. [PMID: 38757782 PMCID: PMC11488343 DOI: 10.1111/acel.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The aging heart is characterized by a number of structural changes leading to ventricular stiffness, impaired resistance to stress and increased risk of developing heart failure (HF). Genetic or pharmacological removal of senescent cells has recently demonstrated the possibility to relieve some cardiac aging features such as hypertrophy and fibrosis. However, the contribution of the different cell types in cardiac aging remains fragmentary due to a lack of cell-specific markers. Cardiomyocytes undergo post-mitotic senescence in response to telomere damage, characterized by persistent DNA damage response and expression of the classical senescence markers p21 and p16, which are shared by many other cell types. In the present study, we used transcriptomic approaches to discover new markers specific for cardiomyocyte senescence. We identified Prominin2 (Prom2), encoding a transmembrane glycoprotein, as the most upregulated gene in cardiomyocytes of aged mice compared to young mice. We showed that Prom2 was upregulated by a p53-dependent pathway in stress-induced premature senescence. Prom2 expression correlated with cardiomyocyte hypertrophy in the hearts of aged mice and was increased in atrial samples of patients with HF with preserved ejection fraction. Consistently, Prom2 overexpression was sufficient to drive senescence, hypertrophy and resistance to cytotoxic stress while Prom2 shRNA silencing inhibited these features in doxorubicin-treated cardiac cells. In conclusion, we identified Prom2 as a new player of cardiac aging, linking cardiomyocyte hypertrophy to senescence. These results could provide a better understanding and targeting of cell-type specific senescence in age-associated cardiac diseases.
Collapse
Affiliation(s)
- D. Maggiorani
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - Y. Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - K. Formoso
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - E. Drapé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - H. Martini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - S. Brun
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - G. Cousin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - O. Lairez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - F. Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - A. Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - V. Douin‐Echinard
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- RESTORE Research Center, UMR‐1301, INSERM, CNRS, EFSUniversity of ToulouseToulouseFrance
| | - J. Mialet‐Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| |
Collapse
|
2
|
Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab 2024; 35:793-808. [PMID: 38763781 DOI: 10.1016/j.tem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Stephan Forisch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
3
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00738-8. [PMID: 38831121 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
7
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Vazana-Netzarim R, Elmalem Y, Sofer S, Bruck H, Danino N, Sarig U. Distinct HAND2/HAND2-AS1 Expression Levels May Fine-Tune Mesenchymal and Epithelial Cell Plasticity of Human Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:16546. [PMID: 38003736 PMCID: PMC10672054 DOI: 10.3390/ijms242216546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel Vazana-Netzarim
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Yishay Elmalem
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Shachar Sofer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Hod Bruck
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Naama Danino
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Udi Sarig
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| |
Collapse
|
9
|
Zhou Z, Zhang H, Tao Y, Zang J, Zhao J, Li H, Wang Y, Wang T, Zhao H, Wang F, Guo C, Zhu F, Mao H, Liu F, Zhang L, Wang Q. FGF21 alleviates adipose stem cell senescence via CD90 glycosylation-dependent glucose influx in remodeling healthy white adipose tissue. Redox Biol 2023; 67:102877. [PMID: 37690164 PMCID: PMC10497791 DOI: 10.1016/j.redox.2023.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
The senescence of adipose stem cells (ASCs) impairs healthy adipose tissue remodeling, causing metabolic maladaptation to energy surplus. The intrinsic molecular pathways and potential therapy targets for ASC senescence are largely unclear. Here, we showed that visceral ASCs were prone to senescence that was caused by reactive oxygen species (ROS) overload, especially mitochondrial ROS. These senescent ASCs failed to sustain efficient glucose influx, pentose phosphate pathway (PPP) and redox homeostasis. We showed that CD90 silence restricted the glucose uptake by ASCs and thus disrupted their PPP and anti-oxidant system, resulting in ASC senescence. Notably, fibroblast growth factor 21 (FGF21) treatment significantly reduced the senescent phenotypes of ASCs by augmenting CD90 protein via glycosylation, which promoted glucose influx via the AKT-GLUT4 axis and therefore mitigated ROS overload. For diet-induced obese mice, chronic administration of low-dose FGF21 relieved their visceral white adipose tissue (VAT) dysfunction and systemic metabolic disorders. In particular, VAT homeostasis was restored in FGF21-treated obese mice, where ASC repertoire was markedly recovered, accompanied by CD90 elevation and anti-senescent phenotypes in these ASCs. Collectively, we reveal a molecular mechanism of ASC senescence by which CD90 downregulation interferes glucose influx into PPP and redox homeostasis. And we propose a FGF21-based strategy for healthy VAT remodeling, which targets CD90 glycosylation to correct ASC senescence and therefore combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
11
|
Radak M, Ghamari N, Fallahi H. Common factors among three types of cells aged in mice. Biogerontology 2023; 24:363-375. [PMID: 37081236 DOI: 10.1007/s10522-023-10035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
The greatest risk factor for the formation of numerous significant chronic disorders is aging. Understanding the core molecular underpinnings of aging can help to slow down the inevitable process. Systematic study of gene expression or DNA methylation data is possible at the transcriptomics and epigenetics levels. DNA methylation and gene expression are both affected by aging. Gene expression is an important element in the aging of Homo sapiens. In this work, we evaluated the expression of differentially expressed genes (DEGs), proteins, and transcription factors (TFs) in three different types of cells in mice: antibody-secreting cells, cardiac mesenchymal stromal cells, and skeletal muscle cells. The goal of this article is to uncover a common cause during aging among these cells in order to increase understanding about establishing complete techniques for preventing aging and improving people's quality of life. We conducted a comprehensive network-based investigation to establish which genes and proteins are shared by the three different types of aged cells. Our findings clearly indicated that aging induces gene dysregulation in immune, pharmacological, and apoptotic pathways. Furthermore, our research developed a list of hub genes with differential expression in aging responses that should be investigated further to discover viable anti-aging treatments.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
12
|
Sikora M, Śmieszek A, Pielok A, Marycz K. MiR-21-5p regulates the dynamic of mitochondria network and rejuvenates the senile phenotype of bone marrow stromal cells (BMSCs) isolated from osteoporotic SAM/P6 mice. Stem Cell Res Ther 2023; 14:54. [PMID: 36978118 PMCID: PMC10053106 DOI: 10.1186/s13287-023-03271-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Progression of senile osteoporosis is associated with deteriorated regenerative potential of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). According to the recent results, the senescent phenotype of osteoporotic cells strongly correlates with impaired regulation of mitochondria dynamics. Moreover, due to the ageing of population and growing osteoporosis incidence, more efficient methods concerning BMSCs rejuvenation are intensely investigated. Recently, miR-21-5p was reported to play a vital role in bone turnover, but its therapeutic mechanisms in progenitor cells delivered from senile osteoporotic patients remain unclear. Therefore, the goal of this paper was to investigate for the first time the regenerative potential of miR-21-5p in the process of mitochondrial network regulation and stemness restoration using the unique model of BMSCs isolated from senile osteoporotic SAM/P6 mice model. METHODS BMSCs were isolated from healthy BALB/c and osteoporotic SAM/P6 mice. We analysed the impact of miR-21-5p on the expression of crucial markers related to cells' viability, mitochondria reconstruction and autophagy progression. Further, we established the expression of markers vital for bone homeostasis, as well as defined the composition of extracellular matrix in osteogenic cultures. The regenerative potential of miR-21 in vivo was also investigated using a critical-size cranial defect model by computed microtomography and SEM-EDX imaging. RESULTS MiR-21 upregulation improved cells' viability and drove mitochondria dynamics in osteoporotic BMSCs evidenced by the intensification of fission processes. Simultaneously, miR-21 enhanced the osteogenic differentiation of BMSCs evidenced by increased expression of Runx-2 but downregulated Trap, as well as improved calcification of extracellular matrix. Importantly, the analyses using the critical-size cranial defect model indicated on a greater ratio of newly formed tissue after miR-21 application, as well as upregulated content of calcium and phosphorus within the defect site. CONCLUSIONS Our results demonstrate that miR-21-5p regulates the fission and fusion processes of mitochondria and facilitates the stemness restoration of senile osteoporotic BMSCs. At the same time, it enhances the expression of RUNX-2, while reduces TRAP accumulation in the cells with deteriorated phenotype. Therefore, miR-21-5p may bring a novel molecular strategy for senile osteoporosis diagnostics and treatment.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Agnieszka Śmieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Ariadna Pielok
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616-8739, USA.
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124, Malin, Poland.
| |
Collapse
|
13
|
Martini H, Passos JF. Cellular senescence: all roads lead to mitochondria. FEBS J 2023; 290:1186-1202. [PMID: 35048548 PMCID: PMC9296701 DOI: 10.1111/febs.16361] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Collapse
Affiliation(s)
- Hélène Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| |
Collapse
|
14
|
Han X, Lei Q, Xie J, Liu H, Sun H, Jing L, Zhang X, Zhang T, Gou X. Potential regulators of the senescence-associated secretory phenotype during senescence and ageing. J Gerontol A Biol Sci Med Sci 2022; 77:2207-2218. [PMID: 35524726 DOI: 10.1093/gerona/glac097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 11/14/2022] Open
Abstract
Senescent cells express and secrete a variety of extracellular modulators that include cytokines, chemokines, proteases, growth factors and some enzymes associated with ECM remodeling, defined as the senescence-associated secretory phenotype (SASP). SASP reinforces senescent cell cycle arrest, stimulates and recruits immune cells for immune-mediated clearance of potentially tumorigenic cells, limits or induces fibrosis and promotes wound healing and tissue regeneration. On the other hand, SASP mediates chronic inflammation leading to destruction of tissue structure and function and stimulating the growth and survival of tumour cells. SASP is highly heterogeneous and the role of SASP depends on the context. The regulation of SASP occurs at multiple levels including chromatin remodelling, transcription, mRNA translation, intracellular trafficking and secretion. Several SASP modulators have already been identified setting the stage for future research on their clinical applications. In this review, we summarize in detail the potential signalling pathways that trigger and regulate SASP production during ageing and senescence.
Collapse
Affiliation(s)
- Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Qing Lei
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jiamei Xie
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Haoran Sun
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Li Jing
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
15
|
Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol 2022; 19:250-264. [PMID: 34667279 DOI: 10.1038/s41569-021-00624-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. .,IHU LIRYC and Fondation Bordeaux, Université Bordeaux, Bordeaux, France.
| |
Collapse
|
16
|
Zhu R, Wan H, Yang H, Song M, Chai Y, Yu B. The Role of Senescence-Associated Secretory Phenotype in Bone Loss. Front Cell Dev Biol 2022; 10:841612. [PMID: 35223858 PMCID: PMC8864518 DOI: 10.3389/fcell.2022.841612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
As the population of most nations have a large proportion of older individuals, there is an increase in the prevalence of osteoporosis. Consequently, scientists have focused their attention on the pathogenic mechanisms of osteoporosis. Owing to an increase in studies on cellular senescence in recent years, research has begun to focus on the function of the senescent microenvironment in osteoporosis. With chronic inflammation, senescent cells in the bone marrow secrete a series of factors known as senescence-associated secretory phenotype (SASP) factors, acting on their own or surrounding healthy cells and consequently exacerbating ageing.The components of the SASP may differ depending on the cause of osteoporosis. This review aimed to summarize the relationship between SASP factors and osteoporosis and suggest new insights into the mechanistic investigation of osteoporosis.
Collapse
Affiliation(s)
- Runjiu Zhu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Wan
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Madonna R. Multi-Target Drugs for Blood Cancer in the Elderly: Implications of Damage and Repair in the Cardiovascular Toxicity. Front Physiol 2021; 12:792751. [PMID: 34950060 PMCID: PMC8688949 DOI: 10.3389/fphys.2021.792751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosalinda Madonna
- Cardiology Division, University of Pisa, Pisa, Italy
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
18
|
Mesquita T, Lin Y, Ibrahim A. Chronic low-grade inflammation in heart failure with preserved ejection fraction. Aging Cell 2021; 20:e13453. [PMID: 34382743 PMCID: PMC8441359 DOI: 10.1111/acel.13453] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low-grade inflammation, as occurs with aging (termed "inflammaging"), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome-immune signaling axis on the age-dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age-dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.
Collapse
Affiliation(s)
- Thassio Mesquita
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Yen‐Nien Lin
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
- Division of Cardiovascular MedicineDepartment of MedicineChina Medical University and HospitalTaichungTaiwan
| | - Ahmed Ibrahim
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| |
Collapse
|
19
|
Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci (Lond) 2021; 134:2243-2262. [PMID: 32880386 DOI: 10.1042/cs20191213] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term 'inflammageing', which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be 'druggable' by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the 'druggability' of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.
Collapse
|
20
|
Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. Int J Mol Sci 2021; 22:ijms22052245. [PMID: 33668142 PMCID: PMC7956294 DOI: 10.3390/ijms22052245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulation of senescent cells in tissues during normal or accelerated aging has been shown to be detrimental and to favor the outcomes of age-related diseases such as heart failure (HF). We have previously shown that oxidative stress dependent on monoamine oxidase A (MAOA) activity in cardiomyocytes promotes mitochondrial damage, the formation of telomere-associated foci, senescence markers, and triggers systolic cardiac dysfunction in a model of transgenic mice overexpressing MAOA in cardiomyocytes (Tg MAOA). However, the impact of cardiomyocyte oxidative stress on the cardiac microenvironment in vivo is still unclear. Our results showed that systolic cardiac dysfunction in Tg MAOA mice was strongly correlated with oxidative stress induced premature senescence of cardiac stromal cells favoring the recruitment of CCR2+ monocytes and the installation of cardiac inflammation. Understanding the interplay between oxidative stress induced premature senescence and accelerated cardiac dysfunction will help to define new molecular pathways at the crossroad between cardiac dysfunction and accelerated aging, which could contribute to the increased susceptibility of the elderly to HF.
Collapse
|
21
|
Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, Heckel T, Spyridopoulos I, Hofmann U, Frantz S, Ramos GC. Terminally Differentiated CD4 + T Cells Promote Myocardial Inflammaging. Front Immunol 2021; 12:584538. [PMID: 33679735 PMCID: PMC7935504 DOI: 10.3389/fimmu.2021.584538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.
Collapse
Affiliation(s)
- Murilo Delgobo
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Margarete Heinrichs
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Nils Hapke
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - DiyaaElDin Ashour
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Marc Appel
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ioakim Spyridopoulos
- Freeman Hospital, Department of Cardiology, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Cardiovascular Biology and Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ulrich Hofmann
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Kidney inflammaging is promoted by CCR2 + macrophages and tissue-derived micro-environmental factors. Cell Mol Life Sci 2020; 78:3485-3501. [PMID: 33313981 PMCID: PMC8038964 DOI: 10.1007/s00018-020-03719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The incidence of disorders associated with low inflammatory state, such as chronic kidney disease, increases in the elderly. The accumulation of senescent cells during aging and the senescence-associated secretory phenotype, which leads to inflammaging, is known to be deleterious and account for progressive organ dysfunction. To date, the cellular actors implicated in chronic inflammation in the kidney during aging are still not well characterized. Using the DECyt method, based on hierarchical clustering of flow cytometry data, we showed that aging was associated with significant changes in stromal cell diversity in the kidney. In particular, we identified two cell populations up-regulated with aging, the mesenchymal stromal cell subset (kMSC) expressing CD73 and the monocyte-derived Ly6C+ CCR2+ macrophage subset expressing pro-inflammatory cytokines. Aged CD73+ kMSCs depicted senescence associated features with low proliferation rate, increased DNA damage foci and Ccl2 expression. Using co-cultures experiments, we showed that aged CD73+ kMSC promoted monocyte activation and secretion of inflammatory cytokines albeit less efficiently than young CD73+ kMSCs. In the context of ageing, increased frequency of CD73+ kMSC subpopulations could provide additional niche factors to newly recruited monocytes favoring a positive regulatory loop in response to local inflammation. Interfering with such partnership during aging could be a valuable approach to regulate kidney inflammaging and to limit the risk of developing chronic kidney disease in the elderly.
Collapse
|
23
|
Pizzinat N, Ong-Meang V, Bourgailh-Tortosa F, Blanzat M, Perquis L, Cussac D, Parini A, Poinsot V. Extracellular vesicles of MSCs and cardiomyoblasts are vehicles for lipid mediators. Biochimie 2020; 178:69-80. [PMID: 32835733 DOI: 10.1016/j.biochi.2020.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023]
Abstract
Recent works reported the relevance of cellular exosomes in the evolution of different pathologies. However, most of these studies focused on the ability of exosomes to convey mi-RNA from cell to cell. The level of knowledge concerning the transport of lipid mediators by these nanovesicles is more than fragmented. The role of lipid mediators in the inflammatory signaling is fairly well described, in particular concerning the derivatives of the arachidonic acid (AA), called eicosanoïds or lipid mediators. The aim of the present work was to study the transport of these lipids within the extracellular vesicles of rat bone marrow mesenchymal stem cells (BM-MSC) and the cardiomyoblast cell line H9c2. We were able to characterize, for the first time, complete profiles of oxilipins within these nanovesicles. We studied also the impact on these profiles, of the polyunsaturated fatty acids (PUFAs) know to be precursors of the inflammatory signaling molecules (AA, eicosapentaenoic acid EPA and Docosahexaenoic acid DHA), at physiological concentrations. By growing the progenitor cells under PUFAs supplementation, we provide a comprehensive assessment of the beneficial effect of ω-3 PUFA therapy. Actually, our results tend to support the resolving role of the inflammation that stromal cell-derived extracellular vesicles can have within the cardiac microenvironment.
Collapse
Affiliation(s)
- Nathalie Pizzinat
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | | | | | - Muriel Blanzat
- IMRCP, CNRS/UT3, 118 Route de Narbonne, 31062, Toulouse-Cedex, France
| | - Lucie Perquis
- IMRCP, CNRS/UT3, 118 Route de Narbonne, 31062, Toulouse-Cedex, France
| | - Daniel Cussac
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | - Angelo Parini
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | - Verena Poinsot
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France.
| |
Collapse
|
24
|
Chen X, Zhang YY, Ye D, Yang G, Song YN, Mo LH, Yang PC, Song JP. House Dust Mite Specific Antibodies induce Neutrophilic Inflammation in the Heart. Am J Cancer Res 2020; 10:8807-8817. [PMID: 32754279 PMCID: PMC7392007 DOI: 10.7150/thno.47134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: Inflammatory heart disorders are among the causes of human death. The causative factors of heart inflammation are to be further elucidated. House dust mite (HDM)-derived protein antigens are involved in the pathogenesis of many human diseases. This study aims to investigate the role of HDM-specific autoantibodies in the pathogenesis of heart inflammation. Methods: Human heart tissue samples were obtained from surgically removed hearts in heart transplantation. The interaction of the heart tissues with HDM-specific antibodies was assessed by pertinent immune analysis. The role of HDM-specific autoantibodies in the induction of heart inflammation was assessed with a murine model. Results: HDM-specific IgG (mIgG) was detected in the serum of patients with myocarditis (Mcd); the mIgG titers were positively correlated with the neutrophil counts in the heart tissues. The mIgG specifically bound to keratin-10 (KRT10) in heart vascular endothelial cells and the heart tissue protein extracts. The amounts of C3a, C5a and C5b-9 were increased in the mouse heart tissues after exposing to mIgG. In the presence of the complement-containing serum, mIgG bound cardiovascular epithelial monolayers to impair the barrier functions. Administration of mIgG or HDM induced the Mcd-like inflammation in the heart, in which neutrophils were the dominant cellular components in the infiltration of inflammatory cells. Conclusions: Mcd patients with neutrophilic inflammation in the heart had higher serum levels of mIgG. The mIgG bound heart endothelial cells to impair the endothelial barrier functions and induce neutrophilic inflammation in the heart.
Collapse
|
25
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
26
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Hao C, Lu Z, Zhao Y, Chen Z, Shen C, Ma G, Chen L. Overexpression of GATA4 enhances the antiapoptotic effect of exosomes secreted from cardiac colony-forming unit fibroblasts via miRNA221-mediated targeting of the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2020; 11:251. [PMID: 32586406 PMCID: PMC7318537 DOI: 10.1186/s13287-020-01759-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023] Open
Abstract
Background GATA4 is an early cardiac-specific transcription factor, and endogenous GATA4-positive cells play a critical role in cardioprotection after myocardial injury. As functional paracrine units of therapeutic cells, exosomes can partially reproduce the reparative properties of their parental cells. Here, we investigated the cardioprotective capabilities of exosomes derived from cardiac colony-forming unit fibroblasts (cCFU-Fs) overexpressing GATA4 (cCFU-FsGATA4) and the underlying mechanism through which these exosomes use microRNA (miRNA) delivery to regulate target proteins in myocardial infarction (MI). Methods Exosomes were harvested from cCFU-Fs by ultracentrifugation. miRNA arrays were performed to determine differential miRNA expression between exosomes derived from cCFU-FsGATA4 (GATA4-Exo) and control cCFU-Fs (NC-Exo). A dual-luciferase reporter assay confirmed that miR221 directly targets the 3′ untranslated region (UTR) of the phosphatase and tensin homolog on chromosome ten (PTEN) gene. Cardiac function and myocardial infarct size were evaluated by echocardiography and Masson trichrome staining, respectively. Results Compared with NC-Exo, GATA4-Exo increased the survival and reduced the apoptosis of H9c2 cells. Direct intramyocardial transplantation of GATA4-Exo at the border of the ischemic region following ligation of the left anterior descending (LAD) coronary artery significantly restored cardiac contractile function and reduced infarct size. Microarray analysis revealed significantly increased miR221 expression in GATA4-Exo. qPCR confirmed higher miR221 levels in H9c2 cells treated with GATA4-Exo than in those treated with NC-Exo. miR221 mimic-transfected H9c2 cells demonstrated a significantly higher survival rate following exposure to hypoxic conditions than those transfected with miR221 inhibitor. A dual-luciferase reporter gene assay confirmed the PTEN gene as a target of miR221. Western blot analysis showed that H9c2 cells treated with GATA4-Exo exhibited lower PTEN protein expression and higher p-Akt expression. Conclusion GATA4 overexpression enhances the protective effect of cCFU-F-derived exosomes on myocardial ischemic injury. In terms of the mechanism, it is at least partly due to the miR221 transferred by GATA4-Exo, which inhibits PTEN expression, activates the phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway, and subsequently alleviates apoptosis of myocardial cells (CMs).
Collapse
Affiliation(s)
- Chunshu Hao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Zhengri Lu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Zhong Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
28
|
Xuan W, Khan M, Ashraf M. Extracellular Vesicles From Notch Activated Cardiac Mesenchymal Stem Cells Promote Myocyte Proliferation and Neovasculogenesis. Front Cell Dev Biol 2020; 8:11. [PMID: 32154243 PMCID: PMC7047205 DOI: 10.3389/fcell.2020.00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiac mesenchymal stem cells (C-MSCs) are a novel mesenchymal stem cell (MSC) subpopulation derived from cardiac tissue, which are reported to be responsible for cardiac regeneration. Notch signaling is believed to aid in cardiac repair following myocardial injury. In this study, we have investigated the role of extracellular vesicles (EVs) from Notch1 engineered C-MSCs on angiogenesis and cardiomyocyte (CM) proliferation in ischemic myocardium. C-MSCs were isolated from Notch1flox mice (C-MSCNotch1 FF). Notch1 gene deletion was accomplished by adenoviral vector-mediated Cre recombination, and Notch1 overexpression was achieved by overexpression of Notch1 intracellular domain (N1ICD). EVs were isolated by using the size exclusion column method. Proteomic composition of EV was carried out by mass spectrometry. A mouse myocardial infarction (MI) model was generated by permanent left anterior descending (LAD) coronary artery ligation. Intramyocardial transplantation of Notch1 knockout C-MSCs (C-MSCsNotch1 KO) did not have any effect on cardiac function and scar size. On the other hand, transplantation of N1ICD-overexpressing C-MSCs (C-MSCsN1ICD) showed significant improvement in cardiac function and attenuation of fibrosis as compared to the control (PBS) group and non-modified C-MSC groups. C-MSCsN1ICD differentiated into smooth muscle cells and formed new vessels. Proteomics profiling identified several proteins, such as lysyl oxidase homolog-2 and biglycan, as highly enriched proteins in EV-C-MSCsN1ICD. Go term analysis indicated that EV-C-MSCsN1ICD were enriched with bioactive factors, potent pro-repair proteins responsible for cell migration and proliferation. EV-C-MSCsNotch1FF and EV-C-MSCsN1ICD were strongly proangiogenic under both in vitro and in vivo conditions. EV-C-MSCsN1ICD caused dense tube formation in vitro and increased neovasculogenesis in the peri-infarct area in vivo. Furthermore, EV-C-MSCsN1ICD attenuated endothelial cell (EC) and CM apoptosis under oxidative stress and ischemic injury. Similarly, EV-C-MSCNotch1 FF and EV-C-MSCN1ICD treatment improved cardiac function and decreased fibrosis in mice post-MI. EV-C-MSCsN1ICD were very effective in improving cardiac function and decreasing fibrosis. Notch1 signaling is a strong stimulus for cardiac regeneration by C-MSCs. EVs secreted by Notch1-overexpressing C-MSCs were highly effective in preventing cell death, promoting angiogenesis and CM proliferation, and restoring cardiac function post-MI. Overall, these results suggest that Notch1 overexpression may further enhance the effectiveness of EVs secreted by C-MSCs in cell-free therapy.
Collapse
Affiliation(s)
- Wanling Xuan
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Muhammad Ashraf
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
29
|
Kaludercic N, Di Lisa F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front Cardiovasc Med 2020; 7:12. [PMID: 32133373 PMCID: PMC7040199 DOI: 10.3389/fcvm.2020.00012] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy is a result of diabetes-induced changes in the structure and function of the heart. Hyperglycemia affects multiple pathways in the diabetic heart, but excessive reactive oxygen species (ROS) generation and oxidative stress represent common denominators associated with adverse tissue remodeling. Indeed, key processes underlying cardiac remodeling in diabetes are redox sensitive, including inflammation, organelle dysfunction, alteration in ion homeostasis, cardiomyocyte hypertrophy, apoptosis, fibrosis, and contractile dysfunction. Extensive experimental evidence supports the involvement of mitochondrial ROS formation in the alterations characterizing the diabetic heart. In this review we will outline the central role of mitochondrial ROS and alterations in the redox status contributing to the development of diabetic cardiomyopathy. We will discuss the role of different sources of ROS involved in this process, with a specific emphasis on mitochondrial ROS producing enzymes within cardiomyocytes. Finally, the therapeutic potential of pharmacological inhibitors of ROS sources within the mitochondria will be discussed.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
30
|
Douin-Echinard V, Lefevre L, Parini A. In the heart of cardiac stromal senescence. Aging (Albany NY) 2020; 12:1039-1041. [PMID: 31986124 PMCID: PMC7053590 DOI: 10.18632/aging.102806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Victorine Douin-Echinard
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR1048, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Lise Lefevre
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR1048, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Angelo Parini
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR1048, Toulouse, France
- Paul Sabatier University, Toulouse, France
- University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
31
|
Kirstein AS, Augustin A, Penke M, Cea M, Körner A, Kiess W, Garten A. The Novel Phosphatidylinositol-3-Kinase (PI3K) Inhibitor Alpelisib Effectively Inhibits Growth of PTEN-Haploinsufficient Lipoma Cells. Cancers (Basel) 2019; 11:E1586. [PMID: 31627436 PMCID: PMC6826943 DOI: 10.3390/cancers11101586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the tumor suppressor gene PTEN cause PTEN Hamartoma Tumor Syndrome (PHTS). Pediatric patients with PHTS frequently develop lipomas. Treatment attempts with the mTORC1 inhibitor rapamycin were unable to reverse lipoma growth. Recently, lipomas associated with PIK3CA-related overgrowth syndrome were successfully treated with the novel PI3K inhibitor alpelisib. Here, we tested whether alpelisib has growth-restrictive effects and induces cell death in lipoma cells. We used PTEN-haploinsufficient lipoma cells from three patients and treated them with alpelisib alone or in combination with rapamycin. We tested the effect of alpelisib on viability, proliferation, cell death, induction of senescence, adipocyte differentiation, and signaling at 1-100 µM alpelisib. Alpelisib alone or in combination with rapamycin reduced proliferation in a concentration- and time-dependent manner. No cell death but an induction of senescence was detected after alpelisib incubation for 72 h. Alpelisib treatment led to a reduced phosphorylation of AKT, mTOR, and ribosomal protein S6. Rapamycin treatment alone led to increased AKT phosphorylation. This effect could be reversed by combining rapamycin with alpelisib. Alpelisib reduced the size of lipoma spheroids by attenuating adipocyte differentiation. Since alpelisib was well tolerated in first clinical trials, this drug alone or in combination with rapamycin is a potential new treatment option for PHTS-related adipose tissue overgrowth.
Collapse
Affiliation(s)
- Anna S Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Adrien Augustin
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
- Faculty of Medicine, University of Liège, 4000 Liege, Belgium.
| | - Melanie Penke
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genoa, 16100 Genoa, Italy.
- IRCCS Polyclinic Hospital San Martino, 16100 Genoa, Italy.
| | - Antje Körner
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Wieland Kiess
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
32
|
Martini H, Iacovoni JS, Maggiorani D, Dutaur M, Marsal DJ, Roncalli J, Itier R, Dambrin C, Pizzinat N, Mialet‐Perez J, Cussac D, Parini A, Lefevre L, Douin‐Echinard V. Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90 + subset. Aging Cell 2019; 18:e13015. [PMID: 31353772 PMCID: PMC6718537 DOI: 10.1111/acel.13015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022] Open
Abstract
Aging is a major risk factor in the development of chronic diseases, especially cardiovascular diseases. Age-related organ dysfunction is strongly associated with the accumulation of senescent cells. Cardiac mesenchymal stromal cells (cMSCs), deemed part of the microenvironment, modulate cardiac homeostasis through their vascular differentiation potential and paracrine activity. Transcriptomic analysis of cMSCs identified age-dependent biological pathways regulating immune responses and angiogenesis. Aged cMSCs displayed a senescence program characterized by Cdkn2a expression, decreased proliferation and clonogenicity, and acquisition of a senescence-associated secretory phenotype (SASP). Increased CCR2-dependent monocyte recruitment by aged cMSCs was associated with increased IL-1ß production by inflammatory macrophages in the aging heart. In turn, IL-1ß induced senescence in cMSCs and mimicked age-related phenotypic changes such as decreased CD90 expression. The CD90+ and CD90- cMSC subsets had biased vascular differentiation potentials, and CD90+ cMSCs were more prone to acquire markers of the endothelial lineage with aging. These features were related to the emergence of a new cMSC subset in the aging heart, expressing CD31 and endothelial genes. These results demonstrate that cMSC senescence and SASP production are supported by the installation of an inflammatory amplification loop, which could sustain cMSC senescence and interfere with their vascular differentiation potentials.
Collapse
Affiliation(s)
- Hélène Martini
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Jason S. Iacovoni
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Damien Maggiorani
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Marianne Dutaur
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Dimitri J. Marsal
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Jerome Roncalli
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Romain Itier
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Camille Dambrin
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Nathalie Pizzinat
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Jeanne Mialet‐Perez
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Daniel Cussac
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Angelo Parini
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
- Paul Sabatier University Toulouse France
| | - Lise Lefevre
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Victorine Douin‐Echinard
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| |
Collapse
|