1
|
Baumann Z, Wiethe C, Vecchi CM, Richina V, Lopes T, Bentires-Alj M. Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. CELL REPORTS METHODS 2024; 4:100885. [PMID: 39481389 DOI: 10.1016/j.crmeth.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The lung immune system consists of both resident and circulating immune cells that communicate intricately. The immune system is activated by exposure to bacteria and viruses, when cancer initiates in the lung (primary lung cancer), or when metastases of other cancer types, including breast cancer, spread to and develop in the lung (secondary lung cancer). Thus, in these pathological situations, a comprehensive and quantitative assessment of changes in the lung immune system is of paramount importance for understanding mechanisms of infectious diseases, lung cancer, and metastasis but also for developing efficacious treatments. Unfortunately, lung tissue exhibits high autofluorescence, and this high background signal makes high-parameter flow cytometry analysis complicated. Here, we provide an optimized 30-parameter antibody panel for the analysis of all major immune cell types and states in normal and metastatic murine lungs using spectral flow cytometry.
Collapse
Affiliation(s)
- Zora Baumann
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | | | - Cinja M Vecchi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Telma Lopes
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
2
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
4
|
Huang M, Wang X, Botchway BOA, Zhang Y, Liu X. The role of long noncoding ribonucleic acids in the central nervous system injury. Mol Cell Biochem 2024; 479:2581-2595. [PMID: 37898578 DOI: 10.1007/s11010-023-04875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Central nervous system (CNS) injury involves complex pathophysiological molecular mechanisms. Long noncoding ribonucleic acids (lncRNAs) are an important form of RNA that do not encode proteins but take part in the regulation of gene expression and various biological processes. Multitudinous studies have evidenced lncRNAs to have a significant role in the process of progression and recovery of various CNS injuries. Herein, we review the latest findings pertaining to the role of lncRNAs in CNS, both normal and diseased state. We aim to present a comprehensive clinical application prospect of lncRNAs in CNS, and thus, discuss potential strategies of lncRNAs in treating CNS injury.
Collapse
Affiliation(s)
- Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
| | - Xizhi Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, China
| | | | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China.
| |
Collapse
|
5
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Porubska B, Plevakova M, Fikarova N, Vasek D, Somova V, Sanovec O, Simonik O, Komrskova K, Krylov V, Tlapakova T, Krulova M, Krulova M. Therapeutic potential of Sertoli cells in vivo: alleviation of acute inflammation and improvement of sperm quality. Stem Cell Res Ther 2024; 15:282. [PMID: 39227878 PMCID: PMC11373210 DOI: 10.1186/s13287-024-03897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy. METHODS We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model. Infiltrating and resident myeloid cell phenotypes were assessed using flow cytometry. The impact of SC administration on testis morphology and germ cell quality was evaluated using computer-assisted sperm analysis (CASA) and immunohistochemistry. RESULTS SCs demonstrated a distinctive migration pattern, importantly they preferentially concentrated in the testes and liver. SC application significantly reduced neutrophil infiltration as well as preserved the resident macrophage subpopulations. SCs upregulated MerTK expression in both interstitial and peritubular macrophages. Applied SC treatment exhibited protective effects on sperm including their motility and kinematic parameters, and maintained the physiological testicular morphology. CONCLUSION Our study provides compelling evidence of the therapeutic efficacy of SC transplantation in alleviating acute inflammation-induced testicular damage. These findings contribute to the expanding knowledge on the potential applications of cell-based therapies for addressing reproductive health challenges and offer a promising approach for targeted interventions in male infertility.
Collapse
Affiliation(s)
- Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Marie Plevakova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Natalie Fikarova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Ondrej Sanovec
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Vladimir Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Tereza Tlapakova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic.
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| |
Collapse
|
7
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Li YN, Liang YP, Zhang JQ, Li N, Wei ZY, Rao Y, Chen JH, Jin YY. Dynamic A-to-I RNA editing during acute neuroinflammation in sepsis-associated encephalopathy. Front Neurosci 2024; 18:1435185. [PMID: 39156629 PMCID: PMC11328407 DOI: 10.3389/fnins.2024.1435185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction The activation of cerebral endothelial cells (CECs) has recently been reported to be the earliest acute neuroinflammation event in the CNS during sepsis-associated encephalopathy (SAE). Importantly, adenosine-to-inosine (A-to-I) RNA editing mediated by ADARs has been associated with SAE, yet its role in acute neuroinflammation in SAE remains unclear. Methods Our current study systematically analyzed A-to-I RNA editing in cerebral vessels, cerebral endothelial cells (CECs), and microglia sampled during acute neuroinflammation after treatment in a lipopolysaccharide (LPS)-induced SAE mouse model. Results Our results showed dynamic A-to-I RNA editing activity changes in cerebral vessels during acute neuroinflammation. Differential A-to-I RNA editing (DRE) associated with acute neuroinflammation were identified in these tissue or cells, especially missense editing events such as S367G in antizyme inhibitor 1 (Azin1) and editing events in lincRNAs such as maternally expressed gene 3 (Meg3), AW112010, and macrophage M2 polarization regulator (Mm2pr). Importantly, geranylgeranyl diphosphate synthase 1 (Ggps1) and another three genes were differentially edited across cerebral vessels, CECs, and microglia. Notably, Spearman correlation analysis also revealed dramatic time-dependent DRE during acute neuroinflammation, especially in GTP cyclohydrolase1 (Gch1) and non-coding RNA activated by DNA damage (Norad), both with the editing level positively correlated with both post-LPS treatment time and edited gene expression in cerebral vessels and CECs. Discussion The findings in our current study demonstrate substantial A-to-I RNA editing changes during acute neuroinflammation in SAE, underlining its potential role in the disease.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing-Qian Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Na Li
- Wuxi Maternal and Child Healthcare Hospital, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Lin Y, Yang M, Cheng C, Wu J, Yu B, Zhang X. Age-related dysregulation of CXCL9/10 in monocytes is linked to impaired innate immune responses in a mouse model of Staphylococcus aureus osteomyelitis. Cell Mol Life Sci 2024; 81:300. [PMID: 39001897 PMCID: PMC11335224 DOI: 10.1007/s00018-024-05311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.
Collapse
Affiliation(s)
- Yihuang Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of Orthopaedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Mankai Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Chubin Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jichang Wu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
10
|
Kim GD, Shin SI, Jung SW, An H, Choi SY, Eun M, Jun CD, Lee S, Park J. Cell Type- and Age-Specific Expression of lncRNAs across Kidney Cell Types. J Am Soc Nephrol 2024; 35:870-885. [PMID: 38621182 PMCID: PMC11230714 DOI: 10.1681/asn.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Key Points
We constructed a single-cell long noncoding RNA atlas of various tissues, including normal and aged kidneys.We identified age- and cell type–specific expression changes of long noncoding RNAs in kidney cells.
Background
Accumulated evidence demonstrates that long noncoding RNAs (lncRNAs) regulate cell differentiation and homeostasis, influencing kidney aging and disease. Despite their versatility, the function of lncRNA remains poorly understood because of the lack of a reference map of lncRNA transcriptome in various cell types.
Methods
In this study, we used a targeted single-cell RNA sequencing method to enrich and characterize lncRNAs in individual cells. We applied this method to various mouse tissues, including normal and aged kidneys.
Results
Through tissue-specific clustering analysis, we identified cell type–specific lncRNAs that showed a high correlation with known cell-type marker genes. Furthermore, we constructed gene regulatory networks to explore the functional roles of differentially expressed lncRNAs in each cell type. In the kidney, we observed dynamic expression changes of lncRNAs during aging, with specific changes in glomerular cells. These cell type– and age-specific expression patterns of lncRNAs suggest that lncRNAs may have a potential role in regulating cellular processes, such as immune response and energy metabolism, during kidney aging.
Conclusions
Our study sheds light on the comprehensive landscape of lncRNA expression and function and provides a valuable resource for future analysis of lncRNAs (https://gist-fgl.github.io/sc-lncrna-atlas/).
Collapse
Affiliation(s)
- Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sangho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
11
|
Trzebanski S, Kim JS, Larossi N, Raanan A, Kancheva D, Bastos J, Haddad M, Solomon A, Sivan E, Aizik D, Kralova JS, Gross-Vered M, Boura-Halfon S, Lapidot T, Alon R, Movahedi K, Jung S. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 2024; 57:1225-1242.e6. [PMID: 38749446 DOI: 10.1016/j.immuni.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Collapse
Affiliation(s)
- Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niss Larossi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayala Raanan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Sivan
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Aizik
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Mor Gross-Vered
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Zhu L, Zhang L, Qi J, Ye Z, Nie G, Leng S. Machine learning-derived immunosenescence index for predicting outcome and drug sensitivity in patients with skin cutaneous melanoma. Genes Immun 2024; 25:219-231. [PMID: 38811681 DOI: 10.1038/s41435-024-00278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The functions of immunosenescence are closely related to skin cutaneous melanoma (SKCM). The aim of this study is to uncover the characteristics of immunosenescence index (ISI) to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic genes, and their expression and prognostic value were evaluated. Then, we used the computational algorithm to estimate ISI. Finally, the distribution characteristics and clinical significance of ISI in SKCM by using multi-omics analysis. Patients with a lower ISI had a favorable survival rate, lower chromosomal instability, lower somatic copy-number alterations, lower somatic mutations, higher immune infiltration, and sensitive to immunotherapy. The ISI exhibited robust, which was validated in multiple datasets. Besides, the ISI is more effective than other published signatures in predicting survival outcomes for patients with SKCM. Single-cell analysis revealed higher ISI was specifically expressed in monocytes, and correlates with the differentiation fate of monocytes in SKCM. Besides, individuals exhibiting elevated ISI levels could potentially receive advantages from chemotherapy, and promising compounds with the potential to target high ISI were recognized. The ISI model is a valuable tool in categorizing SKCM patients based on their prognosis, gene mutation signatures, and response to immunotherapy.
Collapse
Affiliation(s)
- Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lvya Zhang
- Traditional Chinese Medicine department, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Junhua Qi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhiyu Ye
- Traditional Chinese Medicine department, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Gang Nie
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
13
|
Hong H, Wang Y, Menard M, Buckley J, Zhou L, Volpicelli-Daley L, Standaert D, Qin H, Benveniste E. Suppression of the JAK/STAT Pathway Inhibits Neuroinflammation in the Line 61-PFF Mouse Model of Parkinson's Disease. RESEARCH SQUARE 2024:rs.3.rs-4307273. [PMID: 38766241 PMCID: PMC11100885 DOI: 10.21203/rs.3.rs-4307273/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of a-synuclein (a-Syn) into insoluble aggregates called Lewy pathology. The Line 61 a-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human a-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human a-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-a-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-a-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
|
14
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
15
|
Wang Z, Kirkwood KL, Wang Y, Du W, Lin S, Zhou W, Yan C, Gao J, Li Z, Sun C, Liu F. Analysis of the effect of CCR7 on the microenvironment of mouse oral squamous cell carcinoma by single-cell RNA sequencing technology. J Exp Clin Cancer Res 2024; 43:94. [PMID: 38539232 PMCID: PMC10976828 DOI: 10.1186/s13046-024-03013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.
Collapse
Affiliation(s)
- Zengxu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, NY, Buffalo, 14214-8006, USA
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Weidong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Shanfeng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Wanhang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Jiaxing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Zhenning Li
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Changfu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Fayu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
16
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Lu J, Li H, Zhang G, Yang F, Zhang X, Ping A, Xu Z, Gu Y, Wang R, Ying D, Liu J, Zhang J, Shi L. Age-Related Alterations in Peripheral Immune Landscape with Magnified Impact on Post-Stroke Brain. RESEARCH (WASHINGTON, D.C.) 2023; 6:0287. [PMID: 38090608 PMCID: PMC10712880 DOI: 10.34133/research.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 07/31/2024]
Abstract
Immunosenescence refers to the multifaceted and profound alterations in the immune system brought about by aging, exerting complex influences on the pathophysiological processes of diseases that manifest upon it. Using a combination of single-cell RNA sequencing, cytometry by time of flight, and various immunological assays, we investigated the characteristics of immunosenescence in the peripheral blood of aged mice and its impact on the cerebral immune environment after ischemic stroke. Our results revealed some features of immunosenescence. We observed an increase in neutrophil counts, concurrent with accelerated neutrophil aging, characterized by altered expression of aging-associated markers like CD62L and consequential changes in neutrophil-mediated immune functions. Monocytes/macrophages in aged mice exhibited enhanced antigen-presentation capabilities. T cell profiles shifted from naive to effector or memory states, with a specific rise in T helper 1 cells and T helper 17 cells subpopulations and increased regulatory T cell activation in CD4 T cells. Furthermore, regulatory CD8 T cells marked by Klra decreased with aging, while a subpopulation of exhausted-like CD8 T cells expanded, retaining potent immunostimulatory and proinflammatory functions. Critically, these inherent disparities not only persisted but were further amplified within the ischemic hemispheres following stroke. In summary, our comprehensive insights into the key attributes of peripheral immunosenescence provide a vital theoretical foundation for understanding not only ischemic strokes but also other age-associated diseases.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Huaming Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Guoqiang Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Fan Yang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - An Ping
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhouhan Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yichen Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Dan Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianjian Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Brain Research Institute,
Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science,
Zhejiang University, Hangzhou, Zhejiang, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Ke P, Xie J, Xu T, Chen M, Guo Y, Wang Y, Qiu H, Wu D, Zeng Z, Chen S, Bao X. Identification of a venetoclax-resistance prognostic signature base on 6-senescence genes and its clinical significance for acute myeloid leukemia. Front Oncol 2023; 13:1302356. [PMID: 38098504 PMCID: PMC10720639 DOI: 10.3389/fonc.2023.1302356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Satisfactory responses can be obtained for acute myeloid leukemia (AML) treated by Venetoclax (VEN)-based therapy. However, there are still quite a few AML patients (AMLs) resistant to VEN, and it is critical to understand whether VEN-resistance is regulated by senescence. Methods Here, we established and validated a signature for predicting AML prognosis based on VEN resistance-related senescence genes (VRSGs). In this study, 51 senescence genes were identified with VEN-resistance in AML. Using LASSO algorithms and multiple AML cohorts, a VEN-resistance senescence prognostic model (VRSP-M) was developed and validated based on 6-senescence genes. Results According to the median score of the signature, AMLs were classified into two subtypes. A worse prognosis and more adverse features occurred in the high-risk subtype, including older patients, non-de novo AML, poor cytogenetics, adverse risk of European LeukemiaNet (ELN) 2017 recommendation, and TP53 mutation. Patients in the high-risk subtype were mainly involved in monocyte differentiation, senescence, NADPH oxidases, and PD1 signaling pathway. The model's risk score was significantly associated with VEN-resistance, immune features, and immunotherapy response in AML. In vitro, the IC50 values of ABT-199 (VEN) rose progressively with increasing expression of G6PD and BAG3 in AML cell lines. Conclusions The 6-senescence genes prognostic model has significant meaning for the prediction of VEN-resistance, guiding personalized molecularly targeted therapies, and improving AML prognosis.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jundan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meiyu Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yusha Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
21
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
22
|
Sangani RG, Deepak V, Anwar J, Patel Z, Ghio AJ. Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality. Int J Chron Obstruct Pulmon Dis 2023; 18:431-446. [PMID: 37034898 PMCID: PMC10076620 DOI: 10.2147/copd.s397667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Cigarette smoking (CS)-related monocytosis contributes to the development of chronic lung injuries via complex mechanisms. We aim to determine correlations between measures of CS and monocytes, their capacities to predict chronic lung diseases, and their associations with mortality. Methods A single-center retrospective study of patients undergoing surgical resection for suspected lung nodules/masses was performed. CS was quantified as cigarettes smoked per day (CPD), duration of smoking, composite pack years (CPY), current smoking status, and smoking cessation years. A multivariate logistic regression analysis was performed. Results Of 382 eligible patients, 88% were ever smokers. In this group, 45% were current smokers with mean CPD of 27.2±40.0. CPY and duration of smoking showed positive linear correlations with percentage monocyte count. Physiologically, CPY was associated with progressive obstruction, hyperinflation, and reduced diffusion capacity (DLCO). Across the quartiles of smoking, there was an accumulation of radiologic and histologic abnormalities. Anthracosis and emphysema were associated with CPD, while lung cancer, respiratory bronchiolitis (RB), emphysema, and honeycombing were statistically related to duration of smoking. Analysis using consecutive CPY showed associations with lung cancer (≥10 and <30), fibrosis (≥20 and <40), RB (≥50), anthracosis and emphysema (≥10 and onwards). Percentage monocytes correlated with organizing pneumonia (OP), fibrosis, and emphysema. The greater CPY increased mortality across the groups. Significant predictors of mortality included percentage monocyte, anemia, GERD, and reduced DLCO. Conclusion Indices of CS and greater monocyte numbers were associated with endpoints of chronic lung disease suggesting a participation in pathogenesis. Application of these easily available metrics may support a chronology of CS-induced chronic lung injuries. While a relative lesser amount of smoking can be associated with lung cancer and fibrosis, greater CPY increases the risk for emphysema. Monocytosis predicted lung fibrosis and mortality. Duration of smoking may serve as a better marker of monocytosis and associated chronic lung diseases.
Collapse
Affiliation(s)
- Rahul G Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Rahul G Sangani, Section of Pulmonary, Critical Care, and Sleep Medicine, West Virginia University School of Medicine, 1 Medical Center Dr, PO BOX 9166, Morgantown, WV, 26506, USA, Tel +1 304 293-4661 option #2, Fax +1 304-293-3724, Email
| | - Vishal Deepak
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Javeria Anwar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
23
|
Savchenko AA, Martynova GP, Ikkes LA, Borisov AG, Kudryavtsev I, Belenjuk VD. CHANGES IN SUBSET COMPOSITION AND PHAGOCYTIC ACTIVITY OF MONOCYTES IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS UNDER EXPOSURE TO GM-CSF IN VITRO. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-cii-4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The aim of the study was to investigate the features of changes in the subset composition of monocytes and their phagocytic activity in children with infectious mononucleosis (IM) under the influence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. We examined 84 children aged 3 to 11 years with Epstein-Barr virus (EBV) infection. EBV infection was diagnosed on the basis of clinical signs of IM, a positive test for EBV DNA in blood lymphocytes and results of ELISA tests (EBV-VCAIgM (+), EBV-EA-DIgG (+)). The control group consisted of 40 practically healthy children of the same age range. Monocytes were obtained by the standard method of adhesion to plastic from mononuclear cells isolated from heparinized venous blood by density gradient centrifugation. The isolated monocytes were divided into two samples: control (without GM-CSF) and experimental (50 ng of GM-CSF per 1 ml of cell suspension). The subset composition and phagocytic activity of monocytes in both samples were determined by flow cytometry after incubation for 1 hour at 37C in a CO2-incubator. It was found that in children against the background of the development of IM, the subpopulation composition of monocytes in the blood changes and their phagocytic activity is impaired. It was found that the subset composition and phagocytic activity of the blood monocytes changed in children against the background of the development of IM. Changes in the subset composition of monocytes against the background of acute IM did not depend on the age group of children (3-6 and 7-11 years) and were characterized by an increase in the number of pro-inflammatory (intermediate) monocytes and a decrease in the content of anti-inflammatory (non-classical) monocytes. Features of violation of the phagocytic activity of the monocytes in children with IM depended on age. The phagocytic activity of all three subsets of the monocytes was reduced in children with IM 3-6 years old while children with IM 7-11 years old had reduced phagocytic activity only of intermediate and non-classical monocytes. The effect of GM-CSF in vitro on monocytes in patients with IM, regardless of the age of children, led to a significant increase in the level of anti-inflammatory monocytes while the phagocytic activity of cells changed less. An increase in the phagocytic number for classical monocytes after incubation with GM-CSF in vitro was noted in children with IM at the age of 3-6 years while the phagocytic index of this fraction of monocytes remained unchanged. The level of the phagocytic index increased only in classical monocytes of children with IM aged 7-11 years. The presented results determine the scientific and clinical value of studying the mechanisms of the effect of GM-CSF on cells of the immune system and prove that this cytokine can be used in a new immunotherapeutic strategy for the treatment of IM.
Collapse
|
24
|
Goodridge HS. Aging of classical monocyte subsets. Aging (Albany NY) 2023; 15:290-292. [PMID: 36645917 PMCID: PMC9925684 DOI: 10.18632/aging.204493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|