1
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
3
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
4
|
Cheng CK, Ye L, Zuo Y, Wang Y, Wang L, Li F, Chen S, Huang Y. Aged Gut Microbiome Induces Metabolic Impairment and Hallmarks of Vascular and Intestinal Aging in Young Mice. Antioxidants (Basel) 2024; 13:1250. [PMID: 39456503 PMCID: PMC11505429 DOI: 10.3390/antiox13101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Aging, an independent risk factor for cardiometabolic diseases, refers to a progressive deterioration in physiological function, characterized by 12 established hallmarks. Vascular aging is driven by endothelial dysfunction, telomere dysfunction, oxidative stress, and vascular inflammation. This study investigated whether aged gut microbiome promotes vascular aging and metabolic impairment. Fecal microbiome transfer (FMT) was conducted from aged (>75 weeks old) to young C57BL/6 mice (8 weeks old) for 6 weeks. Wire myography was used to evaluate endothelial function in aortas and mesenteric arteries. ROS levels were measured by dihydroethidium (DHE) staining and lucigenin-enhanced chemiluminescence. Vascular and intestinal telomere function, in terms of relative telomere length, telomerase reverse transcriptase expression and telomerase activity, were measured. Systemic inflammation, endotoxemia and intestinal integrity of mice were assessed. Gut microbiome profiles were studied by 16S rRNA sequencing. Some middle-aged mice (40-42 weeks old) were subjected to chronic metformin treatment and exercise training for 4 weeks to evaluate their anti-aging benefits. Six-week FMT impaired glucose homeostasis and caused vascular dysfunction in aortas and mesenteric arteries in young mice. FMT triggered vascular inflammation and oxidative stress, along with declined telomerase activity and shorter telomere length in aortas. Additionally, FMT impaired intestinal integrity, and triggered AMPK inactivation and telomere dysfunction in intestines, potentially attributed to the altered gut microbial profiles. Metformin treatment and moderate exercise improved integrity, AMPK activation and telomere function in mouse intestines. Our data highlight aged microbiome as a mechanism that accelerates intestinal and vascular aging, suggesting the gut-vascular connection as a potential intervention target against cardiovascular aging and complications.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Yuanyuan Zuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Yaling Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Sheng Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
5
|
Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmeler S, Rando TA, Peterson TR, Woods T, Wyss-Coray T, Finkel T, Strauss T, Gladyshev VN, Longo VD, Dwaraka VB, Gorbunova V, Acosta-Rodríguez VA, Sorrentino V, Sebastiano V, Li W, Suh Y, Zhavoronkov A, Scheibye-Knudsen M, Bakula D. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY) 2024; 16:12955-12976. [PMID: 39418098 PMCID: PMC11552646 DOI: 10.18632/aging.206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Collapse
Affiliation(s)
- Yu-Xuan Lyu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qiang Fu
- Institute of Aging Medicine, College of Pharmacy, Binzhou Medical University, Yantai, China
- Anti-aging Innovation Center, Subei Research Institute at Shanghai Jiaotong University, China
- Shandong Cellogene Pharmaceutics Co. LTD, Yantai, China
| | - Dominika Wilczok
- Duke Kunshan University, Kunshan, Jiangsu, China
- Duke University, Durham, NC, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Aaron King
- Foresight Institute, San Francisco, CA 91125, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Alexandra Stolzing
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | | | - Andrea B. Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Olsen
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katharina Simon
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- The Kennedy Institute of Rheumatology, Oxford, UK
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aisyah Jamil
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Anton Kulaga
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Benjamin Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University - Purdue University Indianapolis, Indianapolis Indiana 46077, USA
| | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - Boris Djordjevic
- 199 Biotechnologies Ltd., London, UK
- University College London, London, UK
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chieh Chen
- Molecular, Cellular, And Integrative Physiology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Christoph U. Correll
- Zucker School of Medicine at Hofstra/Northwell, NY 10001, USA
- Charité - University Medicine, Berlin, Germany
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Friedrich Schiller University, Jena, Germany
| | | | - David Erritzoe
- Centre for Psychedelic Research, Dpt Brain Sciences, Imperial College London, UK
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 02108, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Belfield, Univeristy College Dublin, Dublin 4, Ireland
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Vernet
- Research and Early Development, Maaleov 2760, Denmark
| | | | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Evi M. Mercken
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fabian Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | | | | | | | - Harold A. Pincus
- Department of Psychiatry, Columbia University, New York, NY 10012, USA
| | | | - James L. Kirkland
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jennifer R. Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joan Mannick
- Tornado Therapeutics, Cambrian Bio Inc. PipeCo, New York, NY 10012, USA
| | - João Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02860, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg and Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelsey Moody
- Ichor Life Sciences, Inc., LaFayette, NY 13084, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55414, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21201, USA
| | - Marco Quarta
- Rubedo Life Sciences, Sunnyvale, CA 94043, USA
- Turn Biotechnologies, Mountain View 94039, CA, USA
- Phaedon Institute, Oakland, CA 94501, USA
| | - Maria Koval
- Institute of Biochemistry of the Romanian Academy, Romania
| | - Maria Marinova
- Fertility and Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Hamalainen
- Longevity Biotech Fellowship, Longevity Acceleration Fund, Vitalism, SF Bay, CA 94101, USA
| | - Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117608, Singapore
| | | | - Milos Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Mourad Topors
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10452, USA
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN 55111, USA
| | | | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Montreal, Quebec H3B 4W8 Canada
| | - Pura Muñoz-Canoves
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland 21201, USA
| | | | | | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Shih-Yin Tsai
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany
| | - Thomas A. Rando
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tina Woods
- Collider Heath, London, UK
- Healthy Longevity Champion, National Innovation Centre for Ageing, UK
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Tzipora Strauss
- Sheba Longevity Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90001, USA
| | | | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincenzo Sorrentino
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Wenbin Li
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY 10032, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Guan Q, Zhang Y, Wang ZK, Liu XH, Zou J, Zhang LL. Skeletal phenotypes and molecular mechanisms in aging mice. Zool Res 2024; 45:724-746. [PMID: 38894518 PMCID: PMC11298674 DOI: 10.24272/j.issn.2095-8137.2023.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
Aging is an inevitable physiological process, often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks. Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations, difficulties in sampling, regional variability, and substantial investment. Consequently, mice are preferred for such studies due to their similar motor system structure and function to humans, ease of handling and care, low cost, and short generation time. In this review, we present a comprehensive overview of the characteristics, limitations, applicability, bone phenotypes, and treatment methods in naturally aging mice and prematurely aging mouse models (including SAMP6, POLG mutant, LMNA, SIRT6, ZMPSTE24, TFAM, ERCC1, WERNER, and KL/KL-deficient mice). We also summarize the molecular mechanisms of these aging mouse models, including cellular DNA damage response, senescence-related secretory phenotype, telomere shortening, oxidative stress, bone marrow mesenchymal stem cell (BMSC) abnormalities, and mitochondrial dysfunction. Overall, this review aims to enhance our understanding of the pathogenesis of aging-related bone diseases.
Collapse
Affiliation(s)
- Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhi-Kun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Hua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ling-Li Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China. E-mail:
| |
Collapse
|
7
|
Min M, Egli C, Sivamani RK. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int J Mol Sci 2024; 25:7471. [PMID: 39000578 PMCID: PMC11242811 DOI: 10.3390/ijms25137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024] Open
Abstract
Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Caitlin Egli
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, University of St. George's, University Centre, West Indies, Grenada
| | - Raja K Sivamani
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
- Integrative Research Institute, 4825 River Park Drive, Suite 100, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
8
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
9
|
Bu Y, Feng L, Xu D, Zhang S, Liang L, Si J, Lu Y, Liu Q, Yan G, Wang Y, Lan G, Liang J. Changes in Gut Microbiota Associated with Parity in Large White Sows. Animals (Basel) 2023; 14:112. [PMID: 38200843 PMCID: PMC10778104 DOI: 10.3390/ani14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
As one of the most critical economic traits, the litter performance of sows is influenced by their parity. Some studies have indicated a connection between the gut microbiota and the litter performance of animals. In this study, we examined litter performance in 1363 records of different parities of Large White sows. We observed a marked decline in TNB (Total Number Born) and NBH (Number of Healthy Born) We observed a marked decline in TNB (Total Number Born) and NBH (Number of Healthy Born) among sows with parity 7 or higher. To gain a deeper understanding of the potential role of gut microbiota in this phenomenon, we conducted 16S rRNA amplicon sequencing of fecal DNA from 263 Large White sows at different parities and compared the changes in their gut microbiota with increasing parity. The results revealed that in comparison to sows with a parity from one to six, sows with a parity of seven or higher exhibited decreased alpha diversity in their gut microbiota. There was an increased proportion of pathogenic bacteria (such as Enterobacteriaceae, Streptococcus, and Escherichia-Shigella) and a reduced proportion of SCFA-producing families (such as Ruminococcaceae), indicating signs of inflammatory aging. The decline in sow function may be one of the primary reasons for the reduction in their litter performance.
Collapse
Affiliation(s)
- Yage Bu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Lingli Feng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Di Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Shuai Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Liang Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Jinglei Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530022, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Qiaoling Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Gang Yan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Yubin Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.B.); (L.F.); (D.X.); (S.Z.); (L.L.); (J.S.); (Y.L.); (Q.L.); (G.Y.); (Y.W.); (G.L.)
| |
Collapse
|
10
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
11
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
13
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|