1
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
2
|
Ritzenthaler JD, Watson WH, Roman J. α4 Nicotinic Acetylcholine Receptors in Lipopolysaccharide-Related Lung Inflammation. Int J Mol Sci 2024; 25:11305. [PMID: 39457087 PMCID: PMC11509036 DOI: 10.3390/ijms252011305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis remains an important healthcare challenge. The lungs are often affected in sepsis, resulting in acute lung injury characterized by inflammation. Mechanisms involving lipopolysaccharide (LPS) stimulation of toll-like receptor (TLR) signaling with induction of proinflammatory pathways have been implicated in this process. To date, however, studies targeting these pathways have failed to improve outcomes. We have found that LPS may also promote lung injury through the activation of α4 nicotinic acetylcholine receptors (α4 nAChRs) in immune cells. We observed increased expression of α4 nAChRs in human THP-1 monocytic cells exposed to LPS (100 ng/mL, 24 h). We also observed that LPS stimulated the expression of other relevant genes, including tumor necrosis factor-α, interleukin-1β, plasminogen activator inhibitor-1, the solute carrier family 7 member 11, extracellular superoxide dismutase, and transforming growth factor-β1. Of interest, dihydro-β-erythroidine hydrobromide (DHβE), a specific chemical inhibitor of α4 nAChRs, inhibited the LPS-induced expression of these genes. We generated mice with a global knockout mutation of the α4 nAChR subunit in the C57BL/6 background using CRISPR/Cas9 technology. The lungs of these LPS-treated animals demonstrated a reduction in the expression of the above-mentioned genes when compared with the lungs of wild-type animals. In support of the role of oxidative stress, we observed that LPS induced expression of the cystine transporter Slc7a11 in both THP-1 cells and in wild-type mouse lungs. The effects of LPS on THP-1 cells were blocked by the thiol antioxidant N-acetylcysteine and mimicked by redox stress. Importantly, the induction of IL-1β by redox stress was inhibited by the α4 nAChR inhibitor DHβE. Finally, we showed that LPS stimulated calcium influx in THP-1 cells, which was blocked by the α4 nAChR inhibitor. Our observations suggest that LPS promotes lung injury by stimulating redox stress, which activates α4 nAChR signaling and drives proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Jeffrey D. Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Walter H. Watson
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville, Louisville, KY 40292, USA;
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY) 2023; 15:11994-12020. [PMID: 37916984 PMCID: PMC10683587 DOI: 10.18632/aging.205161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| |
Collapse
|
5
|
Alekhmimi NK, Cialla-May D, Ramadan Q, Eissa S, Popp J, Al-Kattan K, Zourob M. Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model. BIOSENSORS 2023; 13:676. [PMID: 37504075 PMCID: PMC10376962 DOI: 10.3390/bios13070676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a worldwide health concern. The pathophysiological features of ALI/ARDS include a pulmonary immunological response. The development of a rapid and low-cost biosensing platform for the detection of ARDS is urgently needed. In this study, we report the development of a paper-based multiplexed sensing platform to detect human NE, PR3 and MMP-2 proteases. Through monitoring the three proteases in infected mice after the intra-nasal administration of LPS, we showed that these proteases played an essential role in ALI/ARDS. The paper-based sensor utilized a colorimetric detection approach based on the cleavage of peptide-magnetic nanoparticle conjugates, which led to a change in the gold nanoparticle-modified paper sensor. The multiplexing of human NE, PR3 and MMP-2 proteases was tested and compared after 30 min, 2 h, 4 h and 24 h of LPS administration. The multiplexing platform of the three analytes led to relatively marked peptide cleavage occurring only after 30 min and 24 h. The results demonstrated that MMP-2, PR3 and human NE can provide a promising biosensing platform for ALI/ARDS in infected mice at different stages. MMP-2 was detected at all stages (30 min-24 h); however, the detection of human NE and PR3 can be useful for early- (30 min) and late-stage (24 h) detection of ALI/ARDS. Further studies are necessary to apply these potential diagnostic biosensing platforms to detect ARDS in patients.
Collapse
Affiliation(s)
- Nuha Khalid Alekhmimi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Qasem Ramadan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| |
Collapse
|
6
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
8
|
Appolonia CN, Wolf KM, Zawatsky CN, Cinar R. Chronic and Binge Alcohol Ingestion Increases Truncated Oxidized Phosphatidylcholines in Mice Lungs Due to Increased Oxidative Stress. Front Physiol 2022; 13:860449. [PMID: 35685280 PMCID: PMC9171009 DOI: 10.3389/fphys.2022.860449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Heavy alcohol drinking has negative health effects in multiple organs. It predisposes lungs to inflammatory conditions associated with acute lung injury and increased incidence of pneumonia and sepsis, which may lead to death due to acute respiratory distress syndrome in some individuals with alcohol use disorder (AUD). In general, rodent models of alcohol exposure either do not recapitulate multiple organ injuries as seen in humans or require longer duration to establish tissue injury and inflammation. The recently introduced NIAAA model of alcohol-induced liver injury, characterized by a marked increase in steatosis and liver damage with 10 days of a liquid diet containing 5% ethanol followed by a single ethanol binge (5 g/kg). Therefore, we employed this model to explore the status of surfactant phospholipids, oxidative stress, tissue injury markers and inflammatory cytokines in lungs. In lungs of C57BL/6J mice, the alcohol feeding significantly increased levels of the surfactant phospholipid dipalmitoyl phosphatidylcholine (DPPC) as well as the truncated oxidized phosphatidylcholines palmitoyl oxovaleryl phosphatidyl-choline (POVPC), palmitoyl glutaryl phosphatidyl-choline (PGPC), palmitoyl oxo-nonanoyl phosphatidyl-choline (ALDO-PC), and palmitoyl azelaoyl phosphatidyl-choline (PAzePC) at 9 h post-binge. Additionally, gene expression of the enzymes catalyzing lipid oxidation, such as arachidonate 15-lipoxygenase (Alox15), prostaglandin synthase 2 (Ptgs2), Cytochrome P450 2E1 (Cyp2E1) and NADPH oxidase 1 (Nox1) were significantly increased. Furthermore, ethanol increased levels of the inflammatory cytokine Interleukin-17 in bronchoalveolar lavage fluid. In conclusion, the NIAAA alcohol feeding model might be suitable to study alcohol-induced lung injury and inflammation.
Collapse
Affiliation(s)
| | | | | | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
9
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Li D, Sun S. L-theanine relieves acute alcoholic liver injury by regulating the TNF-α/NF-κB signaling pathway in C57BL/6J mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Wang S, Tang Z, Zheng X, Deng J, Wang Z. Efficacy of human immunoglobulin injection and effects on serum inflammatory cytokines in neonates with acute lung injury. Exp Ther Med 2021; 22:931. [PMID: 34306200 PMCID: PMC8281239 DOI: 10.3892/etm.2021.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to explore the efficacy of intravenous immunoglobulin (IVIG) injection in neonates with acute lung injury (ALI) and assess its effects on serum inflammatory cytokine levels. The research subjects were 140 neonates with ALI who were evenly distributed into a control group (COG) and a study group (STG). The COG patients were treated routinely, whereas patients in the STG were administered IVIG in addition to the standard treatment received by the COG. The arterial partial pressure of oxygen (PaO2), PaO2/fraction of inspired oxygen (FIO2), mechanical ventilation time and hospitalization time were compared between the two groups. ELISA was used to determine the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the patients before treatment and at 12, 24 and 36 h after treatment. The Kaplan-Meier method was used to analyze the survival of the patients, including their survival for 30 days after treatment. The patients were divided into high and low cytokine expression groups based on their mean expression levels of serum IL-6 and TNF-α before treatment. After treatment, PaO2 and PaO2/FiO2 were significantly higher and mechanical ventilation and hospitalization time were reduced in the STG in comparison with the COG (all P<0.001). At 12, 24 and 36 h after treatment, serum IL-6 and TNF-α levels in the STG were lower than those in the COG (both P<0.05). The 30-day survival rate after treatment was not significantly different between the two groups (P>0.05). The 30-day survival rate in the high IL-6 and high TNF-α expression COG was lower than that in the low IL-6 and low TNF-α expression COG (both P<0.05). The results of the present study indicate that IVIG may improve pulmonary gas exchange, shorten the course of disease and reduce the inflammatory response in neonates with ALI.
Collapse
Affiliation(s)
- Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Zanmei Tang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Xuemei Zheng
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Zhangxing Wang
- Neonatal Intensive Care Unit, Longhua People's Hospital, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
11
|
Herrero R, Sánchez G, Asensio I, López E, Ferruelo A, Vaquero J, Moreno L, de Lorenzo A, Bañares R, Lorente JA. Liver-lung interactions in acute respiratory distress syndrome. Intensive Care Med Exp 2020; 8:48. [PMID: 33336286 PMCID: PMC7746785 DOI: 10.1186/s40635-020-00337-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with liver diseases are at high risk for the development of acute respiratory distress syndrome (ARDS). The liver is an important organ that regulates a complex network of mediators and modulates organ interactions during inflammatory disorders. Liver function is increasingly recognized as a critical determinant of the pathogenesis and resolution of ARDS, significantly influencing the prognosis of these patients. The liver plays a central role in the synthesis of proteins, metabolism of toxins and drugs, and in the modulation of immunity and host defense. However, the tools for assessing liver function are limited in the clinical setting, and patients with liver diseases are frequently excluded from clinical studies of ARDS. Therefore, the mechanisms by which the liver participates in the pathogenesis of acute lung injury are not totally understood. Several functions of the liver, including endotoxin and bacterial clearance, release and clearance of pro-inflammatory cytokines and eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the setting of sepsis and other severe inflammatory diseases. In this review, we summarized clinical and experimental support for the notion that the liver critically regulates systemic and pulmonary responses following inflammatory insults. Although promoting inflammation can be detrimental in the context of acute lung injury, the liver response to an inflammatory insult is also pro-defense and pro-survival. A better understanding of the liver–lung axis will provide valuable insights into new diagnostic targets and therapeutic strategies for clinical intervention in patients with or at risk for ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain. .,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.
| | - Gema Sánchez
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Laboratory of Biochemistry, Hospital Universitario de Getafe, Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Eva López
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Ferruelo
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Laura Moreno
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - José A Lorente
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Arteel GE. Liver-lung axes in alcohol-related liver disease. Clin Mol Hepatol 2020; 26:670-676. [PMID: 33053938 PMCID: PMC7641553 DOI: 10.3350/cmh.2020.0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol-related liver disease (ALD) and alcohol-related susceptibility to acute lung injury are the leading causes of morbidity and mortality due to chronic alcohol abuse. Most commonly, alcohol-induced injury to both organs are evaluated independently, although they share many parallel mechanisms of injury. Moreover, recent studies indicate that there is a potential liver lung axis that may contribute to organ pathology. This mini-review explores established and potential mechanisms of organ-organ crosstalk in ALD and alcohol-related lung injury.
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Kany S, Janicova A, Relja B. Innate Immunity and Alcohol. J Clin Med 2019; 8:jcm8111981. [PMID: 31739600 PMCID: PMC6912266 DOI: 10.3390/jcm8111981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
The innate immunity has evolved during millions of years, and thus, equivalent or comparable components are found in most vertebrates, invertebrates, and even plants. It constitutes the first line of defense against molecules, which are either pathogen-derived or a danger signal themselves, and not seldom both. These molecular patterns are comprised of highly conserved structures, a common trait in innate immunity, and constitute very potent triggers for inflammation mediated via extracellular or intracellular pattern recognition receptors. Human culture is often interweaved with the consumption of alcohol, in both drinking habits, its acute or chronical misuse. Apart from behavioral effects as often observed in intoxicated individuals, alcohol consumption also leads to immunological modulation on the humoral and cellular levels. In the last 20 years, major advances in this field of research have been made in clinical studies, as well as in vitro and in vivo research. As every physician will experience intoxicated patients, it is important to be aware of the changes that this cohort undergoes. This review will provide a summary of the current knowledge on the influence of alcohol consumption on certain factors of innate immunity after a hit, followed by the current studies that display the effect of alcohol with a description of the model, the mode of alcohol administration, as well as its dose. This will provide a way for the reader to evaluate the findings presented.
Collapse
|
14
|
Chronic + binge alcohol exposure promotes inflammation and alters airway mechanics in the lung. Alcohol 2019; 80:53-63. [PMID: 30445135 DOI: 10.1016/j.alcohol.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Alcohol use disorders are major risk factors for the development of and susceptibility to acute respiratory distress syndrome. Although these risks of alcohol consumption on the lung are well described, mechanisms by which alcohol abuse promotes acute lung injury are poorly understood. These gaps in our understanding are due, at least in part, to limitations of animal models to recapitulate human alcohol consumption. Recently, a new model of chronic plus binge alcohol exposure was developed that is hypothesized to better model drinking patterns of individuals with alcohol use disorders. Specifically, this paradigm models chronic consumption coupled with periodic bouts of heavy drinking. The impacts of this alcohol-exposure regimen on the lung are uncharacterized. Therefore, the goal of this study was to examine lung injury and inflammation in a well-characterized experimental model of chronic + binge alcohol exposure. METHODS 10-week-old male C57Bl6/J mice were administered ethanol-containing (or isocaloric control) liquid diet for 10 days, followed by a single ethanol gavage (5 g/kg). Lung inflammation and pulmonary function were assessed. RESULTS Ten days of ethanol-containing liquid diet alone (chronic) did not detectably affect any variables measured. However, ethanol diet plus gavage (chronic + binge) caused neutrophils to accumulate in the lung tissue and in the bronchoalveolar lavage fluid 24 h post-binge. This inflammatory cell recruitment was associated with airway hyper-responsiveness to inhaled methacholine, as indicated by elevated resistance, Newtonian resistance, and respiratory resistance. CONCLUSIONS Taken together, the novel findings reveal that ethanol alone, absent of any secondary inflammatory insult, is sufficient to produce inflammation in the lung. Although these changes were relatively mild, they were associated with functional changes in the central airways. This animal model may be useful in the future for identifying mechanisms by which alcohol abuse sensitizes at-risk individuals to lung injury.
Collapse
|
15
|
Hudson SV, Miller HA, Mahlbacher GE, Saforo D, Beverly LJ, Arteel GE, Frieboes HB. Computational/experimental evaluation of liver metastasis post hepatic injury: interactions with macrophages and transitional ECM. Sci Rep 2019; 9:15077. [PMID: 31636296 PMCID: PMC6803648 DOI: 10.1038/s41598-019-51249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The complex interactions between subclinical changes to hepatic extracellular matrix (ECM) in response to injury and tumor-associated macrophage microenvironmental cues facilitating metastatic cell seeding remain poorly understood. This study implements a combined computational modeling and experimental approach to evaluate tumor growth following hepatic injury, focusing on ECM remodeling and interactions with local macrophages. Experiments were performed to determine ECM density and macrophage-associated cytokine levels. Effects of ECM remodeling along with macrophage polarization on tumor growth were evaluated via computational modeling. For primary or metastatic cells in co-culture with macrophages, TNF-α levels were 5× higher with M1 vs. M2 macrophages. Metastatic cell co-culture exhibited 10× higher TNF-α induction than with primary tumor cells. Although TGFβ1 induction was similar between both co-cultures, levels were slightly higher with primary cells in the presence of M1. Simulated metastatic tumors exhibited decreased growth compared to primary tumors, due to high local M1-induced cytotoxicity, even in a highly vascularized microenvironment. Experimental analysis combined with computational modeling may provide insight into interactions between ECM remodeling, macrophage polarization, and liver tumor growth.
Collapse
Affiliation(s)
- Shanice V Hudson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Grace E Mahlbacher
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Douglas Saforo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40292, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA.
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
16
|
Loftis JM, Taylor J, Hudson R, Firsick EJ. Neuroinvasion and cognitive impairment in comorbid alcohol dependence and chronic viral infection: An initial investigation. J Neuroimmunol 2019; 335:577006. [PMID: 31325774 DOI: 10.1016/j.jneuroim.2019.577006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Viruses that invade the central nervous system (CNS) can cause neuropsychiatric impairments. Similarly, chronic alcohol exposure can induce inflammatory responses that alter brain function. However, the effects of a chronic viral infection and comorbid alcohol use on neuroinflammation and behavior are not well-defined. We investigated the role of heavy alcohol intake in regulating inflammatory responses and behavioral signs of cognitive impairments in mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13. LCMV-infected mice exposed to alcohol had increased peripheral inflammation and impaired cognitive function (as indicated by performance on the novel object recognition test). Initial findings suggest that brain region-specific dysregulation of microglial response to viral infection may contribute to cognitive impairments in the context of heavy alcohol use.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Abuse Research Center, Veterans Affairs Portland Health Care System, Oregon Health & Science University, Portland, OR, USA.
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Evan J Firsick
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
17
|
Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68:825-839. [PMID: 31327029 DOI: 10.1007/s00011-019-01271-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes). AIM AND METHOD The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using 'organ crosstalk' as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined. CONCLUSION The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the 'crosstalk' between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.
Collapse
|
18
|
Chronic heavy drinking drives distinct transcriptional and epigenetic changes in splenic macrophages. EBioMedicine 2019; 43:594-606. [PMID: 31005514 PMCID: PMC6557917 DOI: 10.1016/j.ebiom.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic heavy alcohol drinking (CHD) leads to significant organ damage, increased susceptibility to infections, and delayed wound healing. These adverse outcomes are believed to be mediated by alterations in the function of myeloid cells; however, the mechanisms underlying these changes are poorly understood. Methods We determined the impact of CHD on the phenotype of splenic macrophages using flow cytometry. Changes in functional responses to LPS were measured using luminex and RNA-Seq. Finally, alterations in chromatin accessibility were uncovered using ATAC-Seq. Findings A history of CHD led to increased frequency of splenic macrophages that exhibited a heightened activation state at resting. Additionally, splenic macrophages from CHD animals generated a larger inflammatory response to LPS, both at protein and gene expression levels. Finally, CHD resulted in increased levels of H3K4me3, a histone mark of active promoters, as well as chromatin accessibility at promoters and intergenic regions that regulate inflammatory responses. Interpretation These findings suggest that a history of CHD alters the immune fitness of tissue-resident macrophages via epigenetic mechanisms. Fund National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) - R24AA019431, U01 AA13641, U01 AA13510, R21AA021947, and R21AA025839.
Collapse
|
19
|
Kim A, McCullough RL, Poulsen KL, Sanz-Garcia C, Sheehan M, Stavitsky AB, Nagy LE. Hepatic Immune System: Adaptations to Alcohol. Handb Exp Pharmacol 2018; 248:347-367. [PMID: 29374837 DOI: 10.1007/164_2017_88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both the innate and adaptive immune systems are critical for the maintenance of healthy liver function. Immune activity maintains the tolerogenic capacity of the liver, modulates hepatocellular response to various stresses, and orchestrates appropriate cellular repair and turnover. However, in response to heavy, chronic alcohol exposure, the finely tuned balance of pro- and anti-inflammatory functions in the liver is disrupted, leading to a state of chronic inflammation in the liver. Over time, this non-resolving inflammatory response contributes to the progression of alcoholic liver disease (ALD). Here we review the contributions of the cellular components of the immune system to the progression of ALD, as well as the pathophysiological roles for soluble and circulating mediators of immunity, including cytokines, chemokines, complement, and extracellular vesicles, in ALD. Finally, we compare the role of the innate immune response in health and disease in the liver to our growing understanding of the role of neuroimmunity in the development and maintenance of a healthy central nervous system, as well as the progression of neuroinflammation.
Collapse
Affiliation(s)
- Adam Kim
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos Sanz-Garcia
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Megan Sheehan
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abram B Stavitsky
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
20
|
Fadel A, Plunkett A, Li W, Tessu Gyamfi VE, Nyaranga RR, Fadel F, Dakak S, Ranneh Y, Salmon Y, Ashworth JJ. Modulation of innate and adaptive immune responses by arabinoxylans. J Food Biochem 2017. [DOI: 10.1111/jfbc.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
- Faculty of Science and Engineering, School of Healthcare Science; Manchester Metropolitan Univeristy; Manchester M1 5GD United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation; University of Chester; Chester CH1 4BJ United Kingdom
| | - Vivian Elewosi Tessu Gyamfi
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Rosemarie Roma Nyaranga
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Fatma Fadel
- Independent Researcher, Al-Baha University; Al Bahah Saudi Arabia
| | - Suaad Dakak
- Faculty of Pharmacy and Medical Sciences; Al-Ahliyya Amman University; Amman Jordan
| | - Yazan Ranneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Malaysia
| | - Yasser Salmon
- Veteriner Fakultesi, Istanbul Universitesi; Istanbul Turkey
| | - Jason J Ashworth
- Faculty of Science and Engineering, School of Healthcare Science; Manchester Metropolitan Univeristy; Manchester M1 5GD United Kingdom
| |
Collapse
|
21
|
Poole LG, Massey VL, Siow DL, Torres-Gonzáles E, Warner NL, Luyendyk JP, Ritzenthaler JD, Roman J, Arteel GE. Plasminogen Activator Inhibitor-1 Is Critical in Alcohol-Enhanced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 57:315-323. [PMID: 28445073 PMCID: PMC5625219 DOI: 10.1165/rcmb.2016-0184oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/19/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin β3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBβ3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Veronica L. Massey
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Deanna L. Siow
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Edilson Torres-Gonzáles
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Nikole L. Warner
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Gavin E. Arteel
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
22
|
Organ-Organ Crosstalk and Alcoholic Liver Disease. Biomolecules 2017; 7:biom7030062. [PMID: 28812994 PMCID: PMC5618243 DOI: 10.3390/biom7030062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well-understood. Given the poor prognosis of treating clinically-relevant alcoholic liver disease (ALD) (i.e., alcoholic hepatitis (AH) and cirrhosis), additional research is required to develop more effective therapies. While the stages of ALD have been well-characterized, targeted therapies to prevent or reverse this process in humans are still needed. Better understanding of risk factors and mechanisms underlying disease progression can lead to the development of rational therapies to prevent or reverse ALD in the clinic. A potential area of targeted therapy for ALD may be organ–organ communication in the early stages of the disease. In contrast to AH and end-stage liver diseases, the involvement of multiple organs in the development of ALD is less understood. The impact of these changes on pathology to the liver and other organs may not only influence disease progression during the development of the disease, but also outcomes of end stages diseases. The purpose of this review is to summarize the established and proposed communication between the liver and other organ systems that may contribute to the development and progression of liver disease, as well as to other organs. Potential mechanisms of this organ–organ communication are also discussed.
Collapse
|
23
|
Qin CC, Liu YN, Hu Y, Yang Y, Chen Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017; 23:3043-3052. [PMID: 28533661 PMCID: PMC5423041 DOI: 10.3748/wjg.v23.i17.3043] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Macrophage inflammatory protein (MIP)-2 is one of the CXC chemokines and is also known as chemokine CXC ligand (CXCL2). MIP-2 affects neutrophil recruitment and activation through the p38 mitogen-activated-protein-kinase-dependent signaling pathway, by binding to its specific receptors, CXCR1 and CXCR2. MIP-2 is produced by a variety of cell types, such as macrophages, monocytes, epithelial cells, and hepatocytes, in response to infection or injury. In liver injury, activated Kupffer cells are known as the major source of MIP-2. MIP-2-recruited and activated neutrophils can accelerate liver inflammation by releasing various inflammatory mediators. Here, we give a brief introduction to the basic molecular and cellular sources of MIP-2, and focus on its physiological and pathological functions in acute liver injury induced by concanavalin A, lipopolysaccharides, irradiation, ischemia/reperfusion, alcohol, and hypoxia, and hepatectomy-induced liver regeneration and tumor colorectal metastasis. Further understanding of the regulatory mechanisms of MIP-2 secretion and activation may be helpful to develop MIP-2-targeted therapeutic strategies to prevent liver inflammation.
Collapse
|
24
|
Anti-steatotic and anti-inflammatory effects of Hovenia dulcis Thunb. extracts in chronic alcohol-fed rats. Biomed Pharmacother 2017; 90:393-401. [PMID: 28380415 DOI: 10.1016/j.biopha.2017.03.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
The anti-steatotic and anti-inflammatory effects of fruit water extract (FW) and seed ethanol extract (SE) of Hovenia dulcis Thunb. in chronic alcohol-fed rats were investigated. Rats were fed a liquid diet containing 36% calories from alcohol and orally administered FW or SE (300 and 500mg/kg/day). Both FW and SE reduced hepatic lipid contents and droplets, serum lipid concentration and inflammatory markers (hs-CRP, TNF-α and IL-6) levels compared with the alcohol control group. Alcohol led to significant decreases in the hepatic fatty acid oxidative gene (Ppargc1a, Cpt1a and Acsl1) levels, while it significantly increased the Myd88 and Tnfa gene levels. However, FW or SE supplementation significantly up-regulated gene expression of Ppargc1a, Ppara, Cpt1a and Acsl1, and down-regulated gene expression of Myd88, Tnfa and Crp compared with the alcohol control group. FW or SE supplementation also significantly decreased hepatic activities of fatty acid synthase and phosphatidate phosphohydrolase in chronic alcohol-fed rats. Plasma alcohol and acetaldehyde levels, hepatic enzyme activity and protein expression of CYP2E1 were lowered by FW or SE supplementation. These results indicate that both FW and SE play an important role in improvement of alcoholic hepatic steatosis and inflammation via regulation of lipid and inflammation metabolism.
Collapse
|
25
|
Massey VL, Dolin CE, Poole LG, Hudson SV, Siow DL, Brock GN, Merchant ML, Wilkey DW, Arteel GE. The hepatic "matrisome" responds dynamically to injury: Characterization of transitional changes to the extracellular matrix in mice. Hepatology 2017; 65:969-982. [PMID: 28035785 PMCID: PMC5319876 DOI: 10.1002/hep.28918] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/14/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The extracellular matrix (ECM) consists of diverse components that work bidirectionally with surrounding cells to create a responsive microenvironment. In some contexts (e.g., hepatic fibrosis), changes to the ECM are well recognized and understood. However, it is becoming increasingly accepted that the hepatic ECM proteome (i.e., matrisome) responds dynamically to stress well before fibrosis. The term "transitional tissue remodeling" describes qualitative and quantitative ECM changes in response to injury that do not alter the overall architecture of the organ; these changes in ECM may contribute to early disease initiation and/or progression. The nature and magnitude of these changes to the ECM in liver injury are poorly understood. The goals of this work were to validate analysis of the ECM proteome and compare the impact of 6 weeks of ethanol diet and/or acute lipopolysaccharide (LPS). Liver sections were processed in a series of increasingly rigorous extraction buffers to separate proteins by solubility. Extracted proteins were identified using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Both ethanol and LPS dramatically increased the number of matrisome proteins ∼25%. The enhancement of LPS-induced liver damage by ethanol preexposure was associated with unique protein changes. CONCLUSION An extraction method to enrich the hepatic ECM was characterized. The results demonstrate that the hepatic matrisome responds dynamically to both acute (LPS) and chronic (ethanol) stresses, long before more-dramatic fibrotic changes to the liver occur. The changes to the mastrisome may contribute, at least in part, to the pathological responses to these stresses. It is also interesting that several ECM proteins responded similarly to both stresses, suggesting a common mechanism in both models. Nevertheless, there were responses that were unique to the individual and combined exposures. (Hepatology 2017;65:969-982).
Collapse
Affiliation(s)
- Veronica L. Massey
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| | - Christine E. Dolin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| | - Lauren G. Poole
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| | - Shanice V. Hudson
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| | - Deanna L. Siow
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| | - Guy N. Brock
- Department of Bioinformatics and Biostatistics, University of Louisville Health Sciences Center, Louisville, KY
| | - Michael L. Merchant
- University of Louisville Alcohol Research Center, Louisville, KY,Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY
| | - Daniel W. Wilkey
- University of Louisville Alcohol Research Center, Louisville, KY,Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY
| | - Gavin E. Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY,University of Louisville Alcohol Research Center, Louisville, KY
| |
Collapse
|
26
|
Detection of the serum endothelin content in patients with acute lung injury and its value of severity evaluation. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Vatsalya V, Avila D, Frimodig JC, Barve SS, McClain CJ, Gobejishvili L. Liver Injury Assessment by Vetscan VS2 Analyzer and Most Frequently Used ALT/GTP Reagent. ACTA ACUST UNITED AC 2016; 4. [PMID: 27275009 DOI: 10.15406/ghoa.2016.04.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIM Liver injury is estimated by serum alanine aminotransferases (ALT) levels in experimental animal models. Laboratories use various techniques to measure ALT levels including assay reagents and chemistry analyzers. VetScan VS2 (VS2) is widely used in veterinary clinics and research laboratories for highly reproducible, convenient and effective testing. Alternatively, ALT liquid reagent is used by laboratories to estimate liver injury in animal studies. The aim of this study was to perform comparative analyses of data obtained from these two assays in two different animal models. METHODS In this study, we used two different mouse models and compared the ALT levels measured using VetScan VS2 chemistry analyzer and ALT liquid reagent. Immunohistochemical analysis of hepatic tissue was also performed to document liver pathology. The first model is a high fat diet feeding model that results in a mild hepatic steatosis (fat accumulation in the liver) without elevation of ALT levels. For a severe liver injury model, we employed a hepatotoxin-induced liver injury model (carbon tetrachloride, CCl4), which leads to the development of hepatic fibrosis and very high ALT levels. RESULTS VetScan VS2 and ALT reagent gave different values of ALT for all animal groups. However, linear regression analysis showed a significantly high association between ALT levels obtained by VS2 and ALT liquid reagent in a high-fat feeding model with no liver injury. For the CCl4 induced liver injury model, serum dilution (5 and 10 times) was performed to obtain accurate results with ALT reagent. ALT levels acquired from both techniques showed a close association. Interestingly, this correlation was closer when serum was diluted 5 fold. CONCLUSION This study demonstrates that both methods give similar results when evaluating liver injury in animal studies. However, the serum dilution factor is critical for severe liver injury assessment when using ALT reagent and requires some optimization. In this regard, VetScan VS2 is easier to use and gives comparable results.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Department of Medicine, University of Louisville School of Medicine, USA; Robley Rex Veteran's Medical Center, USA
| | - Diana Avila
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA
| | - Jane C Frimodig
- Department of Surgery, University of Louisville School of Medicine, USA
| | - Shirish S Barve
- Department of Medicine, University of Louisville School of Medicine, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville School of Medicine, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA; Robley Rex Veteran's Medical Center, USA
| | - Leila Gobejishvili
- Department of Medicine, University of Louisville School of Medicine, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA
| |
Collapse
|
28
|
Dewari PS, Ajani F, Kushawah G, Kumar DS, Mishra RK. Reversible loss of reproductive fitness in zebrafish on chronic alcohol exposure. Alcohol 2016; 50:83-9. [PMID: 26781213 DOI: 10.1016/j.alcohol.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023]
Abstract
Alcoholism is one of the most prevalent diseases in society and causes significant health and social problems. Alcohol consumption by pregnant women is reported to cause adverse effects on the physical and psychological growth of the fetus. However, the direct effect of chronic alcohol consumption on reproductive fitness has not been tested. In recent years, the zebrafish (Danio rerio) has emerged as a versatile model system to study the effects of alcohol on behavior and embryonic development. We utilized the zebrafish model system to address the effect of chronic alcohol exposure (0.5% alcohol in the holding tank for 9 weeks) on reproductive capacity. We found a dramatic decrease in fecundity, measured by counting the number of eggs laid, when at least one of the parents is subject to chronic alcohol exposure. Interestingly, a 9-week alcohol withdrawal program completely restored the reproductive capacity of the treated subjects. In agreement with observations on fecundity, the chronic alcohol exposure leads to increased anxiety, as measured by the novel-tank diving assay. Conversely, the withdrawal program diminished heightened anxiety in alcohol-exposed subjects. Our results highlight the adverse effects of chronic alcohol exposure on the reproductive capacity of both males and females, and underscore the utility of the zebrafish model system to understand the biology of chronic alcoholism.
Collapse
Affiliation(s)
- Pooran Singh Dewari
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Funmilola Ajani
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Gopal Kushawah
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Damera Santhosh Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
29
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|