1
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Lattig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal significant loci associated with alcohol use disorder. Front Genet 2024; 15:1345410. [PMID: 38633406 PMCID: PMC11021708 DOI: 10.3389/fgene.2024.1345410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| | - Maria C. Lattig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| |
Collapse
|
2
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. Mol Psychiatry 2023; 28:4766-4776. [PMID: 37679472 PMCID: PMC10918038 DOI: 10.1038/s41380-023-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson-MUSC Artificial Intelligence Hub, Clemson University, Clemson, SC, 29634-0975, USA
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542637. [PMID: 37398482 PMCID: PMC10312445 DOI: 10.1101/2023.05.28.542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
|
4
|
Schreiner DC, Wright A, Baltz ET, Wang T, Cazares C, Gremel CM. Chronic alcohol exposure alters action control via hyperactive premotor corticostriatal activity. Cell Rep 2023; 42:112675. [PMID: 37342908 PMCID: PMC10468874 DOI: 10.1016/j.celrep.2023.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Alcohol use disorder (AUD) alters decision-making control over actions, but disruptions to the responsible neural circuit mechanisms are unclear. Premotor corticostriatal circuits are implicated in balancing goal-directed and habitual control over actions and show disruption in disorders with compulsive, inflexible behaviors, including AUD. However, whether there is a causal link between disrupted premotor activity and altered action control is unknown. Here, we find that mice chronically exposed to alcohol (chronic intermittent ethanol [CIE]) showed impaired ability to use recent action information to guide subsequent actions. Prior CIE exposure resulted in aberrant increases in the calcium activity of premotor cortex (M2) neurons that project to the dorsal medial striatum (M2-DMS) during action control. Chemogenetic reduction of this CIE-induced hyperactivity in M2-DMS neurons rescued goal-directed action control. This suggests a direct, causal relationship between chronic alcohol disruption to premotor circuits and decision-making strategy and provides mechanistic support for targeting activity of human premotor regions as a potential treatment in AUD.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Wright
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily T Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Tianyu Wang
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA; The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Dai X, Yu J, Gao L, Zhang J, Li Y, Du B, Huang X, Zhang H. Cortical thickness and intrinsic activity changes in middle-aged men with alcohol use disorder. Alcohol 2023; 106:15-21. [PMID: 36272658 DOI: 10.1016/j.alcohol.2022.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Previous studies reported the alterations of brain structure or function in people with alcohol use disorder (AUD). However, a multi-modal approach combining structural and functional studies is essential to understanding the neural mechanisms of AUD. Hence, we examined regional differences in cortical thickness (CT) and amplitude of low-frequency fluctuation (ALFF) in patients with AUD. METHODS Thirty male patients with AUD and thirty age- and education-matched healthy male controls were recruited. High-resolution anatomical and resting-state functional MRI (rs-fMRI) data were collected, and the CT and ALFF were computed. RESULTS Behaviorally, males with AUD showed a cognitive decline in multiple domains. Structurally, they presented prominent reductions in CT in the bilateral temporal, insular, precentral, and dorsolateral prefrontal gyri (p < 0.05, voxel-wise family-wise error [FWE]). Functionally, a significant decrease in ALFF in the bilateral temporal, dorsolateral prefrontal, insular, putamen, cerebellum, right precuneus, mid-cingulate, and precentral gyri were observed (p < 0.05, FWE). CONCLUSIONS Our findings demonstrate the dual alterations of alcohol-related brain structure and function in male patients with AUD. These results may be useful in understanding the neural mechanisms in AUD.
Collapse
Affiliation(s)
- Xiyong Dai
- Department of Radiology, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Jinming Yu
- Department of Psychiatry, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, China
| | - Jianlong Zhang
- Department of Psychiatry, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Yuanchun Li
- Department of Nursing, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Baoguo Du
- Department of Psychiatry, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Xiangyi Huang
- Department of Radiology, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China
| | - Haibo Zhang
- Department of Radiology, The Third People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China.
| |
Collapse
|
6
|
Anderson P, Kokole D, Jané Llopis E, Burton R, Lachenmeier DW. Lower Strength Alcohol Products-A Realist Review-Based Road Map for European Policy Making. Nutrients 2022; 14:3779. [PMID: 36145155 PMCID: PMC9500668 DOI: 10.3390/nu14183779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
This paper reports the result of a realist review based on a theory of change that substitution of higher strength alcohol products with lower strength alcohol products leads to decreases in overall levels of alcohol consumption in populations and consumer groups. The paper summarizes the results of 128 publications across twelve different themes. European consumers are increasingly buying and drinking lower strength alcohol products over time, with some two fifths doing so to drink less alcohol. It tends to be younger more socially advantaged men, and existing heavier buyers and drinkers of alcohol, who take up lower strength alcohol products. Substitution leads to a lower number of grams of alcohol bought and drunk. Although based on limited studies, buying and drinking lower strength products do not appear to act as gateways to buying and drinking higher strength products. Producer companies are increasing the availability of lower strength alcohol products, particularly for beer, with extra costs of production offset by income from sales. Lower strength alcohol products tend to be marketed as compliments to, rather than substitutes of, existing alcohol consumption, with, to date, the impact of such marketing not evaluated. Production of lower strength alcohol products could impair the impact of existing alcohol policy through alibi marketing (using the brand of lower strength products to promote higher strength products), broadened normalization of drinking cultures, and pressure to weaken policies. In addition to increasing the availability of lower strength products and improved labelling, the key policy that favours substitution of higher strength alcohol products with lower strength products is an alcohol tax based on the dose of alcohol across all products.
Collapse
Affiliation(s)
- Peter Anderson
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Daša Kokole
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eva Jané Llopis
- ESADE Business School, Ramon Llull University, 08034 Barcelona, Spain
| | - Robyn Burton
- Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| |
Collapse
|
7
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
8
|
Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 2022; 12:brainsci12050606. [PMID: 35624993 PMCID: PMC9139058 DOI: 10.3390/brainsci12050606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.
Collapse
|
9
|
Schuh KM, Sneddon EA, Nader AM, Muench MA, Radke AK. Orbitofrontal cortex subregion inhibition during binge-like and aversion-resistant alcohol drinking. Alcohol 2022; 99:1-8. [PMID: 34863917 PMCID: PMC8844094 DOI: 10.1016/j.alcohol.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023]
Abstract
Two important contributors to alcohol-related problems and alcohol use disorder (AUD) are binge- and compulsive-like drinking. The orbitofrontal cortex (OFC), a brain region implicated in outcome valuation and behavioral flexibility, is functionally altered by alcohol exposure. Data from animal models also suggest that both the medial (mOFC) and lateral (lOFC) subregions of the OFC regulate alcohol-related behaviors. The current study was designed to examine the contributions of mOFC and lOFC using a model of binge-like and aversion-resistant ethanol drinking in C57BL/6J male and female mice. The inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) hM4Di were used to inhibit neurons in either the mOFC or the lOFC in mice drinking 15% ethanol in a two-bottle, limited-access, modified drinking in the dark paradigm. The effects of chemogenetic inhibition on consumption of quinine-adulterated ethanol, water, and water + quinine were also assessed. Inhibiting the mOFC did not alter consumption of ethanol or aversion-resistant drinking of ethanol + quinine. In contrast, inhibition of neurons in the lOFC increased consumption, but not preference, of ethanol alone. mOFC and lOFC inhibition did not alter water or quinine-adulterated water intake, indicating the effects shown here are specific to ethanol drinking. These data support the role of the lOFC in regulating alcohol consumption but fail to find a similar role for mOFC.
Collapse
Affiliation(s)
| | | | | | | | - Anna K. Radke
- Correspondence to: Anna K. Radke, Ph.D., 90 N. Patterson Ave., Oxford, OH, USA 45056, , Phone: 513-529-6941, Fax: 513-529-2420
| |
Collapse
|
10
|
Fama R, Le Berre AP, Sassoon SA, Zahr NM, Pohl KM, Pfefferbaum A, Sullivan EV. Memory impairment in alcohol use disorder is associated with regional frontal brain volumes. Drug Alcohol Depend 2021; 228:109058. [PMID: 34610518 PMCID: PMC8595873 DOI: 10.1016/j.drugalcdep.2021.109058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Episodic memory deficits occur in alcohol use disorder (AUD), but their anatomical substrates remain in question. Although persistent memory impairment is classically associated with limbic circuitry disruption, learning and retrieval of new information also relies on frontal systems. Despite AUD vulnerability of frontal lobe integrity, relations between frontal regions and memory processes have been under-appreciated. METHODS Participants included 91 AUD (49 with a drug diagnosis history) and 36 controls. Verbal and visual episodic memory scores were age- and education-corrected. Structural magnetic resonance imaging (MRI) data yielded regional frontal lobe (precentral, superior, orbital, middle, inferior, supplemental motor, and medial) and total hippocampal volumes. RESULTS AUD were impaired on all memory scores and had smaller precentral frontal and hippocampal volumes than controls. Orbital, superior, and inferior frontal volumes and lifetime alcohol consumption were independent predictors of episodic memory in AUD. Selectivity was established with a double dissociation, where orbital frontal volume predicted verbal but not visual memory, whereas inferior frontal volumes predicted visual but not verbal memory. Further, superior frontal volumes predicted verbal memory in AUD alone, whereas orbital frontal volumes predicted verbal memory in AUD+drug abuse history. CONCLUSIONS Selective relations among frontal subregions and episodic memory processes highlight the relevance of extra-limbic regions in mnemonic processes in AUD. Memory deficits resulting from frontal dysfunction, unlike the episodic memory impairment associated with limbic dysfunction, may be more amenable to recovery with cessation or reduction of alcohol misuse and may partially explain the heterogeneity in episodic memory abilities in AUD.
Collapse
Affiliation(s)
- Rosemary Fama
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA; Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | - Anne-Pascale Le Berre
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA
| | - Stephanie A Sassoon
- Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Natalie M Zahr
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA; Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Kilian M Pohl
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA; Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Adolf Pfefferbaum
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA; Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Edith V Sullivan
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Dannenhoffer CA, Robertson MM, Macht VA, Mooney SM, Boettiger CA, Robinson DL. Chronic alcohol exposure during critical developmental periods differentially impacts persistence of deficits in cognitive flexibility and related circuitry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:117-173. [PMID: 34696872 DOI: 10.1016/bs.irn.2021.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cognitive flexibility in decision making depends on prefrontal cortical function and is used by individuals to adapt to environmental changes in circumstances. Cognitive flexibility can be measured in the laboratory using a variety of discrete, translational tasks, including those that involve reversal learning and/or set-shifting ability. Distinct components of flexible behavior rely upon overlapping brain circuits, including different prefrontal substructures that have separable impacts on decision making. Cognitive flexibility is impaired after chronic alcohol exposure, particularly during development when the brain undergoes rapid maturation. This review examines how cognitive flexibility, as indexed by reversal and set-shifting tasks, is impacted by chronic alcohol exposure in adulthood, adolescent, and prenatal periods in humans and animal models. We also discuss areas for future study, including mechanisms that may contribute to the persistence of cognitive deficits after developmental alcohol exposure and the compacting consequences from exposure across multiple critical periods.
Collapse
Affiliation(s)
- C A Dannenhoffer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - M M Robertson
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S M Mooney
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - C A Boettiger
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|