1
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2024:S0741-8329(24)00114-9. [PMID: 39218047 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Swanson BN, Lewis SA, Kaur A, Berry JN. Escalating caffeine dose-dependently increases alcohol consumption in adult male, but not female, C57BL/6J mice. Pharmacol Biochem Behav 2024; 241:173806. [PMID: 38878977 DOI: 10.1016/j.pbb.2024.173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Although previous research has illustrated the effects of the consumption of alcohol and caffeine individually, less research has focused on the popular combination of the two drugs. The increase in alcohol consumption when combined with caffeine has led to the idea that the stimulant effects of caffeine may mask the depressant effects of alcohol, and this may contribute to increased binge drinking as the individual feels more awake and stimulated. Preclinical research has shown various effects of combined alcohol and caffeine where several studies show decreased alcohol consumption and others show increased alcohol consumption and even binge-like drinking. Results from a previous study in our lab indicate that intermittent access (IA) to steady levels of low (0.015 %) but not moderate (0.03 %) caffeine increased alcohol consumption in male C57BL/6J mice. The current studies further investigated the sex and dose differences in adult mice receiving varying concentrations of caffeine on combined alcohol intake. In Experiment 1, adult mice (n = 50, 25 males and 25 females) had IA to one of the following experimental bottles throughout the 4 week period: water, alcohol (10 % v/v), caffeine (0.015 % w/v), or 10 % alcohol +0.015 % caffeine. In Experiment 2, adult mice (n = 70, 35 males and 35 females) were given IA to one of the following experimental bottles: water, alcohol (10 % v/v; steady, maintained throughout the 4 weeks), caffeine (increasing 0.01 % to 0.015 % to 0.02 % to 0.03 % weekly), or 10 % alcohol+increasing caffeine (at the previously mentioned concentrations). When both caffeine and alcohol concentrations remained steady throughout the 4 weeks, there was no change in alcohol consumption. Chronic exposure to IA caffeine led to increased locomotor activity and decreased freezing episodes when tested in the open field test approximately 6 h after removal of the bottles. In Experiment 2, caffeine dose-dependently increased alcohol co-consumption in male mice whereas female mice consumed less alcohol when it was presented in conjunction with caffeine. The results in males are in line with clinical literature suggesting that the combination of alcohol and caffeine may lead to increased stimulation and alcohol drinking. Additionally, these studies provide evidence that the escalation of caffeine is crucial when investigating alcohol and caffeine co-consumption using the IA paradigm.
Collapse
Affiliation(s)
- Bradyn N Swanson
- Butler University, Department of Psychology, 4600 Sunset Avenue, Indianapolis, IN 46208, United States of America
| | - Sydney A Lewis
- Butler University, Department of Psychology, 4600 Sunset Avenue, Indianapolis, IN 46208, United States of America
| | - Amarpreet Kaur
- Butler University, Department of Psychology, 4600 Sunset Avenue, Indianapolis, IN 46208, United States of America
| | - Jennifer N Berry
- Butler University, Department of Psychology, 4600 Sunset Avenue, Indianapolis, IN 46208, United States of America.
| |
Collapse
|
3
|
Salazar AL, Centanni SW. Sex Differences in Mouse Models of Voluntary Alcohol Drinking and Abstinence-Induced Negative Emotion. Alcohol 2024; 121:45-57. [PMID: 39053705 DOI: 10.1016/j.alcohol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Alcohol Use Disorder (AUD) is a growing problem worldwide, causing an incredible burden on health and the economy. Though AUD impacts people of all backgrounds and demographics, increasing evidence has suggested robust sex differences in alcohol drinking patterns and AUD-induced negative emotionality or hyperkatifeia. Rates of problematic drinking have significantly risen among women, and women face more severe negative emotional consequences in abstinence such as increased risk of comorbidity with an anxiety or mood disorder and more severe symptoms of depression. As such, a bevy of preclinical literature using contingent methods of alcohol (ethanol) consumption has amassed in recent years to better understand sex as a biological variable in alcohol drinking and abstinence-induced negative emotionality. Mice are widely used to model alcohol drinking, as they are conducive to genetic manipulation strategies, and many strains will voluntarily consume alcohol. Sex-specific results from these mouse studies, however, have been inconsistent. Therefore, this review aims to summarize the current knowledge on sex differences in AUD-related contingent ethanol drinking and abstinence-induced negative emotionality in mice. Various contingent mouse drinking models and negative emotional-based behavioral paradigms are introduced and subsequently discussed in the context of sex differences to show increasing indications of sex specificity in mouse preclinical studies of AUD. With this review, we hope to inform future research on potential sex differences in preclinical mouse models of AUD and provide mounting evidence supporting the need for more widespread inclusion of preclinical female subjects in future studies.
Collapse
Affiliation(s)
- Amanda L Salazar
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Samuel W Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
4
|
Goodwin NL, Choong JJ, Hwang S, Pitts K, Bloom L, Islam A, Zhang YY, Szelenyi ER, Tong X, Newman EL, Miczek K, Wright HR, McLaughlin RJ, Norville ZC, Eshel N, Heshmati M, Nilsson SRO, Golden SA. Simple Behavioral Analysis (SimBA) as a platform for explainable machine learning in behavioral neuroscience. Nat Neurosci 2024; 27:1411-1424. [PMID: 38778146 PMCID: PMC11268425 DOI: 10.1038/s41593-024-01649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
The study of complex behaviors is often challenging when using manual annotation due to the absence of quantifiable behavioral definitions and the subjective nature of behavioral annotation. Integration of supervised machine learning approaches mitigates some of these issues through the inclusion of accessible and explainable model interpretation. To decrease barriers to access, and with an emphasis on accessible model explainability, we developed the open-source Simple Behavioral Analysis (SimBA) platform for behavioral neuroscientists. SimBA introduces several machine learning interpretability tools, including SHapley Additive exPlanation (SHAP) scores, that aid in creating explainable and transparent behavioral classifiers. Here we show how the addition of explainability metrics allows for quantifiable comparisons of aggressive social behavior across research groups and species, reconceptualizing behavior as a sharable reagent and providing an open-source framework. We provide an open-source, graphical user interface (GUI)-driven, well-documented package to facilitate the movement toward improved automation and sharing of behavioral classification tools across laboratories.
Collapse
Affiliation(s)
- Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center of Excellence in Neurobiology of Addiction, Pain and Emotion (NAPE), University of Washington, Seattle, WA, USA
| | - Jia J Choong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Sophia Hwang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Kayla Pitts
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Liana Bloom
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Aasiya Islam
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center of Excellence in Neurobiology of Addiction, Pain and Emotion (NAPE), University of Washington, Seattle, WA, USA
| | - Eric R Szelenyi
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Center of Excellence in Neurobiology of Addiction, Pain and Emotion (NAPE), University of Washington, Seattle, WA, USA
| | - Xiaoyu Tong
- New York University Neuroscience Institute, New York, NY, USA
| | - Emily L Newman
- Department of Psychiatry, Harvard Medical School McLean Hospital, Belmont, MA, USA
| | - Klaus Miczek
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Hayden R Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
- Graduate Program in Neuroscience, Washington State University, Pullman, WA, USA
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
- Graduate Program in Neuroscience, Washington State University, Pullman, WA, USA
| | | | - Neir Eshel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center of Excellence in Neurobiology of Addiction, Pain and Emotion (NAPE), University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Simon R O Nilsson
- Department of Biological Structure, University of Washington, Seattle, WA, USA.
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- Center of Excellence in Neurobiology of Addiction, Pain and Emotion (NAPE), University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent intermittent ethanol exposure alters adult exploratory and affective behaviors, and cerebellar Grin2b expression in C57BL/6J mice. Drug Alcohol Depend 2023; 253:111026. [PMID: 38006668 PMCID: PMC10990063 DOI: 10.1016/j.drugalcdep.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/17/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Collapse
Affiliation(s)
- Kati Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Renee C Waters
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
| | - Sherilynn G Knight
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; University of North Carolina at Chapel Hill School of Medicine, NC 27516, United States
| | - Brooke N Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Mariah J Shobande
- Department of Chemical, Biological and Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Jaela G Melton
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| |
Collapse
|
7
|
Wilkinson CS, Blount HL, Davis S, Rojas G, Wu L, Murphy NP, Schwendt M, Knackstedt LA. Voluntary alcohol intake alters the motivation to seek intravenous oxycodone and neuronal activation during the reinstatement of oxycodone and sucrose seeking. Sci Rep 2023; 13:19174. [PMID: 37932476 PMCID: PMC10628226 DOI: 10.1038/s41598-023-46111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol influence the intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with homecage access to alcohol (20% v/v) and/or water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent a cue-primed reinstatement test and brains were processed for c-fos mRNA expression. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, only female oxycodone + alcohol rats exhibited decreased demand elasticity and increased cue-primed reinstatement. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor expressing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.
Collapse
Affiliation(s)
- Courtney S Wilkinson
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Harrison L Blount
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Shane Davis
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Giselle Rojas
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Lizhen Wu
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Niall P Murphy
- Orthodontics Department, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL, 32611, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Wilkinson CS, Blount HL, Davis S, Rojas G, Wu L, Murphy NP, Schwendt M, Knackstedt LA. Voluntary alcohol intake alters the motivation to seek intravenous oxycodone and neuronal activation during the reinstatement of oxycodone and sucrose seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549769. [PMID: 37546763 PMCID: PMC10401968 DOI: 10.1101/2023.07.20.549769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol would influence intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with access to either alcohol (20% v/v) and water or only water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent extinction training and brains were processed for c-fos mRNA expression immediately following a cue-primed reinstatement test. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, female oxycodone+alcohol rats exhibited decreased demand elasticity for intravenous oxycodone and increased cue-primed reinstatement while male rats did not. Spontaneous withdrawal signs were correlated with oxycodone intake while alcohol intake was correlated with anxiety-like behavior. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor containing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and alters the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.
Collapse
Affiliation(s)
- Courtney S. Wilkinson
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Harrison L. Blount
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Shane Davis
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Giselle Rojas
- Psychology Dept. University of Florida, Gainesville, FL
| | - Lizhen Wu
- Psychology Dept. University of Florida, Gainesville, FL
| | | | - Marek Schwendt
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| | - Lori A. Knackstedt
- Psychology Dept. University of Florida, Gainesville, FL
- Center for Addiction Research and Education, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Bedard ML, Nowlan AC, Martin Del Campo Z, Miller C, Dasgupta N, McElligott ZA. All Hands on Deck: We Need Multiple Approaches To Uncover the Neuroscience behind the Opioid Overdose Crisis. ACS Chem Neurosci 2023; 14:1921-1929. [PMID: 37159430 PMCID: PMC10591273 DOI: 10.1021/acschemneuro.2c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Opioid use disorder (OUD) affects millions of people throughout the United States, yet there are only three Food and Drug Administration-approved pharmacological treatments. Though these treatments have been shown to be effective, the number of overdose deaths continues to rise. The increase of fentanyl, fentanyl analogs, and adulterants in the illicit drug supply has further complicated treatment strategies. Preclinical researchers strive to model OUD to better understand this complicated disorder, and this research is a critical enabler for the development of novel treatments. As a result, there are many different preclinical models of OUD. Often, researchers form strong opinions on what they believe to be the "best" model to mimic the human condition. Here, we argue that researchers should be supportive of multiple models to promote new perspectives and discoveries and always consider the trends in human opioid use when designing preclinical studies. We describe the benefits of contingent and noncontingent models as well as models of opioid withdrawal and how each of these can help illuminate different components of OUD.
Collapse
Affiliation(s)
- Madigan L Bedard
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexandra C Nowlan
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe Martin Del Campo
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Injury Prevention Research Center, Gillings School of Global Public Health, The University North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Colin Miller
- Injury Prevention Research Center, Gillings School of Global Public Health, The University North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nabarun Dasgupta
- Injury Prevention Research Center, Gillings School of Global Public Health, The University North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|