1
|
Steding J, Ritschel F, Boehm I, Geisler D, King JA, Roessner V, Smolka MN, Zepf FD, Ehrlich S. The effects of acute tryptophan depletion on instrumental reward learning in anorexia nervosa - an fMRI study. Psychol Med 2023; 53:3426-3436. [PMID: 35343412 PMCID: PMC10277771 DOI: 10.1017/s0033291721005493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The serotonin (5-HT) hypothesis of anorexia nervosa (AN) posits that individuals predisposed toward or recovered from AN (recAN) have a central nervous hyperserotonergic state and therefore restrict food intake as a means to reduce 5-HT availability (via diminished tryptophan-derived precursor supply) and alleviate associated negative mood states. Importantly, the 5-HT system has also been generally implicated in reward processing, which has also been shown to be altered in AN. METHODS In this double-blind crossover study, 22 individuals recAN and 25 healthy control participants (HC) underwent functional magnetic resonance imaging (fMRI) while performing an established instrumental reward learning paradigm during acute tryptophan depletion (ATD; a dietary intervention that lowers central nervous 5-HT availability) as well as a sham depletion. RESULTS On a behavioral level, the main effects of reward and ATD were evident, but no group differences were found. fMRI analyses revealed a group × ATD × reward level interaction in the ventral anterior insula during reward anticipation as well as in the medial orbitofrontal cortex during reward consumption. DISCUSSION The precise pattern of results is suggestive of a 'normalization' of reward-related neural responses during ATD in recAN compared to HC. Our results lend further evidence to the 5-HT hypothesis of AN. Decreasing central nervous 5-HT synthesis and availability during ATD and possibly also by dieting may be a means to normalize 5-HT availability and associated brain processes.
Collapse
Affiliation(s)
- Julius Steding
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Ritschel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Florian Daniel Zepf
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Nik Mohd Fakhruddin NNI, Shahar S, Ismail IS, Ahmad Azam A, Rajab NF. Urine Untargeted Metabolomic Profiling Is Associated with the Dietary Pattern of Successful Aging among Malaysian Elderly. Nutrients 2020; 12:nu12102900. [PMID: 32977370 PMCID: PMC7597952 DOI: 10.3390/nu12102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023] Open
Abstract
Food intake biomarkers (FIBs) can reflect the intake of specific foods or dietary patterns (DP). DP for successful aging (SA) has been widely studied. However, the relationship between SA and DP characterized by FIBs still needs further exploration as the candidate markers are scarce. Thus, 1H-nuclear magnetic resonance (1H-NMR)-based urine metabolomics profiling was conducted to identify potential metabolites which can act as specific markers representing DP for SA. Urine sample of nine subjects from each three aging groups, SA, usual aging (UA), and mild cognitive impairment (MCI), were analyzed using the 1H-NMR metabolomic approach. Principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were applied. The association between SA urinary metabolites and its DP was assessed using the Pearson’s correlation analysis. The urine of SA subjects was characterized by the greater excretion of citrate, taurine, hypotaurine, serotonin, and melatonin as compared to UA and MCI. These urinary metabolites were associated with alteration in “taurine and hypotaurine metabolism” and “tryptophan metabolism” in SA elderly. Urinary serotonin (r = 0.48, p < 0.05) and melatonin (r = 0.47, p < 0.05) were associated with oat intake. These findings demonstrate that a metabolomic approach may be useful for correlating DP with SA urinary metabolites and for further understanding of SA development.
Collapse
Affiliation(s)
- Nik Nur Izzati Nik Mohd Fakhruddin
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7602; Fax: +60-3-9289-7161
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Nor Fadilah Rajab
- Biomedical Science Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
3
|
Königschulte W, Civai C, Hildebrand P, Gaber TJ, Fink GR, Zepf FD. Effects of serotonin depletion and dopamine depletion on bimodal divided attention. World J Biol Psychiatry 2020; 21:183-194. [PMID: 30295116 DOI: 10.1080/15622975.2018.1532110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objectives: This study aimed to explore the effects of acute phenylalanine tyrosine depletion (APTD) and acute tryptophan depletion (ATD) on bimodal divided attention. A balanced amino acid mixture (BAL) served as control condition.Methods: Fifty-three healthy adults (final analyzed sample was N = 49, age: M = 23.8 years) were randomly assigned to APTD, ATD or BAL in a double-blind, between-subject approach. Divided attention was assessed after 4 h. Blood samples were taken before and 6 h after challenge intake.Results: Amino acid concentrations following challenge intake significantly decreased (all P ≤ 0.01). There was a significant difference in the mean reaction time (RT) towards auditory stimuli, but not towards visual stimuli between the groups. Post-hoc comparison of mean RTs (auditory stimuli) showed a significant difference between ATD (RT = 604.0 ms, SD = 56.9 ms) and APTD (RT = 556.4 ms, SD = 54.2 ms; P = 0.037), but no RT difference between ATD and BAL or APTD and BAL (RT = 573.6 ms, SD = 45.7 ms).Conclusions: The results indicate a possible dissociation between the effects of a diminished brain 5-HT and DA synthesis on the performance in a bimodal divided attention task. The difference was exclusively observed within the RT towards auditory signals.
Collapse
Affiliation(s)
- W Königschulte
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - C Civai
- School of Psychology, University of Kent, Canterbury, UK
| | - P Hildebrand
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - T J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - G R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Germany.,Centre and Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, Division of Psychiatry and Clinical Neurosciences & Division of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| |
Collapse
|
4
|
Hildebrandt CS, Helmbold K, Linden M, Langen KJ, Filss CP, Runions KC, Stewart RM, Rao P, Moore JK, Mahfouda S, Morandini HAE, Wong JWY, Rink L, Zepf FD. No detectable effects of acute tryptophan depletion on short-term immune system cytokine levels in healthy adults. World J Biol Psychiatry 2019; 20:416-423. [PMID: 29353534 DOI: 10.1080/15622975.2018.1428357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Recent research suggested an influence of diminished central nervous serotonin (5-HT) synthesis on the leptin axis via immunological mechanisms in healthy adult females. However, studies assessing immunological parameters in combination with dietary challenge techniques that impact brain 5-HT synthesis in humans are lacking. Methods: In the present trial, a pilot analysis was conducted on data obtained in healthy adult humans receiving either different dietary acute tryptophan depletion (ATD) challenge or tryptophan (TRP)-balanced control conditions (BAL) to study the effects of reduced central nervous 5-HT synthesis on serum tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 concentrations. The data of N = 35 healthy adults were analysed who were randomly subjected to one of the following two dietary conditions in a double-blind between-subject approach: (1) The Moja-De ATD challenge (ATD), or (2) TRP-balanced control condition for ATD Moja-De (BAL). Serum concentrations for the assessment of relevant parameters (TNF-α, IL-1β and IL-6) and relevant TRP-related characteristics after the respective challenge procedures were assessed at baseline (T0) and in hourly intervals after administration over a period of 6 h (T1-T6). Results: The ATD condition did not result in significant changes to cytokine concentrations for the entire study sample, or in male and female subgroups. Depletion of CNS 5-HT via dietary TRP depletion appears to have no statistically significant short-term impact on cytokine concentrations in healthy adults. Conclusions: Future research on immunological stressors in combination with challenge techniques will be of value in order to further disentangle the complex interplay between brain 5-HT synthesis and immunological pathways.
Collapse
Affiliation(s)
- Caroline S Hildebrandt
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany.,c Clinics of the City Cologne GmbH , Child and Adolescent Psychiatry and Psychotherapy , Cologne , Germany
| | - Katrin Helmbold
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany
| | - Maike Linden
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany
| | - Karl-Josef Langen
- d Institute of Neuroscience and Medicine (INM-4) Research Centre Jülich , Jülich , Germany.,e Section JARA-Brain , Jülich-Aachen Research Alliance (JARA) , Jülich , Germany.,f Department of Nuclear Medicine , RWTH Aachen University Hospital , Aachen , Germany
| | - C P Filss
- e Section JARA-Brain , Jülich-Aachen Research Alliance (JARA) , Jülich , Germany.,f Department of Nuclear Medicine , RWTH Aachen University Hospital , Aachen , Germany
| | - Kevin C Runions
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia
| | - Richard M Stewart
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia
| | - Pradeep Rao
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,i Department of Health , Community Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Julie K Moore
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,j Princess Margaret Hospital, Department of Health , Pediatric Consultation Liason Program, Acute Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Simone Mahfouda
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia
| | - Hugo A E Morandini
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia
| | - Janice W Y Wong
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia.,k Department of Health , Specialised Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Lothar Rink
- l Department of Immunology , RWTH Aachen University Hospital , Aachen , Germany
| | - Florian D Zepf
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany.,g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia.,k Department of Health , Specialised Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| |
Collapse
|
5
|
Tanaka M, Sato A, Kasai S, Hagino Y, Kotajima-Murakami H, Kashii H, Takamatsu Y, Nishito Y, Inagaki M, Mizuguchi M, Hall FS, Uhl GR, Murphy D, Sora I, Ikeda K. Brain hyperserotonemia causes autism-relevant social deficits in mice. Mol Autism 2018; 9:60. [PMID: 30498565 PMCID: PMC6258166 DOI: 10.1186/s13229-018-0243-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Hyperserotonemia in the brain is suspected to be an endophenotype of autism spectrum disorder (ASD). Reducing serotonin levels in the brain through modulation of serotonin transporter function may improve ASD symptoms. Methods We analyzed behavior and gene expression to unveil the causal mechanism of ASD-relevant social deficits using serotonin transporter (Sert) knockout mice. Results Social deficits were observed in both heterozygous knockout mice (HZ) and homozygous knockout mice (KO), but increases in general anxiety were only observed in KO mice. Two weeks of dietary restriction of the serotonin precursor tryptophan ameliorated both brain hyperserotonemia and ASD-relevant social deficits in Sert HZ and KO mice. The expression of rather distinct sets of genes was altered in Sert HZ and KO mice, and a substantial portion of these genes was also affected by tryptophan depletion. Tryptophan depletion in Sert HZ and KO mice was associated with alterations in the expression of genes involved in signal transduction pathways initiated by changes in extracellular serotonin or melatonin, a derivative of serotonin. Only expression of the AU015836 gene was altered in both Sert HZ and KO mice. AU015836 expression and ASD-relevant social deficits normalized after dietary tryptophan restriction. Conclusions These findings reveal a Sert gene dose-dependent effect on brain hyperserotonemia and related behavioral sequelae in ASD and a possible therapeutic target to normalize brain hyperserotonemia and ASD-relevant social deficits. Electronic supplementary material The online version of this article (10.1186/s13229-018-0243-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miho Tanaka
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,2Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,3Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsushi Sato
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,4Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinya Kasai
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoko Hagino
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Hiroko Kotajima-Murakami
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Hirofumi Kashii
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yukio Takamatsu
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- 5Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masumi Inagaki
- 3Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Mizuguchi
- 6Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - F Scott Hall
- 7Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH USA
| | - George R Uhl
- 8Branch of Molecular Neurobiology, National Institute on Drug Abuse, Baltimore, MD USA.,9Research Service, New Mexico VA Health Care System, Albuquerque, NM USA
| | - Dennis Murphy
- 10Laboratory of Clinical Science, National Institutes of Health, Bethesda, MD USA
| | - Ichiro Sora
- 11Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Ikeda
- 1Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,2Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Sánchez CL, Van Swearingen AED, Arrant AE, Biskup CS, Kuhn CM, Zepf FD. Simplified dietary acute tryptophan depletion: effects of a novel amino acid mixture on the neurochemistry of C57BL/6J mice. Food Nutr Res 2015; 59:27424. [PMID: 26278978 PMCID: PMC4538305 DOI: 10.3402/fnr.v59.27424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA) mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT) or dopamine (DA) in the central nervous system. The availability of these substances within the brain is determined by the blood-brain barrier (BBB) that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP) compete with endogenous TRP for uptake into the brain across the BBB, which in turn leads to a decrease in central nervous 5-HT synthesis. OBJECTIVE The present study compared the effects of a simplified acute tryptophan depletion (SATD) mixture in mice on blood and brain serotonergic and dopaminergic metabolites to those of a commonly used acute tryptophan depletion mixture (ATD Moja-De) and its TRP-balanced control (BAL). DESIGN The SATD formula is composed of only three large neutral AAs: phenylalanine (PHE), leucine (LEU), and isoleucine (ILE). BAL, ATD Moja-De, or SATD formulas were delivered to adult male C57BL/6J mice by gavage. TRP, monoamines, and their metabolites were quantified in blood and brain regions (hippocampus, frontal cortex, amygdala, caudate putamen, and nucleus accumbens). RESULTS Both ATD Moja-De and SATD significantly decreased levels of serum and brain TRP, as well as brain 5-HIAA and 5-HT compared with BAL. SATD reduced HVA levels in caudate but did not alter total DA levels or DOPAC. SATD decreased TRP and serotonergic metabolites comparably to ATD Moja-De administration. CONCLUSION A simplified and more palatable combination of AAs can manipulate serotonergic function and might be useful to reveal underlying monoamine-related mechanisms contributing to different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cristina L Sánchez
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, RWTH Aachen University, Aachen, Germany.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew E Arrant
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Caroline S Biskup
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, RWTH Aachen University, Aachen, Germany
| | - Cynthia M Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Florian D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JARA Brain, RWTH Aachen University, Aachen, Germany.,Department of Child and Adolescent Psychiatry, School of Paediatrics and Child Health & School of Psychiatry and Clinical Neurosciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia.,Specialised Child and Adolescent Mental Health Services (CAHMS), Department of Health, Perth, WA, Australia;
| |
Collapse
|
7
|
Sanchez CL, Biskup CS, Herpertz S, Gaber TJ, Kuhn CM, Hood SH, Zepf FD. The Role of Serotonin (5-HT) in Behavioral Control: Findings from Animal Research and Clinical Implications. Int J Neuropsychopharmacol 2015; 18:pyv050. [PMID: 25991656 PMCID: PMC4648158 DOI: 10.1093/ijnp/pyv050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
The neurotransmitters serotonin and dopamine both have a critical role in the underlying neurobiology of different behaviors. With focus on the interplay between dopamine and serotonin, it has been proposed that dopamine biases behavior towards habitual responding, and with serotonin offsetting this phenomenon and directing the balance toward more flexible, goal-directed responding. The present focus paper stands in close relationship to the publication by Worbe et al. (2015), which deals with the effects of acute tryptophan depletion, a neurodietary physiological method to decrease central nervous serotonin synthesis in humans for a short period of time, on the balance between hypothetical goal-directed and habitual systems. In that research, acute tryptophan depletion challenge administration and a following short-term reduction in central nervous serotonin synthesis were associated with a shift of behavioral performance towards habitual responding, providing further evidence that central nervous serotonin function modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. In the present focus paper, we discuss the findings by Worbe and colleagues in light of animal experiments as well as clinical implications and discuss potential future avenues for related research.
Collapse
Affiliation(s)
- C L Sanchez
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - C S Biskup
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - S Herpertz
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - T J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - C M Kuhn
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - S H Hood
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| |
Collapse
|