1
|
Huang S, Riley AL. Drug discrimination learning: Interoceptive stimulus control of behavior and its implications for regulated and dysregulated drug intake. Pharmacol Biochem Behav 2024; 244:173848. [PMID: 39137873 DOI: 10.1016/j.pbb.2024.173848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Drug discrimination research has generated rich evidence for the capacity of interoceptive drug stimuli to control behavior by serving as discriminative cues. Owing to its neuropharmacological specificity, drug discrimination learning has been widely used to characterize the stimulus effects and neuropharmacological underpinning of drugs. Apart from such utility, discriminative drug stimuli may help regulate drug use by disambiguating conditioned associations and post-intake outcomes. First, this review summarizes the evidence supporting interoceptive regulation of drug intake from the literature of exteroceptive discriminative control of drug-related behavior, effects of drug priming, and self-titration of drug intake. Second, an overview of interoceptive control of reward-seeking and the animal model of discriminated goal-tracking is provided to illustrate interoceptive stimulus control of the initiation and patterning of drug intake. Third, we highlight the importance of interoceptive control of aversion-avoidance in the termination of drug-use episodes and describe the animal model of discriminated taste avoidance that supports such a position. In bridging these discriminative functions of drug stimuli, we propose that interoceptive drug stimuli help regulate intake by disambiguating whether intake will be rewarding, nonrewarding, or aversive. The reflection and discussion on current theoretical formulations of interoceptive control of drug intake may further scientific advances to improve animal models to study the mechanisms by which interoceptive stimuli regulate drug intake, as well as how alterations of interoceptive processes may contribute to the transition to dysregulated drug use.
Collapse
Affiliation(s)
- Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
2
|
Alotaibi A, Travaglianti S, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of MC-100093 on Ethanol Drinking and the Expression of Astrocytic Glutamate Transporters in the Mesocorticolimbic Brain Regions of Male and Female Alcohol-Preferring Rats. Neuroscience 2024; 552:89-99. [PMID: 38909675 PMCID: PMC11407434 DOI: 10.1016/j.neuroscience.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.
Collapse
Affiliation(s)
- Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
3
|
Arnold ME, Schank JR. Sex differences in neuronal activation in the cortex and midbrain during quinine-adulterated alcohol intake. Alcohol Alcohol 2024; 59:agae031. [PMID: 38742547 PMCID: PMC11091839 DOI: 10.1093/alcalc/agae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
AIMS Continued alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This is modeled in mice by pairing negative stimuli with alcohol, such as adulterating alcohol solution with quinine. Mice consuming alcohol under these conditions are considered to be engaging in aversion-resistant intake. Previously, we have observed sex differences in this behavior, with females more readily expressing aversion-resistant consumption. We also identified three brain regions that exhibited sex differences in neuronal activation during quinine-alcohol drinking: ventromedial prefrontal cortex (vmPFC), posterior insular cortex (PIC), and ventral tegmental area (VTA). Specifically, male mice showed increased activation in vmPFC and PIC, while females exhibited increased activation in VTA. In this study, we aimed to identify what specific type of neurons are activated in these regions during quinine-alcohol drinking. METHOD We assessed quinine-adulterated alcohol intake using the two-bottle choice procedure. We also utilized RNAscope in situ hybridization in the three brain regions that previously exhibited a sex difference to examine colocalization of Fos, glutamate, GABA, and dopamine. RESULT Females showed increased aversion-resistant alcohol consumption compared to males. We also found that males had higher colocalization of glutamate and Fos in vmPFC and PIC, while females had greater dopamine and Fos colocalization in the VTA. CONCLUSIONS Collectively, these experiments suggest that glutamatergic output from the vmPFC and PIC may have a role in suppressing, and dopaminergic activity in the VTA may promote, aversion-resistant alcohol consumption. Future experiments will examine neuronal circuits that contribute to sex differences in aversion resistant consumption.
Collapse
Affiliation(s)
- Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| |
Collapse
|
4
|
Laine MA, Greiner EM, Shansky RM. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know? Neuropharmacology 2024; 248:109867. [PMID: 38387553 DOI: 10.1016/j.neuropharm.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The prefrontal cortex, particularly its medial subregions (mPFC), mediates critical functions such as executive control, behavioral inhibition, and memory formation, with relevance for everyday functioning and psychopathology. Despite broad characterization of the mPFC in multiple model organisms, the extent to which mPFC structure and function vary according to an individual's sex is unclear - a knowledge gap that can be attributed to a historical bias for male subjects in neuroscience research. Recent efforts to consider sex as a biological variable in basic science highlight the great need to close this gap. Here we review the knowns and unknowns about how rodents categorized as male or female compare in mPFC neuroanatomy, pharmacology, as well as in aversive, appetitive, and goal- or habit-directed behaviors that recruit the mPFC. We propose that long-standing dogmatic concepts of mPFC structure and function may not remain supported when we move beyond male-only studies, and that empirical challenges to these dogmas are warranted. Additionally, we note some common pitfalls in this work. Most preclinical studies operationalize sex as a binary categorization, and while this approach has furthered the inclusion of non-male rodents it is not as such generalizable to what we know of sex as a multidimensional, dynamic variable. Exploration of sex variability may uncover both sex differences and sex similarities, but care must be taken in their interpretation. Including females in preclinical research needs to go beyond the investigation of sex differences, improving our knowledge of how this brain region and its subregions mediate behavior and health. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- M A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - E M Greiner
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - R M Shansky
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
5
|
Moorman DE, Aston-Jones G. Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales. Psychopharmacology (Berl) 2023; 240:575-594. [PMID: 36464693 PMCID: PMC10406502 DOI: 10.1007/s00213-022-06287-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Contreras CM, Gutiérrez-García AG. Insulin and fluoxetine produce opposite actions on lateral septal nucleus-infralimbic region connection responsivity. Behav Brain Res 2023; 437:114146. [PMID: 36202146 DOI: 10.1016/j.bbr.2022.114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Some diabetes patients develop depression, the main treatment for which is antidepressants. Pharmacological interactions between insulin and antidepressants (e.g., fluoxetine) are controversial in the literature. Some authors reported hypoglycemic actions of fluoxetine, whereas others reported antidepressant-like actions. In healthy rats, insulin produces an antidespair-like action in rats through an increase in locomotor and exploratory activity, but differences in actions of insulin and fluoxetine on neuronal activity are unknown. The present study evaluated Wistar healthy rats that were treated with saline, insulin, fluoxetine, or fluoxetine + insulin for 3 days (short-term) or 21 days (long-term). The model consisted of electrical stimulation of the lateral septal nucleus (LSN) while we performed single-unit extracellular response recordings in the prelimbic cortex (PL) and infralimbic cortex (IL) subregions of the medial prefrontal cortex (mPFC). Stimulation of the LSN produced an initial brief excitatory paucisynaptic response and then a long-lasting inhibitory afterdischarge in the PL and IL. Treatment with saline and fluoxetine, but not insulin, minimally affected the paucisynaptic response. Differences were found in LSN-IL responsivity. The inhibitory afterdischarge was clearly enhanced in the long-term fluoxetine group but not by insulin alone or fluoxetine + insulin. These findings suggest that insulin produces some actions that are opposite to fluoxetine on LSN-mPFC connection responsivity, with no synergistic actions between the actions of insulin and fluoxetine.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz 91190, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico
| |
Collapse
|
7
|
Morgan C, Sáez-Briones P, Barra R, Reyes A, Zepeda-Morales K, Constandil L, Ríos M, Ramírez P, Burgos H, Hernández A. Prefrontal Cortical Control of Activity in Nucleus Accumbens Core Is Weakened by High-Fat Diet and Prevented by Co-Treatment with N-Acetylcysteine: Implications for the Development of Obesity. Int J Mol Sci 2022; 23:10089. [PMID: 36077493 PMCID: PMC9456091 DOI: 10.3390/ijms231710089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
A loss of neuroplastic control on nucleus accumbens (NAc) neuronal activity exerted by the medial prefrontal cortex (mPFC) through long-term depression (LTD) is involved in triggering drug-seeking behavior and relapse on several substances of abuse due to impaired glutamate homeostasis in tripartite synapses of the nucleus accumbens (NAc) core. To test whether this maladaptive neuroplastic mechanism underlies the addiction-like behavior induced in young mice by a high-fat diet (HFD), we utilized 28-days-old male mice fed HFD ad-libitum over 2 weeks, followed by 5 days of HFD abstinence. Control groups were fed a regular diet. HFD fed mice showed increased ΔFosB levels in the NAc core region, whereas LTD triggered from the mPFC became suppressed. Interestingly, LTD suppression was prevented by an i.p. injection of 100 mg/kg N-acetylcysteine 2.5 h before inducing LTD from the mPFC. In addition, excessive weight gain due to HFD feeding was diminished by adding 2mg/mL N-acetylcysteine in drinking water. Those results show a loss of neuroplastic mPFC control over NAc core activity induced by HFD consumption in young subjects. In conclusion, ad libitum consumption of HFD can lead to neuroplastic changes an addiction-like behavior that can be prevented by N-acetylcysteine, helping to decrease the rate of excessive weight gain.
Collapse
Affiliation(s)
- Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Andrea Reyes
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Katherine Zepeda-Morales
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Miguel Ríos
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Paulina Ramírez
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA
| | - Héctor Burgos
- Escuela de Psicología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 7570008, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
8
|
Hamel L, Cavdaroglu B, Yeates D, Nguyen D, Riaz S, Patterson D, Khan N, Kirolos N, Roper K, Ha QA, Ito R. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment. J Neurosci 2022; 42:3811-3822. [PMID: 35351827 PMCID: PMC9087743 DOI: 10.1523/jneurosci.2175-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been associated with the expression of adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, reported effects of mPFC manipulations on cue-elicited natural reward-seeking and inhibition thereof have been varied, with few studies examining cortico-striatal contributions in tasks that require adaptive responding to cues signaling reward and punishment within the same session. The current study aimed to better elucidate the role of mPFC and NAc subdivisions, and their functional connectivity in cue-elicited adaptive responding using a novel discriminative cue responding task. Male Long-Evans rats learned to lever-press on a VR5 schedule for a discriminative cue signaling reward, and to avoid pressing the same lever in the presence of another cue signaling punishment. Postacquisition, prelimbic (PL) and infralimbic (IL) areas of the mPFC, NAc core, shell, PL-core, or IL-shell circuits were pharmacologically or chemogenetically inhibited while animals performed under (1) nonreinforced (extinction) conditions, where the appetitive and aversive cues were presented in alternating trials alone or as a compound stimulus; and (2) reinforced conditions, whereby cued responding was accompanied by associated outcomes. PL and IL inactivation attenuated nonreinforced and reinforced goal-directed cue responding, whereas NAc core and shell inactivation impaired nonreinforced responding for the appetitive, but not aversive cue. Furthermore, PL-core and IL-shell inhibition disinhibited nonreinforced but not reinforced cue responding. Our findings implicate the mPFC as a site of confluence of motivationally significant cues and outcomes, and in the regulation of nonreinforced cue responding via downstream NAc targets.SIGNIFICANCE STATEMENT The ability to discriminate and respond appropriately to environmental cues that signal availability of reward or punishment is essential for survival. The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been implicated in adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, less is known about the role they play in orchestrating adaptive responses to natural reward and punishment cues within the same behavioral task. Here, using a novel discriminative cue responding task combined with pharmacological or chemogenetic inhibition of mPFC, NAc and mPFC-NAc circuits, we report that mPFC is critically involved in responding to changing cued response-outcomes, both when the responses are reinforced, and nonreinforced. Furthermore, the mPFC coordinates nonreinforced discriminative cue responding by suppressing inappropriate responding via downstream NAc targets.
Collapse
Affiliation(s)
- Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Bilgehan Cavdaroglu
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - David Nguyen
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Patterson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Nardin Kirolos
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Katherine Roper
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Quynh An Ha
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| |
Collapse
|
9
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Müller Ewald VA, Kim J, Farley SJ, Freeman JH, LaLumiere RT. Theta oscillations in rat infralimbic cortex are associated with the inhibition of cocaine seeking during extinction. Addict Biol 2022; 27:e13106. [PMID: 34672059 PMCID: PMC8922975 DOI: 10.1111/adb.13106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Infralimbic cortical (IL) manipulations indicate that this region mediates extinction learning and suppresses cocaine seeking following cocaine self‐administration. However, little work has recorded IL activity during the inhibition of cocaine seeking due to the difficulty of determining precisely when cocaine‐seeking behaviour is inhibited within a cocaine‐seeking session. The present study used in vivo electrophysiology to examine IL activity across extinction as well as during cocaine self‐administration and reinstatement. Sprague–Dawley rats underwent 6‐h access cocaine self‐administration in which the response lever was available during discrete signalled trials, a procedure which allowed for the comparison between epochs of cocaine seeking versus the inhibition thereof. Subsequently, rats underwent extinction and cocaine‐primed reinstatement using the same procedure. Results indicate that theta rhythms (4–10 Hz) dominated IL local‐field potential (LFP) activity during all experimental stages. During extinction, theta power fluctuated significantly surrounding the lever press and was lower when rats engaged in cocaine seeking versus when they withheld from doing so. These patterns of oscillatory activity differed from self‐administration and reinstatement stages. Single‐unit analyses indicate heterogeneity of IL unit responses, supporting the idea that multiple neuronal subpopulations exist within the IL and promote the expression of different and even opposing cocaine‐seeking behaviours. Together, these results are consistent with the idea that aggregate synaptic and single‐unit activity in the IL represent the engagement of the IL in action monitoring to promote adaptive behaviour in accordance with task contingencies and reveal critical insights into the relationship between IL activity and the inhibition of cocaine seeking.
Collapse
Affiliation(s)
- Victória A. Müller Ewald
- Department of Psychiatry University of Iowa Iowa City Iowa USA
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
| | - Jangjin Kim
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - Sean J. Farley
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - John H. Freeman
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
- Iowa Neuroscience Institute University of Iowa Iowa City Iowa USA
| | - Ryan T. LaLumiere
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
- Iowa Neuroscience Institute University of Iowa Iowa City Iowa USA
| |
Collapse
|
11
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
12
|
Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT. Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology 2021; 46:1969-1980. [PMID: 34162997 PMCID: PMC8429767 DOI: 10.1038/s41386-021-01067-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Megan B Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Veronica A Lennon
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia R Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lauren E Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Brendan J Tunstall
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
13
|
The Paradoxical Effect Hypothesis of Abused Drugs in a Rat Model of Chronic Morphine Administration. J Clin Med 2021; 10:jcm10153197. [PMID: 34361981 PMCID: PMC8348660 DOI: 10.3390/jcm10153197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
A growing body of studies has recently shown that abused drugs could simultaneously induce the paradoxical effect in reward and aversion to influence drug addiction. However, whether morphine induces reward and aversion, and which neural substrates are involved in morphine’s reward and aversion remains unclear. The present study first examined which doses of morphine can simultaneously produce reward in conditioned place preference (CPP) and aversion in conditioned taste aversion (CTA) in rats. Furthermore, the aversive dose of morphine was determined. Moreover, using the aversive dose of 10 mg/kg morphine tested plasma corticosterone (CORT) levels and examined which neural substrates were involved in the aversive morphine-induced CTA on conditioning, extinction, and reinstatement. Further, we analyzed c-Fos and p-ERK expression to demonstrate the paradoxical effect—reward and aversion and nonhomeostasis or disturbance by morphine-induced CTA. The results showed that a dose of more than 20 mg/kg morphine simultaneously induced reward in CPP and aversion in CTA. A dose of 10 mg/kg morphine only induced the aversive CTA, and it produced higher plasma CORT levels in conditioning and reacquisition but not extinction. High plasma CORT secretions by 10 mg/kg morphine-induced CTA most likely resulted from stress-related aversion but were not a rewarding property of morphine. For assessments of c-Fos and p-ERK expression, the cingulate cortex 1 (Cg1), prelimbic cortex (PrL), infralimbic cortex (IL), basolateral amygdala (BLA), nucleus accumbens (NAc), and dentate gyrus (DG) were involved in the morphine-induced CTA, and resulted from the aversive effect of morphine on conditioning and reinstatement. The c-Fos data showed fewer neural substrates (e.g., PrL, IL, and LH) on extinction to be hyperactive. In the context of previous drug addiction data, the evidence suggests that morphine injections may induce hyperactivity in many neural substrates, which mediate reward and/or aversion due to disturbance and nonhomeostasis in the brain. The results support the paradoxical effect hypothesis of abused drugs. Insight from the findings could be used in the clinical treatment of drug addiction.
Collapse
|
14
|
Espitia-Bautista E, Escobar C. Addiction-like response in brain and behavior in a rat experimental model of night-eating syndrome. Appetite 2021; 161:105112. [PMID: 33453338 DOI: 10.1016/j.appet.2021.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
STUDY OBJECTIVES Individuals ailing from night eating syndrome (NES) consume more than 25% of their daily food intake during the normal sleep time, delaying their sleep or waking up in the middle of the night to eat. This study explored two experimental conditions resembling NES in Wistar rats by offering palatable food during the sleep phase, alone or combined with sleep delay. Also we explored their impact on addiction-like changes in the brain and behavior. METHODS Experiment 1 explored the brain response after a first NES-like event; experiment 2 and 3 explored addiction-like behaviors c-Fos and FosB/ΔFosB in corticolimbic regions after 4 weeks exposition to NES-like conditions and after one week of withdrawal, respectively. For all 3 experiments 6 experimental groups were used: 1. Control; 2. Restricted access (1 h) to high-sugar diet (HSD) or to 3. high-fat diet (HFD); 4., Sleep delay for 4 h (SD) (from ZT0-ZT4, rats using slow rotating wheels); 5. SD + HSD; 6. SD + HFD. RESULTS A first event of eating a palatable diet with or without SD was sufficient to stimulate c-Fos and ΔFosB. Along 4 weeks of exposure to the palatable diets rats exhibited escalation and binge eating, which was highest for the HFD. At this stage, SD did not influence behavioral changes nor the neuronal response. After one-week in withdrawal, rats exhibited craving and effort to obtain their palatable diet. The brains of rats previously exposed to sleep delay maintained high levels of FosB/ΔFosB in the accumbens shell and high c-Fos activation in the insular cortex. CONCLUSIONS In our experimental models of NES-like a HFD in the sleep phase and SD are risk factors to develop binge eating and addiction-like behaviors.
Collapse
Affiliation(s)
- Estefania Espitia-Bautista
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Carolina Escobar
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
15
|
Piantadosi PT, Yeates DCM, Floresco SB. Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. ACTA ACUST UNITED AC 2020; 27:429-440. [PMID: 32934096 PMCID: PMC7497111 DOI: 10.1101/lm.051912.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Fear can potently inhibit ongoing behavior, including reward-seeking, yet the neural circuits that underlie such suppression remain to be clarified. Prior studies have demonstrated that distinct subregions of the rodent medial prefrontal cortex (mPFC) differentially affect fear behavior, whereby fear expression is promoted by the more dorsal prelimbic cortex (PL) and inhibited by the more ventral infralimbic cortex (IL). These mPFC regions project to subregions of the nucleus accumbens, the core (NAcC) and shell (NAcS), that differentially contribute to reward-seeking as well as affective processes that may be relevant to fear expression. Here, we investigated how these mPFC and NAc subregions contribute to discriminative fear conditioning, assessed by conditioned suppression of reward-seeking. Bilateral inactivation of the NAcS or PL reduced the expression of conditioned suppression to a shock-associated CS+, whereas NAcC inactivation reduced reward-seeking without affecting suppression. IL inactivation caused a general reduction in conditioned suppression following discriminative conditioning, but not when using a single-stimulus design. Pharmacological disconnection of the PL → NAcS pathway revealed that this projection mediates conditioned suppression. These data add to a growing literature implicating discrete cortico-striatal pathways in the suppression of reward-seeking in response to aversive stimuli. Dysfunction within related structures may contribute to aberrant patterns of behavior in psychiatric illnesses including substance use disorders.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dylan C M Yeates
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
16
|
Pharmacological Inactivation of Medial Prefrontal Cortex Does Not Support Dichotomous "Go/Stop" Roles for Dorsal and Ventral Subdivisions in Natural Reward Seeking in Rats. eNeuro 2020; 7:7/4/ENEURO.0246-20.2020. [PMID: 32646921 PMCID: PMC8114868 DOI: 10.1523/eneuro.0246-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Highlighted Research Paper:Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement. Jessica P. Caballero, Garrett B. Scarpa, Luke Remage-Healey, David E. Moorman.
Collapse
|
17
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
18
|
van Holstein M, Floresco SB. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology 2020; 45:683-693. [PMID: 31652433 PMCID: PMC7021677 DOI: 10.1038/s41386-019-0557-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022]
Abstract
Converging evidence from studies with animals and humans have implicated separate regions of the medial prefrontal cortex (mPFC) corresponding to the anterior cingulate cortex (ACC), in mediating different aspects of reward-related decisions involving uncertainty or risk. However, the dissociable contributions of subregions of the ACC remain unclear, as discrepancies exist between human neuroimaging findings and preclinical rodent studies. To clarify how ventral vs. dorsal regions of the mPFC contribute to risk/reward decision making, the present study assessed the effects of inactivation of different subregions on performance of a "Blackjack task" that measured cue-guided decision making and shares similarities with paradigms used with humans. Male, Long-Evans rats were well-trained to choose between a Small/Certain reward vs a Large/Risky reward delivered with variable probabilities (i.e., good vs. poor-odds, 50% vs. 12.5%). The odds of obtaining the larger reward was signaled by auditory cues at the start of each trial. Inactivation of the ventral, infralimbic region of the mPFC increased risky choice selectively when the odds of winning were poor. By contrast, inactivation of the prelimbic and anterior cingulate regions of the dorsal mPFC led to suboptimal reductions in risky choice on good-odds trials. The effects of prelimbic vs anterior cingulate inactivations were associated with context-dependent alterations in reward vs negative feedback, respectively. These results further clarify the distinct yet complementary manners in which separate ACC regions promote optimal risk/reward decision making and complement neuroimaging findings that activity in human ventral vs dorsal ACC promotes risk aversion or risky choices.
Collapse
Affiliation(s)
- Mieke van Holstein
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Stan B. Floresco
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3 Canada
| |
Collapse
|
19
|
Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement. eNeuro 2019; 6:ENEURO.0296-19.2019. [PMID: 31519696 PMCID: PMC6763834 DOI: 10.1523/eneuro.0296-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 01/23/2023] Open
Abstract
Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long–Evans rats. Bilateral inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1. Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking during cue-induced reinstatement. No effect of inactivation was found during PR. Our data contrast sharply with observations seen during drug seeking and fear conditioning, indicating that previously established roles of dorsal mPFC = going versus ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. Our results indicate that dichotomous functions of dorsal versus ventral mPFC, if they exist, may align better with other models, or may require the development of a new framework in which these multifaceted brain areas play different roles in action control depending on the behavioral context in which they are engaged.
Collapse
|
20
|
Laque A, L De Ness G, Wagner GE, Nedelescu H, Carroll A, Watry D, M Kerr T, Koya E, Hope BT, Weiss F, Elmer GI, Suto N. Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues. Nat Commun 2019; 10:3934. [PMID: 31477694 PMCID: PMC6718661 DOI: 10.1038/s41467-019-11799-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress-rather than promote-relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is, in part, driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms.
Collapse
Affiliation(s)
- Amanda Laque
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Genna L De Ness
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Grant E Wagner
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hermina Nedelescu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ayla Carroll
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Debbie Watry
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tony M Kerr
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, USA
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21228, USA.
| | - Nobuyoshi Suto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
21
|
Responsivity of lateral septum-mPFC connections in alloxan-induced hyperglycemia. Behav Brain Res 2019; 368:111919. [PMID: 31005560 DOI: 10.1016/j.bbr.2019.111919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
The lateral septal nucleus (LSN) is related to the actions of antidepressants, and the prelimbic cortex (PL) and infralimbic cortex (IL) modulate responses to fear. However, unknown is whether experimental diabetes that is induced by alloxan alters the responsivity of these regions. We used a method in which one forebrain region (LSN) was electrically stimulated while single-unit extracellular recordings were performed in another mPFC region (PL and IL). Several experimental groups were tested: (a) animals that were subjected to long-term (42-day) alloxan-hyperglycemia and protected with insulin, (b) healthy animals that received a low dose of insulin that does not produce changes in glycemia, and (c) animals that received long-term treatment with fluoxetine. Additional healthy groups of animals received insulin or fluoxetine and underwent the forced swim test. Biological measurements indicated the induction of diabetes in alloxan-treated rats. In this group, a shift toward an inhibitory response to LSN stimulation was observed in the PL and IL compared with the control group. A low dose of insulin or fluoxetine produced similar changes in LSN-PL and LSN-IL responsivity. Long-term hyperglycemia increased inhibitory responsivity in the LSN-PL and LSN-IL, but this action was less pronounced than the action that was exerted by insulin and fluoxetine, which produced similar actions. Such similar actions were confirmed in the forced swim test, in which the antidepressant-like effects of insulin partially resembled the effects of fluoxetine. The changes that were observed in the alloxan group appeared to be related to neuronal damage, and a low dose of insulin exerted some antidepressant-like actions.
Collapse
|
22
|
Separate vmPFC Ensembles Control Cocaine Self-Administration Versus Extinction in Rats. J Neurosci 2019; 39:7394-7407. [PMID: 31331999 DOI: 10.1523/jneurosci.0918-19.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest that the ventral medial prefrontal cortex (vmPFC) encodes both operant drug self-administration and extinction memories. Here, we examined whether these opposing memories are encoded by distinct neuronal ensembles within the vmPFC with different outputs to the nucleus accumbens (NAc) in male and female rats. Using cocaine self-administration (3 h/d for 14 d) and extinction procedures, we demonstrated that vmPFC was similarly activated (indexed by Fos) during cocaine-seeking tests after 0 (no-extinction) or 7 extinction sessions. Selective Daun02 lesioning of the self-administration ensemble (no-extinction) decreased cocaine seeking, whereas Daun02 lesioning of the extinction ensemble increased cocaine seeking. Retrograde tracing with fluorescent cholera toxin subunit B injected into NAc combined with Fos colabeling in vmPFC indicated that vmPFC self-administration ensembles project to NAc core while extinction ensembles project to NAc shell. Functional disconnection experiments (Daun02 lesioning of vmPFC and acute dopamine D1-receptor blockade with SCH39166 in NAc core or shell) confirm that vmPFC ensembles interact with NAc core versus shell to play dissociable roles in cocaine self-administration versus extinction, respectively. Our results demonstrate that neuronal ensembles mediating cocaine self-administration and extinction comingle in vmPFC but have distinct outputs to the NAc core and shell that promote or inhibit cocaine seeking.SIGNIFICANCE STATEMENT Neuronal ensembles within the vmPFC have recently been shown to play a role in self-administration and extinction of food seeking. Here, we used the Daun02 chemogenetic inactivation procedure, which allows selective inhibition of neuronal ensembles identified by the activity marker Fos, to demonstrate that different ensembles for cocaine self-administration and extinction memories coexist in the ventral mPFC and interact with distinct subregions of the nucleus accumbens.
Collapse
|
23
|
Riaz S, Puveendrakumaran P, Khan D, Yoon S, Hamel L, Ito R. Prelimbic and infralimbic cortical inactivations attenuate contextually driven discriminative responding for reward. Sci Rep 2019; 9:3982. [PMID: 30850668 PMCID: PMC6408592 DOI: 10.1038/s41598-019-40532-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The infralimbic (IL) and prelimbic (PL) cortices of the medial prefrontal cortex (mPFC) have been shown to differentially control context-dependent behavior, with the PL implicated in the expression of contextually conditioned fear and drug-seeking, and the IL in the suppression of these behaviors. However, the roles of these subregions in contextually driven natural reward-seeking remain relatively underexplored. The present study further examined the functional dichotomy within the mPFC in the contextual control over cued reward-seeking, using a contextual biconditional discrimination (CBD) task. Rats were first trained to emit a nose poke response to the presentation of an auditory stimulus (e.g., X) for the delivery of sucrose reward, and to withhold a nose poke response to the presentation of another auditory stimulus (e.g., Y) in a context-specific manner (e.g. Context A: X+, Y−; Context B: X−, Y+). Following acquisition, rats received bilateral microinjections of GABA receptor agonists (muscimol and baclofen), or saline into the IL or PL, prior to a CBD training session and a probe test (under extinction conditions). Both IL and PL inactivation resulted in robust impairment in CBD performance, indicating that both subregions are involved in the processing of appetitively motivated contextual memories in reward-seeking.
Collapse
Affiliation(s)
- Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | | | - Dinat Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Sharon Yoon
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Madangopal R, Tunstall BJ, Komer LE, Weber SJ, Hoots JK, Lennon VA, Bossert JM, Epstein DH, Shaham Y, Hope BT. Discriminative stimuli are sufficient for incubation of cocaine craving. eLife 2019; 8:e44427. [PMID: 30801248 PMCID: PMC6417857 DOI: 10.7554/elife.44427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 11/21/2022] Open
Abstract
In abstinent drug addicts, cues formerly associated with drug-taking experiences gain relapse-inducing potency ('incubate') over time. Animal models of incubation may help develop treatments to prevent relapse, but these models have ubiquitously focused on the role of conditioned stimuli (CSs) signaling drug delivery. Discriminative stimuli (DSs) are unique in that they exert stimulus-control over both drug taking and drug seeking behavior and are difficult to extinguish. For this reason, incubation of the excitatory effects of DSs that signal drug availability, not yet examined in preclinical studies, could be relevant to relapse prevention. We trained rats to self-administer cocaine (or palatable food) under DS control, then investigated DS-controlled incubation of craving, in the absence of drug-paired CSs. DS-controlled cocaine (but not palatable food) seeking incubated over 60 days of abstinence and persisted up to 300 days. Understanding the neural mechanisms of this DS-controlled incubation holds promise for drug relapse treatments.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Lauren E Komer
- Neuronal Ensembles in Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Sophia J Weber
- Neuronal Ensembles in Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Jennifer K Hoots
- Neurobiology of Relapse Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Veronica A Lennon
- Neuronal Ensembles in Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Jennifer M Bossert
- Neurobiology of Relapse Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - David H Epstein
- Real-world Assessment, Prediction, and Treatment Unit, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Yavin Shaham
- Neurobiology of Relapse Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
25
|
Zhang WH, Cao KX, Ding ZB, Yang JL, Pan BX, Xue YX. Role of prefrontal cortex in the extinction of drug memories. Psychopharmacology (Berl) 2019; 236:463-477. [PMID: 30392133 DOI: 10.1007/s00213-018-5069-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022]
Abstract
It has been recognized that drug addiction engages aberrant process of learning and memory, and substantial studies have focused on developing effective treatment to erase the enduring drug memories to reduce the propensity to relapse. Extinction, a behavioral intervention exposing the individuals to the drug-associated cues repeatedly, can weaken the craving and relapse induced by drug-associated cues, but its clinic efficacy is limited. A clear understanding of the neuronal circuitry and molecular mechanism underlying extinction of drug memory will facilitate the successful use of extinction therapy in clinic. As a key component of mesolimbic system, medial prefrontal cortex (mPFC) has received particular attention largely in that PFC stands at the core of neural circuits for memory extinction and manipulating mPFC influences extinction of drug memories and subsequent relapse. Here, we review the recent advances in both animal models of drug abuse and human addicted patients toward the understanding of the mechanistic link between mPFC and drug memory, with particular emphasis on how mPFC contributes to the extinction of drug memory at levels ranging from neuronal architecture, synaptic plasticity to molecular signaling and epigenetic regulation, and discuss the clinic relevance of manipulating the extinction process of drug memory to prevent craving and relapse through enhancing mPFC function.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ke-Xin Cao
- Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China.,National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Jian-Li Yang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yan-Xue Xue
- National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China. .,Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commision, Peking University, Beijing, 100191, China.
| |
Collapse
|
26
|
Muller Ewald VA, LaLumiere RT. Neural systems mediating the inhibition of cocaine-seeking behaviors. Pharmacol Biochem Behav 2017; 174:53-63. [PMID: 28720520 DOI: 10.1016/j.pbb.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Abstract
Over the past decades, research has targeted the neurobiology regulating cocaine-seeking behaviors, largely in the hopes of identifying potential targets for the treatment of cocaine addiction. Although much of this work has focused on those systems driving cocaine seeking, recently, studies examining the inhibition of cocaine-related behaviors have made significant progress in uncovering the neural systems that attenuate cocaine seeking. Such systems include the infralimbic cortex, nucleus accumbens shell, and hypothalamus. Research in this field has focused largely on the infralimbic cortex, as activity in this region appears to attenuate cocaine seeking during reinstatement and contribute to extinction learning. However, an overarching theory of function for this region that includes its role in other types of reward seeking and learning remains to be determined. Furthermore, the precise relationship between other regions involved in attenuating cocaine-seeking behavior and the infralimbic cortex remains unclear. Recent advances in the use of viral vectors combined with optogenetics, chemogenetics, and other approaches have greatly affected our capacity to investigate those systems inhibiting behavior dependent on cocaine-associated memories. This review will present current understanding regarding the neurobiology underlying the inhibition of such behaviors, especially focusing on the extinction of such memories, and explore how viral-vector targeting of specific brain circuits has begun to alter, and will continue to enrich, our knowledge regarding this issue.
Collapse
Affiliation(s)
- Victória A Muller Ewald
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|