1
|
Lloret-Torres ME, Barreto-Estrada JL. LF-DBS of the ventral striatum shortens persistence for morphine place preference and modulates BDNF expression in the hippocampus. Behav Brain Res 2025; 477:115300. [PMID: 39490421 PMCID: PMC11574767 DOI: 10.1016/j.bbr.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) represents a promising therapy for treatment-refractory patients with substance-use disorders. We previously found that low-frequency (LF) DBS aimed to the VC/VS during extinction training strengthens the extinction memory for morphine seeking under a partial extinction protocol. OBJECTIVES/HYPOTHESIS In this study, animals were tested in a full extinction protocol to determine whether LF-DBS applied during extinction facilitates extinction while preventing drug reinstatement, and study the molecular mechanisms underlying the effects of LF-DBS, METHODS/RESULTS: We used a full extinction CPP paradigm combined with LF-DBS to assess behavior. Western blots for the pro-extinction molecule, brain-derived neurotrophic factor (BDNF) were then performed in corticomesolimbic regions of the brain. Lastly, to determine whether changes in BDNF expression elicited by LF-DBS were specific to the VS/NAc afferents from the hippocampus, amygdala, and medial prefrontal cortex, we performed BDNF-like immunohistochemistry, combined with the retrograde tracer cholera toxin B (CtB). RESULTS We showed a significant reduction in the number of days required to fully extinguish morphine CPP in animals exposed to LF-DBS during extinction training accompanied by a significant increase in BDNF expression in the hippocampus. However, LF-DBS applied during extinction did not prevent drug reinstatement. Lastly, no changes in BDNF/CtB double-labeled cells were found in VS/NAc projecting cells after one-day exposure to LF-DBS. CONCLUSION(S) These data suggest that LF-DBS can facilitate extinction of morphine CPP by decreasing drug seeking through potential synaptic plasticity changes in the hippocampus to strengthen extinction memories.
Collapse
Affiliation(s)
- Mario E Lloret-Torres
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico.
| |
Collapse
|
2
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2024:10.1007/s12264-024-01294-z. [PMID: 39264570 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Mojiri Z, Rouhani E, Akhavan A, Jokar Z, Alaei H. Non-invasive temporal interference brain stimulation reduces preference on morphine-induced conditioned place preference in rats. Sci Rep 2024; 14:21040. [PMID: 39251806 PMCID: PMC11385117 DOI: 10.1038/s41598-024-71841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Long-term use of opioid drugs such as morphine can induce addiction in the central nervous system through dysregulation of the reward system of the brain. Deep brain stimulation (DBS) is a non-pharmacological technique capable of attenuating behavioral responses associated with opioid drug consumption and possesses the capability to selectively activate and target localized brain regions with a high spatial resolution. However, long-term implantation of electrodes in brain tissue may limit the effectiveness of DBS due to changes in impedance, position, and shape of the tip of the stimulation electrode and the risk of infection of nerve tissue around the implanted electrode. The main objective of the current study is to evaluate the effect of temporal interference (TI) brain stimulation on addictive behaviors of morphine-induced conditioned place preference (CPP) in rats. TI stimulation is a non-invasive technique used transcranially to modulate neural activity within targeted brain regions. It involves applying two high-frequency currents with slightly different frequencies, resulting in interference and targeted stimulation of different brain areas with the desired spatial resolution. The results indicated that TI stimulation with the amplitude ofI 1 = I 2 = 0.5 mA, carrier frequency of 2 kHz, frequency difference of 25 Hz, ON-OFF stimulation frequency of 0.25 Hz, and total duration of 10 min in three consecutive days resulted in a significant reduction of morphine preference in the morphine-stimulation group in comparison with the morphine group (p < 0.001). These findings highlight the potential of TI stimulation as a modulatory intervention in mitigating the addictive properties of morphine and provide valuable insights into the therapeutic implications of this stimulation paradigm for treatment of opioid drugs in human subjects.
Collapse
Affiliation(s)
- Zohre Mojiri
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ehsan Rouhani
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Amir Akhavan
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Zahra Jokar
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
5
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Iqbal J, Mansour MNM, Saboor HA, Suyambu J, Lak MA, Zeeshan MH, Hafeez MH, Arain M, Mehmood M, Mehmood D, Ashraf M. Role of deep brain stimulation (DBS) in addiction disorders. Surg Neurol Int 2023; 14:434. [PMID: 38213452 PMCID: PMC10783698 DOI: 10.25259/sni_662_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Background Addiction disorders pose significant challenges to public health, necessitating innovative treatments. This assesses deep brain stimulation (DBS) as a potential intervention for addiction disorders. Methods A literature review was carried out with a focus on the role of DBS in addiction disorders and its future implications in neurosurgical research. Results The online literature shows that DBS precisely modulates certain brain regions to restore addiction-related neural circuits and promote behavioral control. Conclusion Preclinical evidence demonstrates DBS's potential to rebalance neural circuits associated with addiction, and early clinical trials provide encouraging outcomes in enhancing addiction-related outcomes. Ethical considerations, long-term safety, and personalized patient selection require further investigation.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Jenisha Suyambu
- Department of Neurosurgery, Jonelta Foundation School of Medicine, University of Perpetual Help System Dalta, Las Pinas City, Philippines
| | - Muhammad Ali Lak
- School of Medicine, Combined Military Hospitals (CMH) Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | | | | | - Mustafa Arain
- School of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Maria Mehmood
- School of Medicine, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Dalia Mehmood
- School of Medicine, Fatima Jinnah Medical University, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Mohammad Ashraf
- Wolfson School of Medicine, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
7
|
Pour MG, Alaei H. The reinstatement of the expression phase of morphine-induced conditioned place preference in male Wistar rats under ventral tegmental area stimulation and brief inactivation. Res Pharm Sci 2023; 18:676-695. [PMID: 39005563 PMCID: PMC11246116 DOI: 10.4103/1735-5362.389957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Accepted: 11/18/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Previous research has found that the electrical stimulation of the ventral tegmental area (VTA) is involved in drug-dependent behaviors and plays a role in reward-seeking. However, the mechanisms remain unknown, especially the effect of electrical stimulation on this area. Therefore, this study aimed to investigate how the electrical stimulation and the temporary inactivation of VTA affect the morphine- dependent behavior in male rats. Experimental approach The adult Wistar male rats were anesthetized with ketamine and xylazine. The stimulation electrode (unilaterally) and the microinjection cannula (bilaterally) were implanted into the VTA, stereotaxically. Then, the rats underwent three-day of repeated conditioning with subcutaneous morphine (0.5 or 5 mg/kg) injections, in the conditioned place preference apparatus, followed by four-day forced abstinence, which altered their conditioning response to a morphine (0.5 mg/kg) priming dose on the ninth day. On that day, rats were given high- or low-intensity electrical stimulation or reversible inactivation with lidocaine (0.5 pL/site) in the VTA. Findings/Results Results showed that the electrical stimulation of the VTA with the high intensity (150 μA/rat), had a minimal effect on the expression of morphine-induced place conditioning in rats treated with a high dose (5 mg/kg) of morphine. However, the reversible inactivation of the VTA with lidocaine greatly increased place preference in rats treated with a low dose (0.5 mg/kg) of morphine. Additionally, the reinstatement of 0.5 mg/kg morphine-treated rats was observed after lidocaine infusion into the VTA. Conclusion and implications These results suggest that VTA electrical stimulation suppresses neuronal activation, but the priming dose causes reinstatement. The VTA may be a potential target for deep brain stimulation-based treatment of intractable disorders induced by substance abuse.
Collapse
Affiliation(s)
- Mozhgan Ghobadi Pour
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjatollah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
8
|
Jokar Z, Khatamsaz S, Alaei H, Shariati M. The electrical stimulation of the central nucleus of the amygdala in combination with dopamine receptor antagonist reduces the acquisition phase of morphine-induced conditioned place preference in male rat. Res Pharm Sci 2023; 18:430-438. [PMID: 37614617 PMCID: PMC10443671 DOI: 10.4103/1735-5362.378089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The central nucleus of the amygdala (CeA) is one of the nuclei involved in the reward system. The aim of the current study was to investigate the electrical stimulation (e-stim) effect of the CeA in combination with dopamine D1 receptor antagonist on morphine-induced conditioned place preference (CPP) in male rats. Experimental approach A 5-day procedure of CPP was used in this study. Morphine was administered at an effective dose of 5 mg/kg, and SCH23390 as a selective D1 receptor antagonist was administrated into the CeA. In addition, the CeA was stimulated with an intensity of the current of 150 μA. Finally, the dependence on morphine was evaluated in all experimental groups. Findings/Results Morphine significantly increased CPP. While the blockade of the D1 receptor of the CeA reduced the acquisition phase of morphine-induced CPP. Moreover, the combination of D1 receptor antagonist and e-stim suppressed morphine-induced CPP, even it induced an aversion. Conclusion and implication The current study suggests that the administration of dopamine D1 receptor antagonist into the CeA in combination with e-stim could play a prominent role in morphine dependence.
Collapse
Affiliation(s)
- Zahra Jokar
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Saeed Khatamsaz
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
9
|
Nikbakhtzadeh M, Ashabi G, Saadatyar R, Doostmohammadi J, Nekoonam S, Keshavarz M, Riahi E. Restoring the firing activity of ventral tegmental area neurons by lateral hypothalamic deep brain stimulation following morphine administration in rats: LH DBS and the spiking activity of VTA neurons. Physiol Behav 2023; 267:114209. [PMID: 37105347 DOI: 10.1016/j.physbeh.2023.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
We have previously shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) compromises morphine-induced addiction-like behavior in rats. The exact mechanism underlying this effect is not known. Here, we investigated the assumption that DBS in the LH influences the firing activity of neurons in the ventral tegmental area (VTA). To that end, male Wistar rats received morphine (5 mg/kg; s.c.) for three days and underwent extracellular single unit recording under general anesthesia one day later. During the recording, the rats received an intraoperative injection of morphine (5 mg/kg; s.c.) plus DBS in the LH (130 Hz pulse frequency, 150 μA amplitude, and 100 μs pulse width). One group of animals also received preoperative DBS after each morphine injection before the recording. The spiking frequency of VTA neurons was measured at three successive phases: (1) baseline (5-15 min); (2) DBS-on (morphine + DBS for 30 min); and (3) After-DBS (over 30 min after termination of DBS). Results showed that morphine suppressed the firing activity of a large population of non-DA neurons, whereas it activated most DA neurons. Intraoperative DBS reversed morphine suppression of non-DA firing, but did not alter the excitatory effect of morphine on DA neurons firing. With repeated preoperative application of DBS, non-DA neurons returned to the morphine-induced suppressive state, but DA neurons released from the excitatory effect of morphine. It is concluded that the development of morphine reward is associated with a hypoactivity of VTA non-DA neurons and a hyperactivity of DA neurons, and that DBS modulation of the spiking activity may contribute to the blockade of morphine addiction-like behavior.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saadatyar
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Eskandari K, Fattahi M, Riahi E, Khosrowabadi R, Haghparast A. A wide range of Deep Brain Stimulation of the nucleus accumbens shell time independently reduces the extinction period and prevents the reinstatement of methamphetamine-seeking behavior in rats. Life Sci 2023; 319:121503. [PMID: 36804308 DOI: 10.1016/j.lfs.2023.121503] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Methamphetamine (METH) addiction is a significant public health issue, and standard medical therapies are often not curative. Deep Brain Stimulation (DBS) has recently shown the potential to cure addiction by modulating neural activity in specific brain circuits. Recent studies have revealed that the nucleus accumbens shell (NAcSh) could serve as a promising target in treating addiction. Therefore, the present study aimed to investigate the therapeutic effects of NAcSh high- or low-frequency stimulation (HFS or LFS) in the different time points of application on the extinction and reinstatement of the METH-conditioned place preference (CPP). LFS or HFS (10 or 130 Hz, 150-200 μA, 100 μs) was delivered to the NAcSh for 30 min non-simultaneous (in a distinct non-drug environment) or simultaneous (in a drug-paired context) of the drug-free extinction sessions. The obtained results showed that both non-simultaneous and simultaneous treatments by HFS and LFS notably reduced the extinction period of METH-induced CPP. Furthermore, the data indicated that both non-synchronous and synchronous HFS prevented METH-primed reinstatement, while only the LFS synchronized group could block the reinstatement of METH-seeking behavior. The results also demonstrated that HFS was more effective than LFS in attenuating METH-primed reinstatement, and applying HFS synchronous was significantly more effective than HFS non-synchronous in reducing the relapse of drug-seeking. In conclusion, the current study's results suggest that DBS of the NAcSh in a wide range of frequencies (LFS and HFS) could affect addiction-related behaviors. However, it should be considered that the frequency and timing of DBS administration are among the critical determining factors.
Collapse
Affiliation(s)
- Kiarash Eskandari
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Fattahi M, Eskandari K, Riahi E, Khosrowabadi R, Haghparast A. Distinct suppressing effects of deep brain stimulation in the orbitofrontal cortex on the development, extinction, and reinstatement of methamphetamine-seeking behaviors. Life Sci 2023; 322:121613. [PMID: 36948388 DOI: 10.1016/j.lfs.2023.121613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
AIMS The orbitofrontal cortex (OFC) is implicated in compulsive drug-seeking and relapse, the characteristics that result in addiction treatment failure. Structural and functional impairments within the OFC have been detected in many substance use disorders (SUDs). Deep brain stimulation (DBS) is proposed as a promising therapeutic option in treating SUDs. Therefore, the present study aimed to investigate the potential efficacy of DBS application on the various stages of the methamphetamine-conditioned place preference (CPP) paradigm in rats. MAIN METHODS Electrodes were implanted unilaterally in the rat's right OFC. DBS in the form of high- or low-frequency stimulation (HFS: 130 Hz, LFS: 13 Hz) was applied during the 5-day conditioning phase (a daily 30-min session) or extinction period (30-min session, daily, ten days) of methamphetamine-induced CPP in two separate sets of experiments. Following extinction, place preference was reinstated by injecting a priming dose of methamphetamine (0.25 mg/kg). KEY FINDINGS The HFS and LFS significantly decreased the methamphetamine place preference when applied over the conditioning period. In the extinction experiment, only HFS could remarkably accelerate the extinction of reward-context associations and even reduce the methamphetamine-induced reinstatement of seeking behaviors. SIGNIFICANCE Conclusively, DBS administration in the OFC demonstrated some positive results, including suppressing effects on the development, maintenance, and relapse of methamphetamine-seeking behavior. These findings encourage conducting more preclinical studies to strongly suggest a wide range of DBS applications in cortical areas such as OFC as an efficient treatment modality for psychostimulant use disorder.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Deep brain stimulation of the lateral hypothalamus to block morphine reward: Does the intensity of stimulation matter? Behav Brain Res 2023; 437:114159. [PMID: 36241071 DOI: 10.1016/j.bbr.2022.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
It has been shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) prevents morphine-induced conditioned place preference (CPP) in rats. However, our previous study demonstrated that the application of DBS at 150 µA did not block morphine CPP in all rats. Here, we investigated the possibility to completely block morphine CPP by increasing the intensity of LH DBS. Morphine reward was assessed by the CPP paradigm in male Wistar rats. DBS was applied in the LH during the conditioning trials with morphine (5 mg/kg, S.C.) at 130 Hz pulse frequency, 100 µs pulse duration, and either 150 µA or 200 µA pulse amplitude. Results showed that repeated morphine injections produced a robust CPP that was blocked partially by DBS at 150 µA and completely by DBS at 200 µA. Response rate was 47% with 150-µA and 100% with 200-µA stimulation. DBS treatment was not associated with changes in motor activity. In conclusion, the development of morphine reward was modulated by LH DBS in an intensity-dependent manner.
Collapse
|
13
|
Zhang S, Yang W, Li M, Wang S, Zhang J, Liu J, Yuan K. Partial recovery of the left DLPFC-right insula circuit with reduced craving in abstinent heroin users: a longitudinal study. Brain Imaging Behav 2022; 16:2647-2656. [PMID: 36136203 DOI: 10.1007/s11682-022-00721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
The phenomenon of brain recovery after long-term abstinence has been reported in substance use disorders. However, few longitudinal studies have been conducted to observe the potential recovery in heroin users, and little is known about the neural mechanism underlying the decreased craving after prolonged abstinence. The 8-month longitudinal study was carried out in 29 heroin users and 30 healthy controls. By choosing the L_DLPFC, which was activated by the heroin cue as the seeding region, different brain connection patterns were compared between healthy controls and heroin users by using Granger causality analysis (GCA) at baseline. Then, a paired t test was employed to detect the potential recovery of L_DLPFC circuits after prolonged abstinence. The visual analog scale (VAS) and trail-making test-A (TMT-A) were adopted to investigate craving and cognitive control impairment, respectively. The neuroimaging changes were then correlated with behavioral improvements. Similar analyses were applied for the mirrored right DLPFC to verify the lateralization hypothesis of the DLPFC in addiction. In the longitudinal study, enhanced GCA coefficients were observed in the L_DLPFC-R_insula circuit of heroin users after long-term abstinence and were associated with craving score changes. At baseline, decreased GCA coefficients from the left DLPFC to the bilateral SMA and right putamen, together with the reduced GCA strength from the bilateral OFC to the left DLPFC, were found between HUs and HCs. Our findings extended the brain recovery phenomenon into the field of heroin and suggested that the increased regulation of the L_DLPFC over the insula after prolonged abstinence was important for craving inhibition.
Collapse
Affiliation(s)
- Shan Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, 710071, Shaanxi, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Minpeng Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, 710071, Shaanxi, China
| | - Shicong Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, 710071, Shaanxi, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, 710071, Shaanxi, China. .,Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China. .,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
14
|
Lu L, Yang W, Zhang X, Tang F, Du Y, Fan L, Luo J, Yan C, Zhang J, Li J, Liu J, von Deneen KM, Yu D, Liu J, Yuan K. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J Psychiatr Res 2022; 152:326-334. [PMID: 35785575 DOI: 10.1016/j.jpsychires.2022.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Neuroscientists have devoted efforts to explore potential brain recovery after prolonged abstinence in heroin users (HU). However, not much is known about whether frontostriatal circuits can recover after prolonged abstinence in HU. An eight-month longitudinal study was carried out for HU. Two MRI scans were obtained at baseline (HU1) and 8-month follow-up (HU2). The functional and structural connectivities of dorsal and ventral frontostriatal pathways were measured by resting-state functional connectivity (RSFC) and diffusion tensor imaging (DTI). Correlation analyses were employed to reveal the associations between neuroimaging and behavioral changes. Results suggested that relative to healthy controls (HCs), HU1 showed lower fractional anisotropy (FA) in the right dorsolateral prefrontal cortex (DLPFC)-to-caudate tracts and medial orbitofrontal cortex (mOFC)-to-nucleus accumbens (NAc) tracts as well as decreased RSFC in the left mOFC-NAc circuits. Longitudinal results revealed reduced craving and enhanced cognitive control in HU2 compared with HU1. After prolonged abstinence, HU2 showed increased FA values in the right DLPFC-caudate and mOFC-NAc tracts as well as increased RSFC strength in the bilateral mOFC-NAc circuits compared with HU1. In addition, changes in RSFC and FA values in the right mOFC-NAc circuit were negatively correlated with craving score changes. Similarly, negative correlations were also found between changes of RSFC in the bilateral DLPFC-caudate circuits and TMT-A scores. We provided scientific evidence for brain recovery of the dorsal and ventral frontostriatal circuits in HU after prolonged abstinence, and these circuits may be potential neuroimaging biomarkers for cognition and craving changes.
Collapse
Affiliation(s)
- Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dahua Yu
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
15
|
Yuen J, Kouzani AZ, Berk M, Tye SJ, Rusheen AE, Blaha CD, Bennet KE, Lee KH, Shin H, Kim JH, Oh Y. Deep Brain Stimulation for Addictive Disorders-Where Are We Now? Neurotherapeutics 2022; 19:1193-1215. [PMID: 35411483 PMCID: PMC9587163 DOI: 10.1007/s13311-022-01229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
In the face of a global epidemic of drug addiction, neglecting to develop new effective therapies will perpetuate the staggering human and economic costs of substance use. This review aims to summarize and evaluate the preclinical and clinical studies of deep brain stimulation (DBS) as a novel therapy for refractory addiction, in hopes to engage and inform future research in this promising novel treatment avenue. An electronic database search (MEDLINE, EMBASE, Cochrane library) was performed using keywords and predefined inclusion criteria between 1974 and 6/18/2021 (registered on Open Science Registry). Selected articles were reviewed in full text and key details were summarized and analyzed to understand DBS' therapeutic potential and possible mechanisms of action. The search yielded 25 animal and 22 human studies. Animal studies showed that DBS of targets such as nucleus accumbens (NAc), insula, and subthalamic nucleus reduces drug use and seeking. All human studies were case series/reports (level 4/5 evidence), mostly targeting the NAc with generally positive outcomes. From the limited evidence in the literature, DBS, particularly of the NAc, appears to be a reasonable last resort option for refractory addictive disorders. We propose that future research in objective electrophysiological (e.g., local field potentials) and neurochemical (e.g., extracellular dopamine levels) biomarkers would assist monitoring the progress of treatment and developing a closed-loop DBS system. Preclinical literature also highlighted the prefrontal cortex as a promising DBS target, which should be explored in human research.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong VIC 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Emory University, Atlanta, GA, 30322, USA
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia.
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Deep brain stimulation for opioid use disorder: A systematic review of preclinical and clinical evidence. Brain Res Bull 2022; 187:39-48. [PMID: 35777703 DOI: 10.1016/j.brainresbull.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/09/2022]
Abstract
Opioid use disorder (OUD) is a chronic and complex disease characterized by repeated relapses and remissions. Deep brain stimulation (DBS) has been discussed again and again as a potentially helpful neuromodulatory procedure in this context. In this review, for the first time, we intended to systematically identify the positive and negative effects of DBS in human and animal models of opioid dependence to assess the viability of DBS as a treatment of OUD. Eligible studies were incorporated by a comprehensive literature search and evaluated through proper methodological quality assessment tools. Findings showed that the nucleus accumbens was the most stimulated brain target in human and animal studies, and DBS was applied chiefly in the form of high-frequency stimulation (HFS). DBS administration effectively reduced opioid craving and consumption in human and animal subjects dependent on opioids. DBS represents a valuable alternative strategy for treating intractable opioid addiction. Based on our systematic literature analysis, research efforts in this field should be continued.
Collapse
|
17
|
Nikbakhtzadeh M, Raeis-Abdollahi E, Riahi E, Arezoomandan R. The interaction between sexual reward/ deprivation and the acquisition, extinction and reinstatement of morphine-seeking behavior. Behav Brain Res 2022; 416:113579. [PMID: 34508768 DOI: 10.1016/j.bbr.2021.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/02/2022]
Abstract
Natural rewards and abused drugs affect the function of the common brain's reward system. Interaction between social and drug rewards can change the vulnerability to development of drug addiction. Here, we investigate the effects of sexual experience and sex deprivation on the acquisition, maintenance, and drug prime-induced reinstatement of morphine-seeking behavior in male mice using conditioned place preference (CPP). CPP induced with morphine (3, 5, 7 mg/kg, s.c. for 3 days) lasted for 10 days after cessation of morphine treatment and priming dose of morphine (2 mg/kg, s.c.) reinstated the extinguished CPP. In the post-test phase, sexually experienced animals showed a lower preference for morphine compared to sex-deprived males. In the extinction phase, sex deprivation shortened maintenance time compared to control animals. The preference for morphine in sexually experienced animals did not diminish by the seventeenth extinction day. In both groups, the priming injection of morphine after the extinction period could reinstate the extinguished morphine-induced CPP. Together, these data showed the interaction between sex and drug reward and that sexual behavior -a natural rewarding stimulus- can prolong, whereas sex deprivation can block the maintenance of morphine-seeking behaviors. Sexual experience may induce functional and morphological alterations in brain reward areas particularly the mesolimbic system similar to repeated exposure to abused drugs which can affect morphine-seeking behaviors.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Basic Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Arezoomandan
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Sattarkhan, Niayesh St, Shahid Mansuri Ave, Tehran P.O. Box: 14565-441, Iran.
| |
Collapse
|
18
|
Chang R, Peng J, Chen Y, Liao H, Zhao S, Zou J, Tan S. Deep Brain Stimulation in Drug Addiction Treatment: Research Progress and Perspective. Front Psychiatry 2022; 13:858638. [PMID: 35463506 PMCID: PMC9022905 DOI: 10.3389/fpsyt.2022.858638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Drug addiction is a chronic psychiatric disorder characterized by compulsive drug-seeking and drug-using behavior, and a tremendous socioeconomic burden to society. Current pharmacological and psychosocial methods have shown limited treatment effects for substance abuse. Deep Brain Stimulation (DBS) is a novel treatment for psychiatric disease and has gradually gained popularity in the treatment of addiction. Addiction is characterized by neuroplastic changes in the nucleus accumbens (NAc), a key structure in the brain reward system, and DBS in this region has shown promising treatment effects. In this paper, the research progress on DBS for drug addiction has been reviewed. Specifically, we discuss the mechanism of NAc DBS for addiction treatment and summarize the results of clinical trials on DBS treatment for addiction to psychoactive substances such as nicotine, alcohol, cocaine, opioids and methamphetamine/amphetamine. In addition, the treatment effects of DBS in other brain regions, such as the substantia nigra pars reticulata (SNr) and insula are discussed.
Collapse
Affiliation(s)
- Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Jionghong Peng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfan Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Hailin Liao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Size Zhao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
19
|
Zhang L, Meng S, Chen W, Chen Y, Huang E, Zhang G, Liang Y, Ding Z, Xue Y, Chen Y, Shi J, Shi Y. High-Frequency Deep Brain Stimulation of the Substantia Nigra Pars Reticulata Facilitates Extinction and Prevents Reinstatement of Methamphetamine-Induced Conditioned Place Preference. Front Pharmacol 2021; 12:705813. [PMID: 34276387 PMCID: PMC8277946 DOI: 10.3389/fphar.2021.705813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persistent and stable drug memories lead to a high rate of relapse among addicts. A number of studies have found that intervention in addiction-related memories can effectively prevent relapse. Deep brain stimulation (DBS) exhibits distinct therapeutic effects and advantages in the treatment of neurological and psychiatric disorders. In addition, recent studies have also found that the substantia nigra pars reticulata (SNr) could serve as a promising target in the treatment of addiction. Therefore, the present study aimed to investigate the effect of DBS of the SNr on the reinstatement of drug-seeking behaviors. Electrodes were bilaterally implanted into the SNr of rats before training of methamphetamine-induced conditioned place preference (CPP). High-frequency (HF) or low-frequency (LF) DBS was then applied to the SNr during the drug-free extinction sessions. We found that HF DBS, during the extinction sessions, facilitated extinction of methamphetamine-induced CPP and prevented drug-primed reinstatement, while LF DBS impaired the extinction. Both HF and LF DBS did not affect locomotor activity or induce anxiety-like behaviors of rats. Finally, HF DBS had no effect on the formation of methamphetamine-induced CPP. In conclusion, our results suggest that HF DBS of the SNr could promote extinction and prevent reinstatement of methamphetamine-induced CPP, and the SNr may serve as a potential therapeutic target in the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yisen Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jie Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yu Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
20
|
Abstract
Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Minbashi Moeini M, Sadr SS, Riahi E. Deep Brain Stimulation of the Lateral Hypothalamus Facilitates Extinction and Prevents Reinstatement of Morphine Place Preference in Rats. Neuromodulation 2021; 24:240-247. [PMID: 33496024 DOI: 10.1111/ner.13320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We have previously shown that high-frequency (HF) deep brain stimulation (DBS) of the lateral hypothalamus (LH) during the acquisition phase of morphine-induced conditioned place preference (CPP) abolished the development of morphine reward. In the present study, we investigated the effect of DBS in the LH during the extinction phase of morphine CPP. MATERIALS AND METHODS Rats were implanted with electrodes in the LH and went through conditioning trials for morphine CPP (40 min each, for three days), followed by extinction trials (20 min, for nine days). DBS-like stimulation (square pulses at 13 or 130 Hz, 200 μA, 100 μsec) was applied during the extinction trials. RESULTS Rats that received HF-DBS (130 Hz) accomplished extinction of morphine place preference by day 5 of the phase, whereas those in sham-stimulation or low-frequency-DBS (LF-DBS, 13 Hz) groups reached the criterion for extinction at day 8. One day later, rats received a priming injection of morphine (2 mg/kg) to reinstate the extinguished preference. While rats in the sham-DBS and LF-DBS relapsed into the state of preferring morphine-associated context, those in the HF-DBS group did not show such preference. Rats were then proceeded into an additional phase of extinction training (20 min, once daily, three to five days) with DBS, followed by restraint stress-induced reinstatement test. Again, sham-DBS and LF-DBS had no effect on relapse to the morphine place preferring state, but HF-DBS completely prevented the relapse. CONCLUSION HF-DBS facilitated extinction of morphine place preference and disrupted drug priming- and stress-induced renewal of morphine place preference.
Collapse
Affiliation(s)
- Moein Minbashi Moeini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Chang H, Gao C, Sun K, Xiao L, Li X, Jiang S, Zhu C, Sun T, Jin Z, Wang F. Continuous High Frequency Deep Brain Stimulation of the Rat Anterior Insula Attenuates the Relapse Post Withdrawal and Strengthens the Extinction of Morphine Seeking. Front Psychiatry 2020; 11:577155. [PMID: 33173522 PMCID: PMC7591677 DOI: 10.3389/fpsyt.2020.577155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) modulates the neuronal activity in specific brain circuits and has been recently considered as a promising intervention for refractory addiction. The insula cortex is the hub of interoception and is known to be involved in different aspects of substance use disorder. In the present study, we investigate the effects of continuous high frequency DBS in the anterior insula (AI) on drug-seeking behaviors and examined the molecular mechanisms of DBS action in morphine-addicted rats. Sprague-Dawley rats were trained to the morphine-conditioned place preference (CPP, day 1-8) followed by bilaterally implanted with DBS electrodes in the AI (Day 10) and recovery (Day 10-15). Continuous high-frequency (HF) -DBS (130 Hz, 150 μA, 90 μs) was applied during withdrawal (Day 16-30) or extinction sessions. CPP tests were conducted on days 16, 30, 40 during withdrawal session and several rats were used for proteomic analysis on day 30. Following the complete extinction, morphine-CPP was reinstated by a priming dose of morphine infusion (2 mg/kg). The open field and novel objective recognition tests were also performed to evaluate the DBS side effect on the locomotion and recognition memory. Continuous HF-DBS in the AI attenuated the expression of morphine-CPP post-withdrawal (Day 30), but morphine addictive behavior relapsed 10 days after the cessation of DBS (Day 40). Continuous HF-DBS reduced the period to full extinction of morphine-CPP and blocked morphine priming-induced recurrence of morphine addiction. HF-DBS in the AI had no obvious effect on the locomotor activity and novel objective recognition and did not cause anxiety-like behavior. In addition, our proteomic analysis identified eight morphine-regulated proteins in the AI and their expression levels were reversely changed by HF-DBS. Continuous HF-DBS in the bilateral anterior insula prevents the relapse of morphine place preference after withdrawal, facilitates its extinction, blocks the reinstatement induced by morphine priming and reverses the expression of morphine-regulated proteins. Our findings suggest that manipulation of insular activity by DBS could be a potential intervention to treat substance use disorder, although future research is warranted.
Collapse
Affiliation(s)
- Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| |
Collapse
|