1
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Melamud MM, Bobrik DV, Brit PI, Efremov IS, Buneva VN, Nevinsky GA, Akhmetova EA, Asadullin AR, Ermakov EA. Biochemical, Hematological, Inflammatory, and Gut Permeability Biomarkers in Patients with Alcohol Withdrawal Syndrome with and without Delirium Tremens. J Clin Med 2024; 13:2776. [PMID: 38792318 PMCID: PMC11121978 DOI: 10.3390/jcm13102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Delirium Tremens (DT) is known to be a serious complication of alcohol withdrawal syndrome (AWS). Neurotransmitter abnormalities, inflammation, and increased permeability are associated with the pathogenesis of AWS and DT. However, the biomarkers of these conditions are still poorly understood. Methods: In this work, biochemical, hematologic, inflammatory, and gut permeability biomarkers were investigated in the following three groups: healthy controls (n = 75), severe AWS patients with DT (n = 28), and mild/moderate AWS without DT (n = 97). Blood sampling was performed after resolution of the acute condition (on 5 ± 1 day after admission) to collect clinical information from patients and to investigate associations with clinical scales. Biomarker analysis was performed using automated analyzers and ELISA. Inflammatory biomarkers included the erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (hsCRP), and platelet-to-lymphocyte ratio (PLR). Results: Among the biochemical biomarkers, only glucose, total cholesterol, and alanine aminotransferase (ALT) changed significantly in the analyzed groups. A multiple regression analysis showed that age and ALT were independent predictors of the CIWA-Ar score. Hematologic biomarker analysis showed an increased white blood cell count, and the elevated size and greater size variability of red blood cells and platelets (MCV, RDWc, and PDWc) in two groups of patients. Gut permeability biomarkers (FABP2, LBP, and zonulin) did not change, but were associated with comorbid pathologies (alcohol liver disease and pancreatitis). The increase in inflammatory biomarkers (ESR and PLR) was more evident in AWS patients with DT. Cluster analysis confirmed the existence of a subgroup of patients with evidence of high inflammation, and such a subgroup was more frequent in DT patients. Conclusions: These findings contribute to the understanding of biomarker variability in AWS patients with and without DT and support the heterogeneity of patients by the level of inflammation.
Collapse
Affiliation(s)
- Mark M. Melamud
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.M.M.); (V.N.B.); (G.A.N.)
| | - Daria V. Bobrik
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia; (D.V.B.); (E.A.A.); (A.R.A.)
| | - Polina I. Brit
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilia S. Efremov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia;
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.M.M.); (V.N.B.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.M.M.); (V.N.B.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elvina A. Akhmetova
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia; (D.V.B.); (E.A.A.); (A.R.A.)
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia; (D.V.B.); (E.A.A.); (A.R.A.)
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia;
| | - Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.M.M.); (V.N.B.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
4
|
Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system - Where aging and excess alcohol intersect. Alcohol 2023; 107:153-167. [PMID: 36150610 PMCID: PMC10023388 DOI: 10.1016/j.alcohol.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.
Collapse
Affiliation(s)
- Erika R Carlson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Steven P Guerin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
5
|
Tollefson S, Himes ML, Kozinski KM, Lopresti BJ, Mason NS, Hibbeln J, Muldoon MF, Narendran R. Imaging the Influence of Red Blood Cell Docosahexaenoic Acid Status on the Expression of the 18 kDa Translocator Protein in the Brain: A [ 11C]PBR28 Positron Emission Tomography Study in Young Healthy Men. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:998-1006. [PMID: 34607054 DOI: 10.1016/j.bpsc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) shows anti-inflammatory/proresolution effects in the brain. Higher red blood cell (RBC) DHA in humans is associated with improved cognitive performance and a lower risk for suicide. Here, we hypothesized that binding to the 18 kDa translocator protein (TSPO), a proxy for microglia levels, will be higher in individuals with low DHA relative to high DHA levels. We also postulated that higher TSPO would predict poor cognitive performance and impaired stress resilience. METHODS RBC DHA screening was performed in 320 healthy males. [11C]PBR28 positron emission tomography was used to measure binding to TSPO in 38 and 32 males in the lowest and highest RBC DHA quartiles. Volumes of distribution expressed relative to total plasma ligand concentration (VT) was derived using an arterial input function-based kinetic analysis in 14 brain regions. RESULTS [11C]PBR28 VT was significantly lower (by 12% and 20% in C/T and C/C rs6971 genotypes) in males with low RBC DHA than in males with high RBC DHA. Regional VT was correlated positively and negatively with RBC DHA and serum triglycerides, respectively. No relationships between VT and cognitive performance or stress resilience measures were present. CONCLUSIONS Contrary to our hypothesis, we found lower TSPO binding in low-DHA than in high-DHA subjects. It is unclear as to whether low TSPO binding reflects differences in microglia levels and/or triglyceride metabolism in this study. Future studies with specific targets are necessary to confirm the effect of DHA on microglia. These results underscore the need to consider lipid parameters as a factor when interpreting TSPO positron emission tomography clinical findings.
Collapse
Affiliation(s)
- Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael L Himes
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katelyn M Kozinski
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph Hibbeln
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Matthew F Muldoon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Rupprecht R, Rupprecht C, Di Benedetto B, Rammes G. Neuroinflammation and psychiatric disorders: Relevance of C1q, translocator protein (18 kDa) (TSPO), and neurosteroids. World J Biol Psychiatry 2022; 23:257-263. [PMID: 34320915 DOI: 10.1080/15622975.2021.1961503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is increasing evidence that neuroinflammatory processes may play a role in the pathophysiology of psychiatric disorders. Recently, the complement protein C1q and the translocator protein (18 kDa) (TSPO) have attracted considerable interest in this context. C1q is a small molecule which is involved into synaptic pruning mechanisms, increases during ageing and may contribute to neurodegenerative disorders. TSPO is a transmembrane channel protein and mediates numerous biological functions such as bioenergetics and steroid synthesis. Meanwhile, there is evidence that both C1q and TSPO may be elevated in psychiatric disorders, e.g. major depression. Moreover, preclinical and first clinical studies suggest that TSPO ligands may exert antidepressant and anxiolytic properties by promoting endogenous neurosteroid synthesis. In addition, certain neurosteroids, e.g. allopregnanolone, are potent positive allosteric modulators of GABAA receptors and their composition is altered in depression and anxiety disorders. Recently, neurosteroid compounds such as brexanolone or zuranolone have been reported to reduce depressive and anxiety symptoms in postpartum depression and major depressive disorder. In conclusion, compounds enhancing GABAergic neurotransmission such as neurosteroids and TSPO ligands, which also may exert anti-inflammatory properties in concert with immunomodulators such as C1q may open new avenues for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Christian Rupprecht
- Experimental Neuropharmacology, Department of Anesthesiology, Technische Universität München, Munich, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Experimental Neuropharmacology, Department of Anesthesiology, Technische Universität München, Munich, Germany
| |
Collapse
|
7
|
Kroll DS, McPherson KL, Manza P, Schwandt ML, Shen PH, Goldman D, Diazgranados N, Wang GJ, Wiers CE, Volkow ND. Elevated transferrin saturation in individuals with alcohol use disorder: Association with HFE polymorphism and alcohol withdrawal severity. Addict Biol 2022; 27:e13144. [PMID: 35229939 PMCID: PMC9373047 DOI: 10.1111/adb.13144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
Iron loading has been consistently reported in those with alcohol use disorder (AUD), but its effect on the clinical course of the disease is not yet fully understood. Here, we conducted a cohort study to examine whether peripheral iron measures, genetic variation in HFE rs1799945 and their interaction differed between 594 inpatient participants with alcohol use disorder (AUD) undergoing detoxification and 472 healthy controls (HC). We also assessed whether HFE rs1799945 was associated with elevated peripheral iron and can serve as a predictor of withdrawal severity. AUD patients showed significantly higher serum transferrin saturation than HC. Within the AUD group, transferrin saturation significantly predicted withdrawal symptoms (CIWA-Ar) and cumulative dose of benzodiazepine treatment during the first week of detoxification, which is an indicator of withdrawal severity. HFE rs1799945 minor allele carriers showed elevated transferrin saturation compared to non-carriers, both in AUD and healthy controls. Exploratory analyses indicated that, within the AUD cohort, HFE rs1799945 predicted CIWA withdrawal scores, and this relationship was significantly mediated by transferrin saturation. We provide evidence that serum transferrin saturation predicts alcohol withdrawal severity in AUD. Moreover, our findings replicated previous studies on elevated serum transferrin saturation in AUD and an involvement of HFE rs1799945 in serum transferrin saturation levels in both AUD and healthy controls. Future studies may use transferrin saturation measures as predictors for treatment or potentially treat iron overload to ameliorate withdrawal symptoms.
Collapse
Affiliation(s)
- Danielle S. Kroll
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Katherine L. McPherson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
- National Institute on Drug Abuse, Bethesda, Maryland
| |
Collapse
|
8
|
Wang Y, Li L, Li Y, Liu M, Gan G, Zhou Y, Luo X, Zhang C, Xie J, Duan Y, Cheng (ASK. The Impact of Dietary Diversity, Lifestyle, and Blood Lipids on Carotid Atherosclerosis: A Cross-Sectional Study. Nutrients 2022; 14:815. [PMID: 35215465 PMCID: PMC8876384 DOI: 10.3390/nu14040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Carotid atherosclerosis is a common arterial wall lesion that causes narrowing and occlusion of the arteries and is the basis of cardiovascular events. Dietary habits, lifestyle, and lipid metabolism should be considered integrally in the context of carotid atherosclerosis (CAS). However, this area has been investigated less often in China. To understand the prevalence of CAS in China and the impact of dietary diversity and habits, lifestyle, and lipid metabolism on CAS as well as its predictive factors, a cross-sectional study was performed in two northern and southern Chinese tertiary hospitals from 2017 to 2019. Included participants underwent carotid artery color Doppler ultrasonography, blood lipid examination and dietary evaluation. In total, 11,601 CAS patients and 27,041 individuals without carotid artery lesions were included. The prevalence of CAS was 30.0% in this group. High BMI (OR: 1.685, 95% CI [1.315-2.160]), current (1.148 [1.077-1.224]) or ex-smoking (1.349 [1.190-1.529]), abstinence from alcohol ((1.223 [1.026-1.459]), social engagement (1.122 [1.050-1.198]), hypertension (1.828 [1.718-1.945]), and total cholesterol (1.438 [1.298-1.594]) were risk factors for CAS, while higher dietary diversity according to DDS-2 (0.891 [0.805-0.989]), HDL-C (0.558 [0.487-0.639]), sugar-sweetened beverages (0.734 [0.696-0.774]), and no midnight snack consumption (0.846 [0.792-0.903]) were protective factors. This current study demonstrated that higher dietary diversity was a protective factor against CAS in a healthy population. In addition, current recommendations of healthy lifestyle and dietary habits for preventing CAS should be strengthened. In addition, dietary diversity should concentrate on food attributes and dietary balance, rather than increased quantities.
Collapse
Affiliation(s)
- Yaqin Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (Y.W.); (Y.L.)
| | - Lijun Li
- Xiangya Nursing School, Central South University, Changsha 410017, China; (L.L.); (G.G.); (Y.Z.); (X.L.); (C.Z.)
| | - Ying Li
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (Y.W.); (Y.L.)
| | - Min Liu
- Nursing Department, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Gang Gan
- Xiangya Nursing School, Central South University, Changsha 410017, China; (L.L.); (G.G.); (Y.Z.); (X.L.); (C.Z.)
| | - Yi Zhou
- Xiangya Nursing School, Central South University, Changsha 410017, China; (L.L.); (G.G.); (Y.Z.); (X.L.); (C.Z.)
| | - Xiaofei Luo
- Xiangya Nursing School, Central South University, Changsha 410017, China; (L.L.); (G.G.); (Y.Z.); (X.L.); (C.Z.)
| | - Chun Zhang
- Xiangya Nursing School, Central South University, Changsha 410017, China; (L.L.); (G.G.); (Y.Z.); (X.L.); (C.Z.)
| | - Jianfei Xie
- Nursing Department, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Yinglong Duan
- Nursing Department, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - (Andy) S. K. Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| |
Collapse
|
9
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|