1
|
Toddes C, Lefevre EM, Retzlaff CL, Zugschwert L, Khan S, Myhre E, Gauthier EA, Fernandez de Velasco EM, Kieffer BL, Rothwell PE. Mu opioid receptor expression by nucleus accumbens inhibitory interneurons promotes affiliative social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620729. [PMID: 39553981 PMCID: PMC11565767 DOI: 10.1101/2024.10.28.620729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mu opioid receptors in the nucleus accumbens regulate motivated behavior, including pursuit of natural rewards like social interaction as well as exogenous opioids. We used a suite of genetic and viral strategies to conditionally delete mu opioid receptor expression from all major neuron types in the nucleus accumbens. We pinpoint inhibitory interneurons as an essential site of mu opioid receptor expression for typical social behavior, independent from exogenous opioid sensitivity.
Collapse
|
2
|
Sari Y, Swiss GM, Alrashedi FA, Baeshen KA, Alshammari SA, Alsharari SD, Ali N, Alasmari AF, Alhoshani A, Alameen AA, Childers WE, Abou-Gharbia M, Alasmari F. Effects of novel beta-lactam, MC-100093, and ceftriaxone on astrocytic glutamate transporters and neuroinflammatory factors in nucleus accumbens of C57BL/6 mice exposed to escalated doses of morphine. Saudi Pharm J 2024; 32:102108. [PMID: 38868175 PMCID: PMC11166880 DOI: 10.1016/j.jsps.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-β) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-β mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer M.S. Swiss
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin A. Alrashedi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Baeshen
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sultan A. Alshammari
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa A. Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Smith AC, Ghoshal S, Centanni SW, Heyer MP, Corona A, Wills L, Andraka E, Lei Y, O’Connor RM, Caligiuri SP, Khan S, Beaumont K, Sebra RP, Kieffer BL, Winder DG, Ishikawa M, Kenny PJ. A master regulator of opioid reward in the ventral prefrontal cortex. Science 2024; 384:eadn0886. [PMID: 38843332 PMCID: PMC11323237 DOI: 10.1126/science.adn0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
In addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a population of PBn-projecting pyramidal neurons in the DPn that express μ-opioid receptors (μORs). Disrupting μOR signaling in the DPn switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify the DPn as a key substrate for the abuse liability of opioids.
Collapse
Affiliation(s)
- Alexander C.W. Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Present address: Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Soham Ghoshal
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Samuel W. Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mary P. Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Alberto Corona
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Richard M. O’Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Stephanie P.B. Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Sohail Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigitte L. Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada, and INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
4
|
Hakami AY, Alghamdi BS, Alshehri FS. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Front Pharmacol 2024; 15:1373746. [PMID: 38738177 PMCID: PMC11082292 DOI: 10.3389/fphar.2024.1373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Song R, Soler-Cedeño O, Xi ZX. Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents. Int J Mol Sci 2024; 25:3455. [PMID: 38542425 PMCID: PMC10970671 DOI: 10.3390/ijms25063455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.
Collapse
Affiliation(s)
- Rui Song
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology (BIPT), 27th Taiping Road, Beijing 100850, China
| | - Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| |
Collapse
|
6
|
McGovern DJ, Polter AM, Prévost ED, Ly A, McNulty CJ, Rubinstein B, Root DH. Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology 2023; 48:1889-1900. [PMID: 37407648 PMCID: PMC10584944 DOI: 10.1038/s41386-023-01637-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
A two-neuron model of ventral tegmental area (VTA) opioid function classically involves VTA GABA neuron regulation of VTA dopamine neurons via a mu-opioid receptor dependent inhibitory circuit. However, this model predates the discovery of a third major type of neuron in the VTA: glutamatergic neurons. We found that about one-quarter of VTA neurons expressing the mu-opioid receptor are glutamate neurons without molecular markers of GABA co-release. Glutamate-Mu opioid receptor neurons are largely distributed in the anterior VTA. The majority of remaining VTA mu-opioid receptor neurons are GABAergic neurons that are mostly within the posterior VTA and do not express molecular markers of glutamate co-release. Optogenetic stimulation of VTA glutamate neurons resulted in excitatory currents recorded from VTA dopamine neurons that were reduced by presynaptic activation of the mu-opioid receptor ex vivo, establishing a local mu-opioid receptor dependent excitatory circuit from VTA glutamate neurons to VTA dopamine neurons. This VTA glutamate to VTA dopamine pathway regulated dopamine release to the nucleus accumbens through mu-opioid receptor activity in vivo. Behaviorally, VTA glutamate calcium-related neuronal activity increased following oral oxycodone consumption during self-administration and response-contingent oxycodone-associated cues during abstinent reinstatement of drug-seeking behavior. Further, chemogenetic inhibition of VTA glutamate neurons reduced abstinent oral oxycodone-seeking behavior in male but not female mice. These results establish 1) a three-neuron model of VTA opioid function involving a mu-opioid receptor gated VTA glutamate neuron pathway to VTA dopamine neurons that controls dopamine release within the nucleus accumbens, and 2) that VTA glutamate neurons participate in opioid-seeking behavior.
Collapse
Affiliation(s)
- Dillon J McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Abigail M Polter
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, 20052, USA
| | - Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Connor J McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA.
| |
Collapse
|
7
|
Munoz B, Atwood BK. A novel inhibitory corticostriatal circuit that expresses mu opioid receptor-mediated synaptic plasticity. Neuropharmacology 2023; 240:109696. [PMID: 37659438 PMCID: PMC10591984 DOI: 10.1016/j.neuropharm.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Corticostriatal circuits are generally characterized by the release of glutamate neurotransmitter from cortical terminals within the striatum. It is well known that cortical excitatory input to the dorsal striatum regulates addictive drug-related behaviors. We previously reported that anterior insular cortex (AIC) synaptic inputs to the dorsolateral striatum (DLS) control binge alcohol drinking in mice. These AIC-DLS glutamate synapses are also the sole sites of corticostriatal mu opioid receptor-mediated excitatory long-term depression (MOR-LTD) in the DLS. Recent work demonstrates that some regions of cortex send long-range, direct inhibitory inputs into the dorsal striatum. Nothing is known about the existence and regulation of AIC-DLS inhibitory synaptic transmission. Here, using a combination of patch clamp electrophysiology and optogenetics, we characterized a novel AIC-DLS corticostriatal inhibitory circuit and its regulation by MOR-mediated inhibitory LTD (MOR-iLTD). First, we found that the activation of presynaptic MORs produces MOR-iLTD in the DLS and dorsomedial striatum. Then, we showed that medium spiny neurons within the DLS receive direct inhibitory synaptic input from the cortex, specifically from the motor cortex and AIC. Using transgenic mice that express cre-recombinase within parvalbumin-expressing inhibitory neurons, we determined that this specific cortical neuron subtype sends direct GABAergic projections to the DLS. Moreover, these AIC-DLS inhibitory synaptic input subtypes express MOR-iLTD. These data suggest a novel GABAergic corticostriatal circuit that could be involved in the regulation of drug and alcohol consumption-related behaviors.
Collapse
Affiliation(s)
- Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
8
|
Abdulmalek S, Hardiman G. Genetic and epigenetic studies of opioid abuse disorder - the potential for future diagnostics. Expert Rev Mol Diagn 2023; 23:361-373. [PMID: 37078260 PMCID: PMC10257799 DOI: 10.1080/14737159.2023.2190022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Opioid use disorder (OUD) is a global problem that often begins with prescribed medications. The available treatment and maintenance plans offer solutions for the consumption rate by individuals leaving the outstanding problem of relapse, which is a major factor hindering the long-term efficacy of treatments. AREAS COVERED Understanding the neurobiology of addiction and relapse would help identifying the core causes of relapse and distinguish vulnerable from resilient individuals, which would lead to more targeted and effective treatment and provide diagnostics to screen individuals who have a propensity to OUD. In this review, we cover the neurobiology of the reward system highlighting the role of multiple brain regions and opioid receptors in the development of the disorder. We also review the current knowledge of the epigenetics of addiction and the available screening tools for aberrant use of opioids. EXPERT OPINION Relapse remains an anticipated limitation in the way of recovery even after long period of abstinence. This highlights the need for diagnostic tools that identify vulnerable patients and prevent the cycle of addiction. Finally, we discuss the limitations of the available screening tools and propose possible solutions for the discovery of addiction diagnostics.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
- Department of Medicine, Medical University of South Carolina (MUSC), 135 Cannon Street, Charleston, SC 29425
| |
Collapse
|
9
|
Slivicki RA, Earnest T, Chang YH, Pareta R, Casey E, Li JN, Tooley J, Abiraman K, Vachez YM, Wolf DK, Sackey JT, Kumar Pitchai D, Moore T, Gereau RW, Copits BA, Kravitz AV, Creed MC. Oral oxycodone self-administration leads to features of opioid misuse in male and female mice. Addict Biol 2023; 28:e13253. [PMID: 36577735 DOI: 10.1111/adb.13253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.
Collapse
Affiliation(s)
- Richard A Slivicki
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tom Earnest
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yu-Hsuan Chang
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rajesh Pareta
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric Casey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jun-Nan Li
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jessica Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kavitha Abiraman
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yvan M Vachez
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Drew K Wolf
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason T Sackey
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Robert W Gereau
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexxai V Kravitz
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
El Jordi O, Fischer KD, Meyer TB, Atwood BK, Oblak AL, Pan RW, McKinzie DL. Microglial knockdown does not affect acute withdrawal but delays analgesic tolerance from oxycodone in male and female C57BL/6J mice. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10848. [PMID: 38390615 PMCID: PMC10880796 DOI: 10.3389/adar.2022.10848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2024]
Abstract
Opioid Use Disorder (OUD) affects approximately 8%-12% of the population. In dependent individuals, abrupt cessation of opioid taking results in adverse withdrawal symptoms that reinforce drug taking behavior. Considerable unmet clinical need exists for new pharmacotherapies to treat opioid withdrawal as well as improve long-term abstinence. The neuroimmune system has received much scientific attention in recent years as a potential therapeutic target to combat various neurodegenerative and psychiatric disorders including addiction. However, the specific contribution of microglia has not been investigated in oxycodone dependence. Chronic daily treatment with the CSF1R inhibitor Pexidartinib (PLX3397) was administered to knockdown microglia expression and evaluate consequences on analgesia and on naloxone induced withdrawal from oxycodone. In vivo results indicated that an approximately 40% reduction in brain IBA1 staining was achieved in the PLX treatment group, which was associated with a delay in the development of analgesic tolerance to oxycodone and maintained antinociceptive efficacy. Acute withdrawal behavioral symptoms, brain astrocyte expression, and levels of many neuroinflammatory markers were not affected by PLX treatment. KC/GRO (also known as CXCL1) was significantly enhanced in the somatosensory cortex in oxycodone-treated mice receiving PLX. Microglial knock-down did not affect the expression of naloxoneinduced opioid withdrawal but affected antinociceptive responsivity. The consequences of increased KC/GRO expression within the somatosensory cortex due to microglial reduction during opioid dependence are unclear but may be important for neural pathways mediating opioid-induced analgesia.
Collapse
Affiliation(s)
- Omar El Jordi
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Timothy B Meyer
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Raymond W Pan
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - David L McKinzie
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
11
|
Barry J, Oikonomou KD, Peng A, Yu D, Yang C, Golshani P, Evans CJ, Levine MS, Cepeda C. Dissociable effects of oxycodone on behavior, calcium transient activity, and excitability of dorsolateral striatal neurons. Front Neural Circuits 2022; 16:983323. [PMID: 36389179 PMCID: PMC9643681 DOI: 10.3389/fncir.2022.983323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
Opioids are the most common medications for moderate to severe pain. Unfortunately, they also have addictive properties that have precipitated opioid misuse and the opioid epidemic. In the present study, we examined the effects of acute administration of oxycodone, a μ-opioid receptor (MOR) agonist, on Ca2+ transient activity of medium-sized spiny neurons (MSNs) in freely moving animals. Ca2+ imaging of MSNs in dopamine D1-Cre mice (expressing Cre predominantly in the direct pathway) or adenosine A2A-Cre mice (expressing Cre predominantly in the indirect pathway) was obtained with the aid of miniaturized microscopes (Miniscopes) and a genetically encoded Cre-dependent Ca2+ indicator (GCaMP6f). Systemic injections of oxycodone (3 mg/kg) increased locomotor activity yet, paradoxically, reduced concomitantly the number of active MSNs. The frequency of Ca2+ transients was significantly reduced in MSNs from A2A-Cre mice but not in those from D1-Cre mice. For comparative purposes, a separate group of mice was injected with a non-Cre dependent Ca2+ indicator in the cerebral cortex and the effects of the opioid also were tested. In contrast to MSNs, the frequency of Ca2+ transients in cortical pyramidal neurons was significantly increased by oxycodone administration. Additional electrophysiological studies in brain slices confirmed generalized inhibitory effects of oxycodone on MSNs, including membrane hyperpolarization, reduced excitability, and decreased frequency of spontaneous excitatory and inhibitory postsynaptic currents. These results demonstrate a dissociation between locomotion and striatal MSN activity after acute administration of oxycodone.
Collapse
Affiliation(s)
- Joshua Barry
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katerina D. Oikonomou
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Allison Peng
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Yu
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chenyi Yang
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peyman Golshani
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- West Los Angeles VA Medical Center, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher J. Evans
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center (IDDRC), Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front Neural Circuits 2022; 16:867053. [PMID: 35669454 PMCID: PMC9164627 DOI: 10.3389/fncir.2022.867053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The ventral tegmental area (VTA) is well known for regulating reward consumption, learning, memory, and addiction behaviors through mediating dopamine (DA) release in downstream regions. Other than DA neurons, the VTA is known to be heterogeneous and contains other types of neurons, including glutamate neurons. In contrast to the well-studied and established functions of DA neurons, the role of VTA glutamate neurons is understudied, presumably due to their relatively small quantity and a lack of effective means to study them. Yet, emerging studies have begun to reveal the importance of glutamate release from VTA neurons in regulating diverse behavioral repertoire through a complex intra-VTA and long-range neuronal network. In this review, we summarize the features of VTA glutamate neurons from three perspectives, namely, cellular properties, neural connections, and behavioral functions. Delineation of VTA glutamatergic pathways and their interactions with VTA DA neurons in regulating behaviors may reveal previously unappreciated functions of the VTA in other physiological processes.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
14
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
15
|
Grecco GG, Haggerty DL, Reeves KC, Gao Y, Maulucci D, Atwood BK. Prenatal opioid exposure reprograms the behavioural response to future alcohol reward. Addict Biol 2022; 27:e13136. [PMID: 35229956 PMCID: PMC8896285 DOI: 10.1111/adb.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
As the opioid crisis has continued to grow, so has the number of infants exposed to opioids during the prenatal period. A growing concern is that prenatal exposure to opioids may induce persistent neurological changes that increase the propensity for future addictions. Although alcohol represents the most likely addictive substance that the growing population of prenatal opioid exposed will encounter as they mature, no studies to date have examined the effect of prenatal opioid exposure on future sensitivity to alcohol reward. Using a recently developed mouse model of prenatal methadone exposure (PME), we investigated the rewarding properties of alcohol and alcohol consumption in male and female adolescent PME and prenatal saline exposed (PSE) control animals. Conditioned place preference to alcohol was disrupted in PME offspring in a sex-dependent manner with PME males exhibiting resistance to the rewarding properties of alcohol. Repeated injections of alcohol revealed enhanced sensitivity to the locomotor-stimulating effects of alcohol specific to PME females. PME males consumed significantly more alcohol over 4 weeks of alcohol access relative to PSE males and exhibited increased resistance to quinine-adulterated alcohol. Further, a novel machine learning model was developed to employ measured differences in alcohol consumption and drinking microstructure to reliably predict prenatal exposure. These findings indicate that PME alters the sensitivity to alcohol reward in adolescent mice in a sex-specific manner and suggests prenatal opioid exposure may induce persistent effects on reward neurocircuitry that can reprogram offspring behavioural response to alcohol later in life.
Collapse
Affiliation(s)
- Gregory G. Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN 46202
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yong Gao
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Maulucci
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Corresponding Author: Brady K. Atwood, Ph.D. Department of Pharmacology and Toxicology, Contact: 320 W. 15th St, Indianapolis, IN 46202, NB 400-C. phone: 317-274-8917.
| |
Collapse
|
16
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
17
|
Reeves KC, Kube MJ, Grecco GG, Fritz BM, Muñoz B, Yin F, Gao Y, Haggerty DL, Hoffman HJ, Atwood BK. Mu opioid receptors on vGluT2-expressing glutamatergic neurons modulate opioid reward. Addict Biol 2021; 26:e12942. [PMID: 32686251 PMCID: PMC7854952 DOI: 10.1111/adb.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The role of Mu opioid receptor (MOR)‐mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR‐mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2‐expressing neurons (MORflox‐vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2‐expressing neurons in opioid‐related behaviors. In tests of conditioned place preference, MORflox‐vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox‐vGluT2cre mice also failed to show oxycodone‐induced locomotor stimulation. These mice displayed baseline withdrawal‐like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal‐like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR‐mediated behaviors were unaffected, including oxycodone‐induced analgesia. These data reveal that MOR‐mediated regulation of glutamate transmission is a critical component of opioid reward.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Megan J. Kube
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Gregory G. Grecco
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
- Medical Scientist Training Program Indiana University School of Medicine Indianapolis Indiana USA
| | - Brandon M. Fritz
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Fuqin Yin
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Yong Gao
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - David L. Haggerty
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Hunter J. Hoffman
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| |
Collapse
|
18
|
Borroto-Escuela DO, Wydra K, Fores-Pons R, Vasudevan L, Romero-Fernandez W, Frankowska M, Ferraro L, Beggiato S, Crespo-Ramirez M, Rivera A, Rocha LL, Perez de la Mora M, Stove C, Filip M, Fuxe K. The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. Front Pharmacol 2021; 12:627032. [PMID: 33790790 PMCID: PMC8005530 DOI: 10.3389/fphar.2021.627032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.
Collapse
Affiliation(s)
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ramon Fores-Pons
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Lakshmi Vasudevan
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Rivera
- Department of Cell Biology, University of Malaga, Instituto de Investigación Biomédica (IBIMA), Malaga, Spain
| | - Luisa L Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|