1
|
Fer M, Amalric C, Arban R, Baron L, Ben Hamida S, Breh-Schlanser P, Cui Y, Darcq E, Eickmeier C, Faye V, Franchet C, Frauli M, Halter C, Heyer M, Hoenke C, Hoerer S, Hucke OT, Joseph C, Kieffer BL, Lebrun L, Lotz N, Mayer S, Omrani A, Recolet M, Schaeffer L, Schann S, Schlecker A, Steinberg E, Viloria M, Würstle K, Young K, Zinser A, Montel F, Klepp J. Discovery of BI-9508, a Brain-Penetrant GPR88-Receptor-Agonist Tool Compound for In Vivo Mouse Studies. J Med Chem 2024; 67:11296-11325. [PMID: 38949964 DOI: 10.1021/acs.jmedchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Decreased activity and expression of the G-protein coupled receptor GPR88 is linked to many behavior-linked neurological disorders. Published preclinical GPR88 allosteric agonists all have in vivo pharmacokinetic properties that preclude their progression to the clinic, including high lipophilicity and poor brain penetration. Here, we describe our attempts to improve GPR88 agonists' drug-like properties and our analysis of the trade-offs required to successfully target GPR88's allosteric pocket. We discovered two new GPR88 agonists: One that reduced morphine-induced locomotor activity in a murine proof-of-concept study, and the atropoisomeric BI-9508, which is a brain penetrant and has improved pharmacokinetic properties and dosing that recommend it for future in vivo studies in rodents. BI-9508 still suffers from high lipophilicity, and research on this series was halted. Because of its utility as a tool compound, we now offer researchers access to BI-9508 and a negative control free of charge via Boehringer Ingelheim's open innovation portal opnMe.com.
Collapse
Affiliation(s)
| | | | - Roberto Arban
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Luc Baron
- Domain Therapeutics, 67400 Illkirch, France
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR 1247- Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, 80000 Amiens, France
| | | | - Yunhai Cui
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR-S1329, Strasbourg Translational Neuroscience & Psychiatry, University of Strasbourg, Strasbourg 67084, France
| | - Christian Eickmeier
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | | | | | | | - Christoph Hoenke
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Stefan Hoerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Oliver T Hucke
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR-S1329, Strasbourg Translational Neuroscience & Psychiatry, University of Strasbourg, Strasbourg 67084, France
| | | | | | | | - Azar Omrani
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | | | - Annette Schlecker
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | - Klaus Würstle
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Kyle Young
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Alexander Zinser
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Florian Montel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Julian Klepp
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| |
Collapse
|
2
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
3
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
4
|
Everett T, Ten Eyck TW, Wu CH, Shelowitz AL, Stansbury SM, Firek A, Setlow B, McIntyre JC. Cilia loss on distinct neuron populations differentially alters cocaine-induced locomotion and reward. J Psychopharmacol 2024; 38:200-212. [PMID: 38151883 PMCID: PMC11078551 DOI: 10.1177/02698811231219058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.
Collapse
Affiliation(s)
- Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tyler W. Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Chang-Hung Wu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | | | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Alexandra Firek
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| |
Collapse
|
5
|
Rahman MT, Guan D, Chaminda Lakmal HH, Decker AM, Imler GH, Kerr AT, Harris DL, Jin C. Design, Synthesis, and Structure-Activity Relationship Studies of Novel GPR88 Agonists (4-Substituted-phenyl)acetamides Based on the Reversed Amide Scaffold. ACS Chem Neurosci 2024; 15:169-192. [PMID: 38086012 PMCID: PMC10843732 DOI: 10.1021/acschemneuro.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
The development of synthetic agonists for the orphan receptor GPR88 has recently attracted significant interest, given the promise of GPR88 as a novel drug target for psychiatric and neurodegenerative disorders. Examination of structure-activity relationships of two known agonist scaffolds 2-PCCA and 2-AMPP, as well as the recently resolved cryo-EM structure of 2-PCCA-bound GPR88, led to the design of a new scaffold based on the "reversed amide" strategy of 2-AMPP. A series of novel (4-substituted-phenyl)acetamides were synthesized and assessed in cAMP accumulation assays as GPR88 agonists, which led to the discovery of several compounds with better or comparable potencies to 2-AMPP. Computational docking studies suggest that these novel GPR88 agonists bind to the same allosteric site of GPR88 that 2-PCCA occupies. Collectively, our findings provide structural insight and SAR requirement at the allosteric site of GPR88 and a new scaffold for further development of GPR88 allosteric agonists.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Hetti Handi Chaminda Lakmal
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Gregory H Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Code 6920, Washington, District of Columbia 20375, United States
| | - Andrew T Kerr
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Code 6920, Washington, District of Columbia 20375, United States
| | - Danni L Harris
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
6
|
Rahman MT, Decker AM, Ben Hamida S, Perrey DA, Chaminda Lakmal HH, Maitra R, Darcq E, Kieffer BL, Jin C. Improvement of the Metabolic Stability of GPR88 Agonist RTI-13951-33: Design, Synthesis, and Biological Evaluation. J Med Chem 2023; 66:2964-2978. [PMID: 36749855 PMCID: PMC9974843 DOI: 10.1021/acs.jmedchem.2c01983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 (1b) as the first in vivo active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties. As a result, we identified a highly potent GPR88 agonist RTI-122 (30a) (cAMP EC50 = 11 nM) with good metabolic stability (half-life of 5.8 h) and brain permeability (brain/plasma ratio of >1) in mice. Notably, RTI-122 was more effective than RTI-13951-33 in attenuating the binge-like alcohol drinking behavior in the drinking-in-the-dark paradigm. Collectively, our findings suggest that RTI-122 is a promising lead compound for drug discovery research of GPR88 agonists.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Sami Ben Hamida
- INSERM UMR 1247, University of Picardie Jules Verne, Amiens 80025, France
| | - David A Perrey
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Hetti Handi Chaminda Lakmal
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Emmanuel Darcq
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France
| | | | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
7
|
Decker AM, Rahman MT, Kormos CM, Hesk D, Darcq E, Kieffer BL, Jin C. Synthesis and pharmacological validation of a novel radioligand for the orphan GPR88 receptor. Bioorg Med Chem Lett 2023; 80:129120. [PMID: 36587872 PMCID: PMC9852087 DOI: 10.1016/j.bmcl.2022.129120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
GPR88 is an orphan G protein-coupled receptor which has been implicated in a number of striatal-associated disorders. Herein we describe the synthesis and pharmacological characterization of the first GPR88 radioligand, [3H]RTI-33, derived from a synthetic agonist RTI-13951-33. [3H]RTI-33 has a specific activity of 83.4 Ci/mmol and showed one-site, saturable binding (KD of 85 nM) in membranes prepared from stable PPLS-HA-hGPR88-CHO cells. A competition binding assay was developed to determine binding affinities of several known GPR88 agonists. This radioligand represents a powerful tool for future mechanistic and cell-based ligand-receptor interaction studies of GPR88.
Collapse
Affiliation(s)
- Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Chad M Kormos
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - David Hesk
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Emmanuel Darcq
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France.
| | | | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| |
Collapse
|