1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2024:10.1038/s41380-024-02758-4. [PMID: 39333385 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Sultan AA, Dimick MK, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. The association of CNR1 genetic variants with resting-state functional connectivity in youth bipolar disorder. Eur Neuropsychopharmacol 2023; 71:41-54. [PMID: 36972648 DOI: 10.1016/j.euroneuro.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Cannabinoid 1 receptors coded by the CNR1 gene are implicated in mood disorders and addiction. Given the prevalence and negative correlates of cannabis use in bipolar disorder (BD), we examined CNR1 polymorphism rs1324072 in relation to resting-state functional connectivity (rsFC) in youth BD. Participants included 124 youth, ages 13-20 years: 17 BD G-carriers, 48 BD non-carriers, 16 healthy controls (HC) G-carriers, and 43 HC non-carriers. rsFC was obtained using 3T-MRI. General linear models examined main effects of diagnosis, gene, and diagnosis-by-gene interaction, controlling for age, sex, and race. Regions-of-interests in seed-to-voxel analyses included: bilateral amygdala, hippocampus, nucleus accumbens (NAc), and orbitofrontal cortex (OFC). Main effects of diagnosis were observed for rsFC between the right amygdala seed and right occipital pole, and between the left NAc seed and left superior parietal lobe. Interaction analyses identified 6 significant clusters. G-allele was associated with negative connectivity in BD and positive connectivity in HC for: left amygdala seed with right intracalcarine cortex; right NAc seed with left inferior frontal gyrus; and right hippocampal seed with bilateral cuneal cortex (all p<0.001). G-allele was associated with positive connectivity in BD and negative connectivity in HC for: right hippocampal seed with left central opercular cortex (p = 0.001), and left NAc seed with left middle temporal cortex (p = 0.002). In conclusion, CNR1 rs1324072 was differentially associated with rsFC in youth with BD in regions relevant to reward and emotion. Future studies powered to integrate CNR1 alongside cannabis use are warranted to examine the inter-relationship between rs1324072 G-allele, cannabis use, and BD.
Collapse
Affiliation(s)
- Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Computational Radiology and Artificial Intelligence unit, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Sandra E Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Kuhns L, Kroon E, Colyer-Patel K, Cousijn J. Associations between cannabis use, cannabis use disorder, and mood disorders: longitudinal, genetic, and neurocognitive evidence. Psychopharmacology (Berl) 2022; 239:1231-1249. [PMID: 34741634 PMCID: PMC9520129 DOI: 10.1007/s00213-021-06001-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
RATIONALE Cannabis use among people with mood disorders increased in recent years. While comorbidity between cannabis use, cannabis use disorder (CUD), and mood disorders is high, the underlying mechanisms remain unclear. OBJECTIVES We aimed to evaluate (1) the epidemiological evidence for an association between cannabis use, CUD, and mood disorders; (2) prospective longitudinal, genetic, and neurocognitive evidence of underlying mechanisms; and (3) prognosis and treatment options for individuals with CUD and mood disorders. METHODS Narrative review of existing literature is identified through PubMed searches, reviews, and meta-analyses. Evidence was reviewed separately for depression, bipolar disorder, and suicide. RESULTS Current evidence is limited and mixed but suggestive of a bidirectional relationship between cannabis use, CUD, and the onset of depression. The evidence more consistently points to cannabis use preceding onset of bipolar disorder. Shared neurocognitive mechanisms and underlying genetic and environmental risk factors appear to explain part of the association. However, cannabis use itself may also influence the development of mood disorders, while others may initiate cannabis use to self-medicate symptoms. Comorbid cannabis use and CUD are associated with worse prognosis for depression and bipolar disorder including increased suicidal behaviors. Evidence for targeted treatments is limited. CONCLUSIONS The current evidence base is limited by the lack of well-controlled prospective longitudinal studies and clinical studies including comorbid individuals. Future studies in humans examining the causal pathways and potential mechanisms of the association between cannabis use, CUD, and mood disorder comorbidity are crucial for optimizing harm reduction and treatment strategies.
Collapse
Affiliation(s)
- Lauren Kuhns
- Department of Psychology, Neuroscience of Addiction (NofA, University of Amsterdam, Amsterdam, the Netherlands.
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, the Netherlands.
| | - Emese Kroon
- Department of Psychology, Neuroscience of Addiction (NofA, University of Amsterdam, Amsterdam, the Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, the Netherlands
| | - Karis Colyer-Patel
- Department of Psychology, Neuroscience of Addiction (NofA, University of Amsterdam, Amsterdam, the Netherlands
| | - Janna Cousijn
- Department of Psychology, Neuroscience of Addiction (NofA, University of Amsterdam, Amsterdam, the Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Sultan AA, Hird MA, Dimick MK, MacIntosh BJ, Goldstein BI. Cannabis use and resting state functional connectivity in adolescent bipolar disorder. J Psychiatry Neurosci 2021; 46:E559-E567. [PMID: 34625488 PMCID: PMC8526158 DOI: 10.1503/jpn.200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/21/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adolescents with bipolar disorder have high rates of cannabis use, and cannabis use is associated with increased symptom severity and treatment resistance in bipolar disorder. Studies have identified anomalous resting-state functional connectivity among reward networks in bipolar disorder and cannabis use independently, but have yet to examine their convergence. METHODS Participants included 134 adolescents, aged 13 to 20 years: 40 with bipolar disorder and lifetime cannabis use, 31 with bipolar disorder and no history of cannabis use, and 63 healthy controls without lifetime cannabis use. We used a seed-to-voxel analysis to assess the restingstate functional connectivity of the amygdala, the nucleus accumbens and the orbitofrontal cortex, regions implicated in bipolar disorder and cannabis use. We used a generalized linear model to explore bivariate correlations for each seed, controlling for age and sex. RESULTS We found 3 significant clusters. Resting-state functional connectivity between the left nucleus accumbens seed and the left superior parietal lobe was negative in adolescents with bipolar disorder and no history of cannabis use, and positive in healthy controls. Resting-state functional connectivity between the right orbitofrontal cortex seed and the right lateral occipital cortex was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in healthy controls and adolescents with bipolar disorder and no history of cannabis use. Resting-state functional connectivity between the right orbitofrontal cortex seed and right occipital pole was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in adolescents with bipolar disorder and no history of cannabis use. LIMITATIONS The study did not include a cannabis-using control group. CONCLUSION This study provides preliminary evidence of cannabis-related differences in functional reward circuits in adolescents with bipolar disorder. Further studies are necessary to evaluate whether the present findings reflect consequences of or predisposition to cannabis use.
Collapse
Affiliation(s)
- Alysha A Sultan
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Megan A Hird
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Mikaela K Dimick
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Bradley J MacIntosh
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Benjamin I Goldstein
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada.
| |
Collapse
|
5
|
Sehl H, Terrett G, Greenwood LM, Kowalczyk M, Thomson H, Poudel G, Manning V, Lorenzetti V. Patterns of brain function associated with cannabis cue-reactivity in regular cannabis users: a systematic review of fMRI studies. Psychopharmacology (Berl) 2021; 238:2709-2728. [PMID: 34505940 PMCID: PMC8455486 DOI: 10.1007/s00213-021-05973-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
RATIONALE Regular cannabis use (i.e. ≥ monthly) is highly prevalent, with past year use being reported by ~ 200 million people globally.High reactivity to cannabis cues is a key feature of regular cannabis use and has been ascribed to greater cannabis exposure and craving, but the underlying neurobiology is yet to be systematically integrated. OBJECTIVES We aim to systematically summarise the findings from fMRI studies which examined brain function in cannabis users while exposed to cannabis vs neutral stimuli during a cue-reactivity fMRI task. METHODS A systematic search of PsycINFO, PubMed and Scopus databases was pre-registered in PROSPERO (CRD42020171750) and conducted following PRISMA guidelines. Eighteen studies met inclusion/exclusion criteria. Samples comprised 918 participants (340 female) aged 16-38 years. Of these, 603 were regular cannabis users, and 315 were controls. RESULTS The literature consistently reported greater brain activity in cannabis users while exposed to cannabis vs neutral stimuli in three key brain areas: the striatum, the prefrontal (anterior cingulate, middle frontal) and the parietal cortex (posterior cingulate/precuneus) and additional brain regions (hippocampus, amygdala, thalamus, occipital cortex). Preliminary correlations emerged between cannabis craving and the function of partially overlapping regions (amygdala, striatum, orbitofrontal cortex ). CONCLUSIONS Exposure to cannabis-cues may elicit greater brain function and thus trigger cravings in regular cannabis users and thus trigger cannabis craving. Standardised and longitudinal assessments of cannabis use and related problems are required to profile with greater precision the neurobiology of cannabis cue-reactivity, and its role in predicting cravings and relapse.
Collapse
Affiliation(s)
- Hannah Sehl
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Daniel Mannix building, 17 Young Street, Fitzroy, VIC 3065 Australia
| | - Gill Terrett
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Daniel Mannix building, 17 Young Street, Fitzroy, VIC 3065 Australia
| | - Lisa-Marie Greenwood
- Research School of Psychology, Australian National University, Canberra, Australia ,The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales Australia
| | - Magdalena Kowalczyk
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Daniel Mannix building, 17 Young Street, Fitzroy, VIC 3065 Australia
| | - Hannah Thomson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Daniel Mannix building, 17 Young Street, Fitzroy, VIC 3065 Australia
| | - Govinda Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Victoria Manning
- Turning Point, Eastern Health, Monash University, Melbourne, Australia
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Daniel Mannix building, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
6
|
Mohite S, Wu H, Sharma S, Lavagnino L, Zeni CP, Currie TT, Soares JC, Pigott TA. Higher Prevalence of Metabolic Syndrome in Child-adolescent Patients with Bipolar Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:279-288. [PMID: 32329308 PMCID: PMC7242098 DOI: 10.9758/cpn.2020.18.2.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
Objective Previous studies have indicated a convergent and bidirectional relationship between metabolic syndrome (MetS) and bipolar disorder (BD). As most of these studies focused mainly on adults diagnosed with BD, our study aims to investigate and characterize metabolic disturbances in child-adolescents diagnosed with BD. Methods We retrospectively examined the medical records of psychiatric hospitalizations with admitting diagnosis of BD in child-adolescents (age < 18 years). Body mass index (BMI), lipid profile, fasting blood glucose, and blood pressure were primary variables. National Cholesterol Education Program criteria were used to define MetS. Reference group data was obtained from the National Health and Nutrition Examination Survey study. Statistical analyses included ttests, chi-square tests, and Fisher’s exact tests. Results We identified 140 child-adolescent patients with BD (mean age = 15.12 ± 1.70 years, 53% male). MetS was significantly more common in BD compared to the reference group: 14% (95% confidence interval [95% CI] 8−20) vs. 6.7% (95% CI 4.1−9.2), p = 0.001 with no significant difference by sex. MetS components were higher in the BD group, particularly BMI ≥ 95% (25% vs. 11.8%, p < 0.001) and high blood pressure (17% vs. 8%, p = 0.05). Moreover, female patients had lower odds of high blood pressure (odds ratio = 0.24 [95% CI 0.08−0.69], p = 0.005). Conclusion Compared with the general child-adolescent population, the prevalence of MetS was significantly higher in patients with BD of same age. This reiterates the notion of an increased risk of MetS in patients diagnosed with BD; and thus, further exploration is warranted.
Collapse
Affiliation(s)
- Satyajit Mohite
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Hanjing Wu
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Shiva Sharma
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
| | - Luca Lavagnino
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Cristian P. Zeni
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Terrence T. Currie
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
| | - Jair C. Soares
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Teresa A. Pigott
- The University of Texas Harris County Psychiatric Center, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
7
|
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients. The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD. RESULTS We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches. CONCLUSION The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.
Collapse
|
8
|
Lippard ETC, Mazure CM, Johnston JAY, Spencer L, Weathers J, Pittman B, Wang F, Blumberg HP. Brain circuitry associated with the development of substance use in bipolar disorder and preliminary evidence for sexual dimorphism in adolescents. J Neurosci Res 2017; 95:777-791. [PMID: 27870392 DOI: 10.1002/jnr.23901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
Substance use disorders and mood disorders are highly comorbid and confer a high risk for adverse outcomes. However, data are limited on the neurodevelopmental basis of this comorbidity. Substance use initiation typically occurs during adolescence, and sex-specific developmental mechanisms are implicated. In this preliminary study, we review the literature and investigate regional gray matter volume (GMV) associated with subsequent substance use problems in adolescents with bipolar disorder (BD) and explore these associations for females and males. Thirty adolescents with DSM-IV-diagnosed BD and minimal alcohol/substance exposure completed baseline structural magnetic resonance imaging scans. At follow-up (on average 6 years post baseline), subjects were administered the CRAFFT interview and categorized into those scoring at high ( ≥ 2: CRAFFTHIGH ) vs. low ( < 2: CRAFFTLOW ) risk for alcohol/substance problems. Lower GMV in prefrontal, insular, and temporopolar cortices were observed at baseline among adolescents with BD reporting subsequent alcohol and cannabis use compared to adolescents with BD who did not (P < 0.005, clusters ≥ 20 voxels). Lower dorsolateral prefrontal GMV was associated with future substance use in both females and males. In females, lower orbitofrontal and insula GMV was associated with future substance use, while in males, lower rostral prefrontal GMV was associated with future use. Lower orbitofrontal, insular, and temporopolar GMV was observed in those who transitioned to smoking tobacco. Findings indicate that GMV development is associated with risk for future substance use problems in adolescents with BD, with results implicating GMV development in regions subserving emotional regulation in females and regions subserving executive processes and attention in males. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth T C Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Carolyn M Mazure
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Women's Health Research at Yale, Yale School of Medicine, New Haven, Connecticut
| | | | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Judah Weathers
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Women's Health Research at Yale, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Frías Á, Palma C, Farriols N. Comorbidity in pediatric bipolar disorder: prevalence, clinical impact, etiology and treatment. J Affect Disord 2015; 174:378-89. [PMID: 25545605 DOI: 10.1016/j.jad.2014.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Research on pediatric bipolar disorder (PBD) is providing a plethora of empirical findings regarding its comorbidity. We addressed this question through a systematic review concerning the prevalence, clinical impact, etiology and treatment of main comorbid disorders involved. METHOD A comprehensive database search was performed from 1990 to August 2014. Overall, 167 studies fulfilled the inclusion criteria. RESULTS Bipolar youth tend to suffer from comorbid disorders, with highest weighted mean prevalence rate arising from anxiety disorders (54%), followed by attention deficit hyperactivity disorder (ADHD) (48%), disruptive behavior disorders (31%), and substance use disorders (SUD) (31%). Furthermore, evidence indicates that ADHD and anxiety disorders negatively affect the symptomatology, neurocognitive profile, clinical course and the global functioning of PBD. Likewise, several theories have been posited to explain comorbidity rates in PBD, specifically common risk factors, one disorder being a risk factor for the other and nosological artefacts. Lastly, randomized controlled trials highlight a stronger therapeutic response to stimulants and atomoxetine (vs. placebo) as adjunctive interventions for comorbid ADHD symptoms. In addition, research focused on the treatment of other comorbid disorders postulates some benefits from mood stabilizers and/or SGA. LIMITATIONS Epidemiologic follow-up studies are needed to avoid the risk of nosological artefacts. Likewise, more research is needed on pervasive developmental disorders and anxiety disorders, especially regarding their etiology and treatment. CONCLUSIONS Psychiatric comorbidity is highly prevalent and is associated with a deleterious clinical effect on pediatric bipolarity. Different etiological pathways may explain the presence of these comorbid disorders among bipolar youth. Standardized treatments are providing ongoing data regarding their effectiveness for these comorbidities among bipolar youth.
Collapse
Affiliation(s)
- Álvaro Frías
- FPCEE Blanquerna, University of Ramon-Llull, Císterst 34, 08022 Barcelona, Spain; Adult Outpatient Mental Health Center, Hospital of Mataró, Mataró, Spain.
| | - Cárol Palma
- FPCEE Blanquerna, University of Ramon-Llull, Císterst 34, 08022 Barcelona, Spain; Adult Outpatient Mental Health Center, Hospital of Mataró, Mataró, Spain
| | - Núria Farriols
- FPCEE Blanquerna, University of Ramon-Llull, Císterst 34, 08022 Barcelona, Spain; Adult Outpatient Mental Health Center, Hospital of Mataró, Mataró, Spain
| |
Collapse
|