1
|
Cruz SL, Bencomo-Cruz M, Medina-Mora ME, Vázquez-Quiroz F, Fleiz-Bautista C. First drug-checking study at an electronic festival and fentanyl detection in the central region of Mexico. Harm Reduct J 2023; 20:174. [PMID: 38053148 PMCID: PMC10698886 DOI: 10.1186/s12954-023-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Perception of drug adulteration has increased in Mexico, but there is little research on adulterants and toxicity. The aim of this study was to identify drug composition in an electronic music outdoor festival nearby Mexico City. METHODS The participants completed a questionnaire with demographic data, harm reduction strategies, drug-use patterns, history, and the drug they expected to find. We took a small sample of each substance and prepared it for drug checking. A two-section drug testing station was placed within the grounds of the festival. Interaction with participants occurred at the front part. Drug checking was conducted at the rear part. The service was free of charge, voluntary and confidential. Forty persons aged 22 to 48 years participated (mode = 28), of which 92.5% were male, most (82.5%) were single. Through the Substance Analysis Program of "ReverdeSer Collective," we conducted the testing with the attendants that provided 51 drug samples, following ethical and biosafety protocols. We used colorimetry, Fourier Transform Infrared Spectroscopy, and fentanyl immunoassay strips for sample analysis. RESULTS Substances of choice among attendants were psychostimulants (MDMA and other amphetamine-like drugs) and hallucinogens. Most samples contained what the users expected plus adulterants. Main adulterants were methylene-dioxy-ethyl-amphetamine, methylene-dioxy-propyl-amphetamine, hydroxyamphetamine, and the selective serotonin reuptake inhibitor venlafaxine. Fentanyl was present in 2 out of 4 cocaine samples and in 14 of the 22 confirmed MDMA samples. CONCLUSIONS Some of the adulterants found pose serious health risks, especially fentanyl, amphetamine-like substances, and venlafaxine. Therefore, it is urgent to monitor these adulterants at electronic music festivals and to implement prevention, treatment, and harm reduction public policies. Naloxone distribution and drug-assisted therapies should be part of government programs in Mexico.
Collapse
Affiliation(s)
- Silvia L Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
- Opioids Working Group. Global Studies Seminar, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Miguel Bencomo-Cruz
- Substance Analysis Program-Deliberar A. C. and ReverdeSer Collective A. C., Mexico City, Mexico
| | - María E Medina-Mora
- Opioids Working Group. Global Studies Seminar, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Faculty of Psychology Director, National Autonomous University of Mexico, Mexico City, Mexico
- National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101 Col. San Lorenzo Huipulco, 14370, Mexico City, Mexico
| | - Fabiola Vázquez-Quiroz
- National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101 Col. San Lorenzo Huipulco, 14370, Mexico City, Mexico
| | - Clara Fleiz-Bautista
- Opioids Working Group. Global Studies Seminar, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
- National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101 Col. San Lorenzo Huipulco, 14370, Mexico City, Mexico.
| |
Collapse
|
2
|
Palamar JJ. Tusi: a new ketamine concoction complicating the drug landscape. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:546-550. [PMID: 37162319 PMCID: PMC10636235 DOI: 10.1080/00952990.2023.2207716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
A drug concoction called tusi has emerged in Latin America and in Europe and is now beginning to acquire popularity in the United States. "Tusi" is a phonetic translation of "2C," a series of psychedelic phenethylamines. The concoction is also sometimes referred to as "pink cocaine" as it typically comes in the form of pink powder. However, despite its name, the concoction rarely contains 2C series drugs. Multiple drug checking studies have found that the majority of tusi samples contain ketamine, often combined with 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, cocaine, opioids, and/or new psychoactive substances. The tusi phenomenon complicates the drug landscape because it has the potential to confuse both people who use it and researchers alike. People using may think the drug is 2C/2C-B, and they may also be unaware that the concoction tends to consist of ketamine and a wide variety of other drugs. Unintentional exposure to its contents can lead to increased risk of adverse effects. The tusi phenomenon also has the potential to complicate drug research as unknown exposure to drugs like ketamine and MDMA will lead to underreporting of use. A combination of self-report and toxicological testing may be needed to inform the most accurate estimates of use. Both researchers and people at risk for use need to be informed about this new concoction. Drug researchers need to be cognizant about the way they query use, and people at risk for using need to be educated about the possible contents of tusi and associated dangers.
Collapse
Affiliation(s)
- Joseph J Palamar
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
van Amsterdam J, Burgess N, van den Brink W. Legal Approaches to New Psychoactive Substances: First Empirical Findings. Eur Addict Res 2023; 29:363-372. [PMID: 37557091 DOI: 10.1159/000531503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Generic drug legislation, i.e., simultaneously banning groups of drugs, has been introduced worldwide to counteract the trade and use of emerging "new psychoactive substances" (NPSs) more effectively. SUMMARY The potential and de facto positive and negative effects of generic drug legislation have been described using an analysis based on documented evaluations of the experiences in the UK and Germany, supplemented with data from other publicly available sources. In particular, the effects of generic drug legislation on availability, use, sales, and overall health harms of NPS, and switches from NPS to traditional (classical) drugs are addressed. The results show that the introduction of generic drug legislation in the UK and Germany has enabled stricter regulation of NPS but has also led to some major harms within the domain of public health. Depending on the population considered, the rate of NPS use remained stable, slightly declined, or increased following the banning of NPS. Once banned, NPSs were more often purchased on the black market, often together with other (more harmful) drugs. Moreover, NPS-related harms did not reduce following the ban, and in some cases even increased. Finally, when harmful NPS, like potent synthetic opioids and cannabinoids, become substantially used and endanger public health, legislators already have the legal means to ban the problem drug, thus overruling the need for a generic ban. KEY MESSAGES Generic drug legislation may facilitate drug law enforcement, but it is not (very) effective in counteracting NPS use and it may increase NPS-related public health problems. It is concluded that, overall, the advantages of generic drug legislation are overshadowed by its serious disadvantages.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Department of Psychiatry, Amsterdam UMC, Location Academic Medical Center, Amsterdam Neuroscience, Research Program Compulsivity, Impulsivity & Attention, Amsterdam, The Netherlands
| | - Nicholas Burgess
- School of Law, College of Social Sciences, University of Glasgow, Glasgow, UK
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam UMC, Location Academic Medical Center, Amsterdam Neuroscience, Research Program Compulsivity, Impulsivity & Attention, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Hulme MC, Hayatbakhsh A, Brignall RM, Gilbert N, Costello A, Schofield CJ, Williamson DC, Kemsley EK, Sutcliffe OB, Mewis RE. Detection, discrimination and quantification of amphetamine, cathinone and nor-ephedrine regioisomers using benchtop 1 H and 19 F nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:73-82. [PMID: 33786881 DOI: 10.1002/mrc.5156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Amphetamine and cathinone derivatives are abused recreationally due to the sense of euphoria they provide to the user. Methodologies for the rapid detection of the drug derivative present in a seized sample, or an indication of the drug class, are beneficial to law enforcement and healthcare providers. Identifying the drug class is prudent because derivatisation of these drugs, to produce regioisomers, for example, occurs frequently to circumvent global and local drug laws. Thus, newly encountered derivatives might not be present in a spectral library. Employment of benchtop nuclear magnetic resonance (NMR) could be used to provide rapid analysis of seized samples as well as identifying the class of drug present. Discrimination of individual amphetamine-, methcathinone-, N-ethylcathinone and nor-ephedrine-derived fluorinated and methylated regioisomers is achieved herein using qualitative automated 1 H NMR analysis and compared to gas chromatography-mass spectrometry (GC-MS) data. Two seized drug samples, SS1 and SS2, were identified to contain 4-fluoroamphetamine by 1 H NMR (match score median = 0.9933) and GC-MS (RRt = 5.42-5.43 min). The amount of 4-fluoroamphetamine present was 42.8%-43.4% w/w and 48.7%-49.2% w/w for SS1 and SS2, respectively, from quantitative 19 F NMR analysis, which is in agreement with the amount determined by GC-MS (39.9%-41.4% w/w and 49.0%-49.3% w/w). The total time for the qualitative 1 H NMR and quantitative 19 F NMR analysis is ~10 min. This contrasts to ~40 min for the GC-MS method. The NMR method also benefits from minimal sample preparation. Thus, benchtop NMR affords rapid, and discriminatory, analysis of the drug present in a seized sample.
Collapse
Affiliation(s)
- Matthew C Hulme
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
| | - Armita Hayatbakhsh
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | | | - Nicolas Gilbert
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
| | - Andrew Costello
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
- Greater Manchester Police, Openshaw Complex, Manchester, UK
| | - Christopher J Schofield
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
- Greater Manchester Police, Openshaw Complex, Manchester, UK
| | | | - E Kate Kemsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
5
|
Implementation and Uptake of the Massachusetts Drug Supply Data Stream: A Statewide Public Health-Public Safety Partnership Drug Checking Program. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2022; 28:S347-S354. [PMID: 36194805 PMCID: PMC9531987 DOI: 10.1097/phh.0000000000001581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT The illicit drug supply is rapidly evolving. Equally important to gathering drug supply data for monitoring is timely sharing of information with people who use drugs, the providers who care for them, law enforcement partners, and public health stakeholders so that efforts to avoid harmful substances, take preventive actions, and better target interventions can occur. PROGRAM The Massachusetts Drug Supply Data Stream (MADDS) is the country's first statewide community drug checking program. Founded on public health-public safety partnerships, MADDS collects remnant drug packaging and paraphernalia with residue from people who use drugs and noncriminal samples from partnering police departments. MADDS tests samples using simultaneous immunoassay fentanyl test strips, Fourier-transform infrared spectrometry (FTIR), and off-site laboratory testing by gas chromatography-mass spectrometry (GC/MS). Results are accessible to community programs and municipalities, while trend analyses inform public health for cross-site alerts and informational bulletins. IMPLEMENTATION MADDS was launched statewide in 2020 and rapidly expanded to a multisite program. Program staff approached communities and met with municipal police and community partners to secure written agreements to host drug checking. Community partners designed sample collection consistent with their pandemic era workflows. Consultations with stakeholders gathered feedback on design and deliverables. EVALUATION The program tests sample donations on-site from community agencies and police departments, incorporates review by a medical toxicologist for health and safety concerns, crafts stakeholder-specific communications, and disseminates English, Spanish, and Portuguese language materials. For 2020, a total of 427 samples were tested, of which 47.1% were positive for fentanyl. By early 2021, MADDS detected shifts in cocaine purity, alerted communities of a new toxic fentanyl analogue and a synthetic cannabinoid contaminant, and confirmed the increase of xylazine (a veterinary sedative) in Massachusetts. DISCUSSION Community drug checking programs can be collaboratively designed with public health and public safety to generate critical health and safety information for people who use drugs and the communities where they live.
Collapse
|
6
|
Kranenburg RF, Ramaker HJ, van Asten AC. Portable near infrared spectroscopy for the isomeric differentiation of new psychoactive substances. Forensic Sci Int 2022; 341:111467. [PMID: 36154979 DOI: 10.1016/j.forsciint.2022.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022]
Abstract
Rapid and efficient identification of the precise isomeric form of new psychoactive substances (NPS) by forensic casework laboratories is a relevant challenge in the forensic field. Differences in legal status occur for ring-isomeric species of the same class, thus leading to different penalties and judicial control. Portable systems such as near-infrared (NIR) spectroscopy recently emerged as suitable techniques for the on-scene identification of common drugs of abuse such as cocaine, MDMA and amphetamine. This way, the overall forensic process becomes more efficient as relevant information on substance identity becomes available directly at the scene of crime. Currently, no NIR-based applications exist for the rapid, on-scene detection of NPS isomers. Herein, we present the differentiation of cathinone and phenethylamine-type NPS analogues based on their NIR spectrum recorded in 2 seconds on a portable 1350 - 2600 nm spectrometer. A prior developed data analysis model was found suitable for the identification of the methylmethcathinone (MMC) isomers 2-MMC, 3-MMC and 4-MMC. In 51 mixtures and 22 seized casework samples, the correct isomeric form was detected in all cases except for a few mixtures with an active ingredient content of 10 wt%. These results show the feasibility of on-site NPS detection as presumptive test performed directly at the scene of crime with a small size NIR-spectrometer. Additionally, in the illicit drug analysis laboratory the combination of NIR and GC-MS analysis might be suitable for robust identification of NPS isomers and analogues.
Collapse
Affiliation(s)
- Ruben F Kranenburg
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25, Amsterdam 1014 BA, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Postbus 94157, Amsterdam 1090 GD, the Netherlands.
| | - Henk-Jan Ramaker
- TIPb, Koningin Wilhelminaplein 30, Amsterdam 1062 KR, the Netherlands
| | - Arian C van Asten
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Postbus 94157, Amsterdam 1090 GD, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Postbus 94157, Amsterdam 1090 GD, the Netherlands
| |
Collapse
|
7
|
Mallaroni P, Mason NL, Vinckenbosch FRJ, Ramaekers JG. The use patterns of novel psychedelics: experiential fingerprints of substituted phenethylamines, tryptamines and lysergamides. Psychopharmacology (Berl) 2022; 239:1783-1796. [PMID: 35487983 PMCID: PMC9166850 DOI: 10.1007/s00213-022-06142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Novel psychedelics (NPs) are an expanding set of compounds, presenting new challenges for drug policy and opportunities for clinical research. Unlike their classical derivatives, little is known regarding their use profiles or their subjective effects. AIMS The purpose of this study was to compile usage patterns and adverse event rates for individual NPs belonging to each of three main psychedelic structural families. Targeting the most widely used representatives for each class, we expanded on their phenomenological distinctions. METHODS A two-part survey was employed. We investigated the prevalence of novel phenethylamines, tryptamine and lysergamides in NP users (N = 1180), contrasting the type and incidence of adverse events (AEs) using a set of logistic regressions. Honing in on 2-4-Bromo-2,5-dimethoxyphenyl)ethanamine (2C-B) (48.6%), 1-propionyl-lysergic acid diethylamide (1P-LSD) (34.2%) and 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT) (23.1%), we examined their phenomenological separability using a gradient boosting (XGBoost) supervised classifier. RESULTS Novel phenethylamines had the highest prevalence of use (61.5%) seconded by tryptamines (43.8%) and lysergamides (42.9%). Usage patterns were identified for 32 different compounds, demonstrating variable dosages, durations and a common oral route of administration. Compared to phenethylamines, the odds for tryptamines and lysergamides users were significantly less for overall physical AEs. No significant differences in overall psychological AEs were found. Overall model area under the curve (AUC) stood at 0.79 with sensitivity (50.0%) and specificity (60.0%) for 2C-B ranking lowest. CONCLUSION NP classes may hold distinct AE rates and phenomenology, the latter potentially clouded by the subjective nature of these experiences. Further targeted research is warranted.
Collapse
Affiliation(s)
- P Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| | - N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - F R J Vinckenbosch
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Pérez Orts M, van Asten A, Kohler I. The Evolution Toward Designer Benzodiazepines in Drug-Facilitated Sexual Assault Cases. J Anal Toxicol 2022; 47:1-25. [PMID: 35294022 PMCID: PMC9942444 DOI: 10.1093/jat/bkac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Drug-facilitated sexual assault (DFSA) is a crime where the victim is unable to provide sexual consent due to incapacitation resulting from alcohol or drug consumption. Due to the large number of substances possibly used in DFSA, including illicit, prescription and over-the-counter drugs, DFSA faces many toxicological challenges. Benzodiazepines (BZDs) are ideal candidates for DFSA, as they are active at low doses, have a fast onset of action and can be easily administered orally. The last decade has seen the emergence of designer benzodiazepines (DBZDs), which show slight modifications compared with BZDs and similar pharmacological effects but are not controlled under the international drug control system. DBZDs represent an additional challenge due to the number of new entities regularly appearing in the market, their possibly higher potency and the limited knowledge available on their pharmacokinetic and pharmacodynamics properties. Many BZDs and DBZDs have a short half-life, leading to rapid metabolism and excretion. The low concentrations and short time windows for the detection of BZD in body fluids require the use of highly sensitive analysis methods to enable the detection of drugs and their respective metabolites. This review discusses the current state of the toxicological analysis of BZDs and DBZDs in forensic casework and their pharmacokinetic properties (i.e., absorption, distribution, metabolism, and elimination), as well as their analysis in biosamples typically encountered in DFSA (i.e., blood, urine and hair).
Collapse
Affiliation(s)
- Mireia Pérez Orts
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The Netherlands
| | - Arian van Asten
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The Netherlands,Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, 1098 XH Amsterdam, The Netherlands,Centre for Analytical Sciences Amsterdam (CASA), Science Park, 904, 1098 XH Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Essink S, Nugteren-van Lonkhuyzen JJ, van Riel AJHP, Dekker D, Hondebrink L. Significant toxicity following an increase in poisonings with designer benzodiazepines in the Netherlands between 2010 and 2020. Drug Alcohol Depend 2022; 231:109244. [PMID: 34998250 DOI: 10.1016/j.drugalcdep.2021.109244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Designer benzodiazepines (DBs) are an emerging class of new psychoactive substances. While structurally derived from pharmaceutical benzodiazepines, their toxicological profile is less clear. We investigated time trends in the rate of DB poisonings and their clinical toxicity. METHODS A retrospective observational study was performed on the incidence rate of DB poisonings, relative to all recreational drug poisonings reported to the Dutch Poisons Information Center (DPIC) from 2010 to 2020. Time-trend analysis was performed using Poisson regression. A prospective cohort study was performed on toxicity of DBs, including the Poisoning Severity Score, from January 2016-June 2019. Data was collected through telephone interviews. RESULTS Between 2010 and 2020, the DPIC was consulted on 142 DB exposures. The incidence rate of DB exposures increased from 0.1% to 4.3%, with a year effect estimate of 1.35 (95% CI [1.14;1.54]). Twenty different DBs were reported, mostly etizolam (33%), clonazolam (17%), and flunitrazolam (8%). During consultation (often shortly after exposure), poisoning was graded moderate-severe in 29% of cases (n = 146). In the prospective cohort sample with follow-up (n = 22), 86% of cases (n = 19) showed a moderate-severe poisoning. The severity of poisoning did not differ between mono- and mixed intoxications. Frequently reported symptoms in the prospective cohort sample included drowsiness (86%), confusion (59%), and agitation (55%). Coma was observed in seven cases (32%) and respiratory depression requiring mechanical ventilation in five cases (23%). CONCLUSION The rate of DB poisonings reported to the DPIC strongly increased from 2010 to 2020, indicating increased (ab)use of DBs. Most DB exposures resulted in moderate-severe toxicity with neurological effects.
Collapse
Affiliation(s)
- Sharon Essink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Johanna J Nugteren-van Lonkhuyzen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Antoinette J H P van Riel
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Douwe Dekker
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
10
|
Kranenburg RF, Ramaker H, Sap S, Asten AC. A Calibration Friendly Approach to Identify Drugs of Abuse Mixtures with a Portable Near‐Infrared Analyzer. Drug Test Anal 2022; 14:1089-1101. [PMID: 35098685 PMCID: PMC9305489 DOI: 10.1002/dta.3231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
Both the increasing number and diversity of illicit‐drug seizures complicate forensic drug identification. Traditionally, colorimetric tests are performed on‐site, followed by transport to a laboratory for confirmatory analysis. Higher caseloads increase laboratory workload and associated transport and chain‐of‐evidence assurance performed by police officers. Colorimetric tests are specific only for a small set of drugs. The rise of new psychoactive substances therefore introduces risks for erroneous results. Near‐infrared (NIR)‐based analyzers may overcome these encumbrances by their compound‐specific spectral selectivity and broad applicability. This work introduces a portable NIR analyzer that combines a broad wavelength range (1300–2600 nm) with a chemometric model developed specifically for forensic samples. The application requires only a limited set of reference spectra for time‐efficient model training. This calibration‐light approach thus eliminates the need of extensive training sets including mixtures. Performance was demonstrated with 520 casework samples resulting in a 99.6% true negative and 97.6% true positive rate for cocaine. Similar results were obtained for MDMA, methamphetamine, ketamine, and heroin. Additionally, 236 samples were analyzed by scanning directly through their plastic packaging. Also here, a >97% true positive rate was obtained. This allows for non‐invasive, operator‐safe chemical identification of potentially potent drugs of abuse. Our results demonstrate the applicability for multiple drug‐related substances. Ideally, the combination of this NIR approach with other portable techniques, such as Raman and IR spectroscopy and electrochemical tests, may eventually eliminate the need for subsequent laboratory analysis; therefore, saving tremendous resources in the overall forensic process of confirmatory illicit drug identification.
Collapse
Affiliation(s)
- Ruben F. Kranenburg
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25 Amsterdam BA The Netherlands
- Van’t Hoff Institute for Molecular Sciences University of Amsterdam Amsterdam GD The Netherlands
| | | | - Sharon Sap
- Dutch Customs Laboratory, Kingsfordweg 1 Amsterdam GN The Netherlands
| | - Arian C. Asten
- Van’t Hoff Institute for Molecular Sciences University of Amsterdam Amsterdam GD The Netherlands
- Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Postbus 94157 Amsterdam GD The Netherlands
| |
Collapse
|
11
|
Dasgupta N, Figgatt MC. Invited Commentary: Drug Checking for Novel Insights Into the Unregulated Drug Supply. Am J Epidemiol 2022; 191:248-252. [PMID: 34528056 PMCID: PMC8824693 DOI: 10.1093/aje/kwab233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Tobias et al. (Am J Epidemiol. 2022;191 (2):241-247) present a novel analysis of time trends in fentanyl concentrations in the unregulated drug supply in British Columbia, Canada. The preexisting knowledge about unregulated drugs had come from law-enforcement seizures and postmortem toxicology. As both of these data sources are subject to selection bias, large-scale drug-checking programs are poised to be a crucial component of the public health response to the unrelenting increase in overdose in North America. As programs expand, we offer 2 guiding principles. First, the primary purpose of these programs is to deliver timely results to people who use drugs to mitigate health risks. Second, innovation is needed to go beyond criminal justice paradigms in laboratory analysis for a more nuanced understanding of health concerns. We provide examples of the role adulterants play in our understanding of drug harms. We also describe the applications and limitations of common laboratory assays, with implications for epidemiologic surveillance. While the research and direct service teams in British Columbia have taken groundbreaking steps, there is still a need to establish best practices for communicating results to sample donors in an approachable yet nonalarmist tone.
Collapse
Affiliation(s)
- Nabarun Dasgupta
- Correspondence to Dr. Nabarun Dasgupta, University of North Carolina Injury Prevention Research Center, 725 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514 (e-mail: )
| | | |
Collapse
|
12
|
West H, Fitzgerald J, Hopkins K, Li E, Clark N, Tzanetis S, Greene SL, Reid GE. Early Warning System for Illicit Drug Use at Large Public Events: Trace Residue Analysis of Discarded Drug Packaging Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2604-2614. [PMID: 34460248 DOI: 10.1021/jasms.1c00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by Locard's exchange principle, which states "every contact leaves a trace", a trace residue sampling strategy has been developed for the analysis of discarded drug packaging samples (DPS), as part of an early warning system for illicit drug use at large public events including music/dance festivals. Using direct analysis in real time/mass spectrometry and tandem mass spectrometry, rapid and high-throughput identification and characterization of a wide range of illicit drugs and adulterant substances was achieved, including in complex polydrug mixtures and at low relative ion abundances. A total of 1362 DPS were analyzed either off-site using laboratory-based instrumentation or on-site and in close to real time using a transportable mass spectrometer housed within a mobile analytical laboratory, with each analysis requiring less than 1 min per sample. Of the DPS analyzed, 92.2% yielded positive results for at least one of 15 different drugs and/or adulterants, including cocaine, MDMA, and ketamine, as well as numerous novel psychoactive substances (NPS). Also, 52.6% of positive DPS were found to contain polydrug mixtures, and a total of 42 different drug and polydrug combinations were observed throughout the study. For analyses performed on-site, reports to key stakeholders including event organizers, first aid and medical personnel, and peer-based harm reduction workers could be provided in as little as 5 min after sample collection. Following risk assessment of the potential harms associated with their use, drug advisories or alerts were then disseminated to event staff and patrons and subsequently to the general public when substances with particularly toxic properties were identified.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Fitzgerald
- School of Social and Political Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Katherine Hopkins
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Social and Political Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Li
- Agilent Technologies Australia, Mulgrave, Victoria 3170, Australia
| | - Nicolas Clark
- North Richmond Community Health, Richmond, Victoria 3121, Australia
- Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Stephanie Tzanetis
- Harm Reduction Victoria, North Melbourne, Victoria 3051, Australia
- Harm Reduction Australia, Leura, New South Wales 2780, Australia
| | - Shaun L Greene
- Victorian Poisons Information Centre, Austin Health, Heidelberg, Victoria 3084, Australia
- Department of Medicine, Faculty of Medicine, University of Melbourne, Melbourne Victoria 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
da Cunha KF, Oliveira KD, Cardoso MS, Arantes ACF, Coser PHP, Lima LDN, Maluf ACS, Comis MADC, Huestis MA, Costa JL. Prevalence of new psychoactive substances (NPS) in Brazil based on oral fluid analysis of samples collected at electronic music festivals and parties. Drug Alcohol Depend 2021; 227:108962. [PMID: 34461412 DOI: 10.1016/j.drugalcdep.2021.108962] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 07/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND New psychoactive substances (NPS) use is a worldwide public health issue. Knowing the prevalence of NPS guides public health and legal policies to address the problem. The objective of this study was to identify NPS in Brazil through the analysis of oral fluid (OF) samples collected at parties and electronic music festivals. METHODS Anonymous questionnaires and oral fluid samples were collected from volunteers (≥18 years) who reported the consumption of at least one illicit psychoactive substance in the last 24 h. Oral fluid sample collections occurred at eleven parties and two electronic music festivals over 16 months (2018-2020). Questionnaire answers were matched to oral fluid toxicological results. RESULTS Of 462 oral fluid samples, 39.2 % were positive for at least one NPS by liquid chromatography‒tandem mass spectrometry (LC-MS/MS). The most prevalent NPS was ketamine (29.4 %), followed by methylone (6.1 %) and N-ethylpentylone (4.1 %); however, MDMA was the most commonly identified (88.5 %) illicit psychoactive substance. More than one drug was identified in 79.9 % of samples, with two (34.2 %) and three (23.4 %) substances most commonly observed. Only 5 % of volunteers reported recent NPS consumption. CONCLUSION MDMA is still the most common party and electronic music festival drug, although NPS were identified in more than one-third of oral fluid samples.
Collapse
Affiliation(s)
- Kelly Francisco da Cunha
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Karina Diniz Oliveira
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Marilia Santoro Cardoso
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Ana Carolina Furiozo Arantes
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | | | - Lucas de Noronha Lima
- Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Ana Cristhina Sampaio Maluf
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; ResPire Harm Reduction Project, Centro de Convivência É de Lei, São Paulo, SP, 01019-020, Brazil
| | | | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose Luiz Costa
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil.
| |
Collapse
|
14
|
Kranenburg RF, Stuyver LI, de Ridder R, van Beek A, Colmsee E, van Asten AC. Deliberate evasion of narcotic legislation: Trends visualized in commercial mixtures of new psychoactive substances analyzed by GC-solid deposition-FTIR. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Hirschfeld T, Smit-Rigter L, van der Gouwe D, Reiche S, Stöver H, Majić T. Safer Tripping: Serotonergic Psychedelics and Drug Checking. Submission and Detection Rates, Potential Harms, and Challenges for Drug Analysis. CURRENT ADDICTION REPORTS 2021. [DOI: 10.1007/s40429-021-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose of Review
With the continuous emergence of new psychoactive substances, drug checking (DC) services are challenged by an increasingly complex drug market. Considering the resumed scientific and public interest in serotonergic psychedelics (SPs) like LSD, psilocybin, and 2C-B, we present the results of a literature search investigating the presence and proportion of SPs in DC samples.
Recent Findings
In 15 identified reports, submission and detection rates of SPs were comparably low, but increasing. Samples contained considerable amounts of adulterations or analogues, mostly novel SPs with unknown toxicological profiles and in some cases potentially life-threatening effects. The detection of SPs, however, requires advanced analysis techniques currently not available to most DC services.
Summary
Given the substantial proportion of novel SPs in DC samples and the associated risks, DC can be a valuable harm reduction and monitoring tool for SPs if analysis techniques with high sensitivity are employed.
Collapse
|
16
|
Identification of 2C-B in Hair by UHPLC-HRMS/MS. A Real Forensic Case. TOXICS 2021; 9:toxics9070170. [PMID: 34357913 PMCID: PMC8309701 DOI: 10.3390/toxics9070170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
The analysis of drugs of abuse in hair and other biological matrices of forensic interest requires great selectivity and sensitivity. This has been traditionally achieved through target analysis, using one or more analytical methods that include different preanalytical stages, and more complex procedures followed by toxicological laboratories. There is no exception with 2C-series drugs, such as 2C-B, a new psychoactive substance (NPS), which use has emerged and significantly increased, year by year, in the last decades. Continuously new analytical methods are required to selectively detect and identify these new marketed substances at very low concentrations. In this case report, one former case of a polydrug consumer (charged of a crime against public health in Spain) was reanalyzed in hair matrix. In this reanalysis, 2C-B has been positively detected and identified using liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS). The most selective analytical UHPLC-HRMS/MS method alongside a universal and simpler pretreatment methodology has opened up more possibilities for the detection of substances of different chemical structure and optimization of different HRMS/MS detection approaches allowing the identification of 2-CB in the hair of a real forensic case.
Collapse
|
17
|
Bade R, White JM, Chen J, Baz-Lomba JA, Been F, Bijlsma L, Burgard DA, Castiglioni S, Salgueiro-Gonzalez N, Celma A, Chappell A, Emke E, Steenbeek R, Wang D, Zuccato E, Gerber C. International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period. WATER RESEARCH 2021; 193:116891. [PMID: 33582495 DOI: 10.1016/j.watres.2021.116891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
Collapse
Affiliation(s)
- Richard Bade
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jason M White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jingjing Chen
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | | | - Frederic Been
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Daniel A Burgard
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erik Emke
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Ruud Steenbeek
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, P. R. China, 116026
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
18
|
Kranenburg RF, Lukken CK, Schoenmakers PJ, van Asten AC. Spotting isomer mixtures in forensic illicit drug casework with GC-VUV using automated coelution detection and spectral deconvolution. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122675. [PMID: 33848800 DOI: 10.1016/j.jchromb.2021.122675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/27/2023]
Abstract
Analysis of isomeric mixtures is a significant analytical challenge. In the forensic field, for example, over 1000 new psychoactive substances (NPSs), comprising of many closely related and often isomeric varieties, entered the drugs-of-abuse market within the last decade. Unambiguous identification of the isomeric form requires advanced spectroscopic techniques, such as GC-Vacuum Ultraviolet Spectroscopy (GC-VUV). The continuous development of NPSs makes the appearance of a novel compound in case samples a realistic scenario. While several analytical solutions have been presented recently to confidently distinguish NPS isomers, the presence of multiple isomers in a single drug sample is typically not considered. Due to their structural similarities it is possible that a novel NPS coelutes with a known isomer and thus remains undetected. This study investigates the capabilities of VUV spectral deconvolution for peak detection and identification in incompletely resolved drug mixtures. To mimic worst case scenarios, severe coelution was deliberately induced at elevated GC temperatures. The deconvolution software was nevertheless able to correctly detect both substances, even in case of near-identical VUV spectra at almost full coelution. As a next step, spectra were subsequently removed from the reference library to simulate the scenario in which a novel substance was encountered for the first time in forensic case work. However, also in this situation the deconvolution software still detected the coelution. This work shows that a VUV library match score below 0.998 may serve as a warning that a novel substance may be present in a street sample.
Collapse
Affiliation(s)
- Ruben F Kranenburg
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25, Amsterdam 1014 BA, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands.
| | - Chris K Lukken
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25, Amsterdam 1014 BA, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| | - Peter J Schoenmakers
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| | - Arian C van Asten
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| |
Collapse
|
19
|
Schram J, Parrilla M, Sleegers N, Van Durme F, van den Berg J, van Nuijs ALN, De Wael K. Electrochemical profiling and liquid chromatography-mass spectrometry characterization of synthetic cathinones: From methodology to detection in forensic samples. Drug Test Anal 2021; 13:1282-1294. [PMID: 33624933 DOI: 10.1002/dta.3018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on-site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SCs) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone, and 4-chloro-alpha-pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen-printed electrodes (SPEs). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography-high-resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas chromatography-mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever-diversifying drug market.
Collapse
Affiliation(s)
- Jonas Schram
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marc Parrilla
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Nick Sleegers
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Brussels, Belgium
| | - Jorrit van den Berg
- Team Illicit Drugs, The Netherlands Forensic Institute (NFI), The Hague, The Netherlands
| | | | - Karolien De Wael
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Garneau B, Desharnais B, Laquerre J, Côté C, Taillon MP, Martin PY, Daigneault G, Mireault P, Lajeunesse A. A comprehensive analytical process, from NPS threat identification to systematic screening: Method validation and one-year prevalence study. Forensic Sci Int 2020; 318:110595. [PMID: 33279767 DOI: 10.1016/j.forsciint.2020.110595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/15/2022]
Abstract
Several New Psychoactive Substances (NPS) enter the illicit drug market each year. This constant evolution of compounds to screen is challenging to law enforcement and drug chemists, and even more so to forensic toxicologists, who need to detect such compounds which might be at low concentrations in complex biological matrices. While some technological solutions are better suited than others to address such a challenge (e.g., high resolution mass spectrometry), laboratories with limited instrumental and financial resources are faced with a complex task: systematically screening for a rapidly evolving NPS panel using an accredited method run on standard equipment (e.g., liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)). This work presents a solution to this challenge: a complete workflow from the detection of a regional NPS threat to its implementation in a method accredited under the ISO 17025:2017 norm. Initial LC-MS/MS method included 55 NPS and metabolites (31 Novel Synthetic Opioids (NSO), 22 NSO metabolites and 2 designer benzodiazepines). Following their identification as relevant territorial threats, flualprazolam, then isotonitazene, were added to the contingent. By relying on development aiming for maximal integration to the current analysis workflow, systematic NPS screening using this method was easily implemented. Between March 2019 and March 2020, the 5 079 forensic cases analyzed in the province of Québec (Canada) revealed a NPS positivity rate of 3.4%. While 94% involved designer benzodiazepines, 5% involved NSO. This process, combining high efficiency, simple detection technology, ISO accreditation and rapid response to new threats resulted in a four-fold increase in NPS detection.
Collapse
Affiliation(s)
- Béatrice Garneau
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada.
| | - Brigitte Desharnais
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Julie Laquerre
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Cynthia Côté
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Marie-Pierre Taillon
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Pierre-Yves Martin
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Gabrielle Daigneault
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Pascal Mireault
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - André Lajeunesse
- Université du Québec à Trois-Rivières, Department of Chemistry, Biochemistry and Physics, 3351 Des Forges Blvd., Trois-Rivières, Québec, G9A 5H7, Canada; Université du Québec à Trois-Rivières, Forensic Research Group, 3351 des Forges Blvd., Trois-Rivières, Québec, G9A 5H7, Canada
| |
Collapse
|
21
|
Losacker M, Toennes SW, de Sousa Fernandes Perna EB, Ramaekers JG, Roehrich J, Hess C. Chiral Serum Pharmacokinetics of 4-Fluoroamphetamine after Controlled Oral Administration: Can (R)/(S) Concentration Ratios Help in Interpreting Forensic Cases? J Anal Toxicol 2020; 45:985-992. [PMID: 33031519 DOI: 10.1093/jat/bkaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, misuse of 4-fluoroamphetamine (4-FA) became an emerging issue in many European countries. Stimulating effects last for 4-6 hours and can impact psychomotor performance. The metabolism of amphetamine-type stimulants is stereoselective and quantification of (R)- and (S)-enantiomers has been suggested for assessing time of use. To date no data on enantioselective pharmacokinetics is available for 4-FA in serum samples. An enantioselective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed using a chiral Phenomenex® Lux 3 μm AMP column. Validation of the method showed satisfactory selectivity, sensitivity, linearity (0.5-250 ng/mL), precision and accuracy. Recreational stimulant users orally ingested two doses (100 mg, n=12, and 150 mg, n=5) of 4-FA. Blood samples were drawn prior to application and over a period of 12 hours after ingestion and analyzed for 4-FA enantiomers. Peak concentrations and corresponding times did not differ significantly between the enantiomers (mean (R)/(S)-ratio at tmax 1.05, 0.85-1.16). With mean 12.9 (8.3-16.1) hours, apparent elimination half-lives (t1/2) were significantly (p < 0.01) longer for (R)-4-FA than for (S)-4-FA (6.0 hours; range 4.4-10.2 hours) and independent of the dose given. Over time, (R)/(S)-concentration-ratios were linearly increasing in all subjects to maximum ratios of 2.00 (1.08-2.77) in the last samples (after 12 hours). The slopes of the (R)/(S)-ratio exhibited marked inter-individual differences (0.023 to 0.157 h-1, mean 0.095 h-1). Ratios higher than 1.60 only appeared earliest after a minimum of 6 hours and therefore suggest the absence of acute drug effects. Different elimination half-lives of enantiomers lead to constantly increasing (R)/(S)-concentration-ratios. Consequently, ratios of 4-FA enantiomers in serum are a promising indicator for assessment of the time of drug consumption.
Collapse
Affiliation(s)
- Moritz Losacker
- Institute of Legal Medicine, Johannes Gutenberg University Mainz, Am Pulverturm 3, D-55131 Mainz, Germany
| | - Stefan W Toennes
- Institute of Legal Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt/Main, Germany
| | - Elizabeth B de Sousa Fernandes Perna
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Johannes G Ramaekers
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joerg Roehrich
- Institute of Legal Medicine, Johannes Gutenberg University Mainz, Am Pulverturm 3, D-55131 Mainz, Germany
| | - Cornelius Hess
- Institute of Legal Medicine, Johannes Gutenberg University Mainz, Am Pulverturm 3, D-55131 Mainz, Germany
| |
Collapse
|
22
|
Smit‐Rigter LA, Van der Gouwe D. The neglected benefits of drug checking for harm reduction. Intern Med J 2020. [DOI: 10.1111/imj.14953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Alexandra Smit‐Rigter
- Drugs Information and Monitoring System, Drug Monitoring and PolicyTrimbos Institute Utrecht The Netherlands
| | - Daan Van der Gouwe
- Drugs Information and Monitoring System, Drug Monitoring and PolicyTrimbos Institute Utrecht The Netherlands
| |
Collapse
|
23
|
Hondebrink L, Nugteren‐van Lonkhuyzen JJ, Hunault CC, van den Berg J, van der Gouwe D, van Riel AJHP. New psychoactive substances (NPS) in the Netherlands: occurrence in forensic drug samples, consumer drug samples and poisons center exposures between 2013 and 2017. Addiction 2020; 115:716-725. [PMID: 31656050 PMCID: PMC7079152 DOI: 10.1111/add.14868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/10/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | | | - Claudine C. Hunault
- Dutch Poisons Information Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | | | - Daan van der Gouwe
- Department of Drug Monitoring and PolicyTrimbos Institute, Netherlands Institute of Mental Health and AddictionUtrechtthe Netherlands
| | | |
Collapse
|