1
|
Talebi R, Mardi M, Zeinalabedini M, Kazemi Alamouti M, Fabre S, Ghaffari MR. Assessing the performance of Moghani crossbred lambs derived from different mating systems with Texel and Booroola sheep. PLoS One 2024; 19:e0301629. [PMID: 38573987 PMCID: PMC10994311 DOI: 10.1371/journal.pone.0301629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
In our ongoing project, which focuses on the introgression of Booroola/FecB gene and the myostatin (MSTN) gene into purebred Moghani sheep, we assessed the performance of second-generation Moghani crossbreds such as second crossbreds (F2) and initial backcross generation (BC1). These crossbreds were generated through different mating systems, including in-breeding, outcrossing, first paternal backcrossing (PBC1), and first maternal backcrossing (MBC1). Notably, F2 strains exhibited lean tail, woolly fleece and a higher percentage of white coat color compared to BC1. The impact of mating systems and birth types on pre-weaning survival rates was found to be statistically significant (P < 0.0001), with singleton offspring resulting from paternal backcross showing a particularly substantial effect. The F2 crossbred lambs carrying the Booroola gene did not show a statistically significant difference in survivability compared to those carrying the MSTN gene, implying the Booroola prolificacy gene had no significant impact on survival outcomes. However, the occurrence of multiple births had a significant negative impact on lamb survival (P < 0.0001). The PBC1 sheep strains, specifically Texel Tamlet ram strains carrying the MSTN mutation, exhibited superior growth rates compared to others (P < 0.05). Interestingly, the MSTN mutation in the homozygous variant genotype significantly impacts growth rate before weaning compared to other genotypes and pure Moghani sheep (P < 0.05). In conclusion, this study objectively underscores the pivotal role of genetic factors, specifically through strategic mating systems like paternal backcrossing, in enhancing desired traits and growth rates in Moghani sheep, thereby contributing valuable insights to the field of sheep breeding programs.
Collapse
Affiliation(s)
- Reza Talebi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrbano Kazemi Alamouti
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Stéphane Fabre
- GenPhySE, INRAE, ENVT, Université de Toulouse, Castanet Tolosan, France
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Jin M, Wang H, Liu G, Lu J, Yuan Z, Li T, Liu E, Lu Z, Du L, Wei C. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet Sel Evol 2024; 56:26. [PMID: 38565986 PMCID: PMC10988870 DOI: 10.1186/s12711-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Engming Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lan-Zhou, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Bakhtiarizadeh MR. Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study. Sci Rep 2024; 14:2361. [PMID: 38287039 PMCID: PMC10825154 DOI: 10.1038/s41598-024-52855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Although research on alternative splicing (AS) has been widely conducted in mammals, no study has investigated the splicing profiles of genes involved in fat-tail formation in sheep. Here, for the first time, a comprehensive study was designed to investigate the profile of AS events and their involvement in fat-tail development of sheep. In total, 45 RNA-Seq samples related to seven different studies, which have compared the fat-tailed vs thin-tailed sheep breeds, were analyzed. Two independent tools, rMATS and Whippet, along with a set of stringent filters were applied to identify differential AS (DAS) events between the breeds per each study. Only DAS events that were detected by both tools as well as in at least three datasets with the same ΔPSI trend (percent spliced in), were considered as the final high-confidence set of DAS genes. Final results revealed 130 DAS skipped exon events (69 negative and 61 positive ΔPSI) belonged to 124 genes. Functional enrichment analysis highlighted the importance of the genes in the underlying molecular mechanisms of fat metabolism. Moreover, protein-protein interaction network analysis revealed that DAS genes are significantly connected. Of DAS genes, five transcription factors were found that were enriched in the biological process associated with lipid metabolism like "Fat Cell Differentiation". Further investigations of the findings along with a comprehensive literature review provided a reliable list of candidate genes that may potentially contribute to fat-tail formation including HSD11B1, SIRT2, STRN3 and TCF7L2. Based on the results, it can be stated that the AS patterns may have evolved, during the evolution of sheep breeds, as another layer of regulation to contribute to biological complexity by reprogramming the gene regulatory networks. This study provided the theoretical basis of the molecular mechanisms behind the sheep fat-tail development in terms of AS.
Collapse
|
6
|
Farhadi S, Hasanpur K, Ghias JS, Palangi V, Maggiolino A, Landi V. Comprehensive Gene Expression Profiling Analysis of Adipose Tissue in Male Individuals from Fat- and Thin-Tailed Sheep Breeds. Animals (Basel) 2023; 13:3475. [PMID: 38003093 PMCID: PMC10668686 DOI: 10.3390/ani13223475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
It has been shown that tail fat content varies significantly among sheep breeds and plays a significant role in meat quality. Recently, significant efforts have been made to understand the physiological, biochemical, and genomic regulation of fat deposition in sheep tails in order to unravel the mechanisms underlying energy storage and adipose tissue lipid metabolism. RNA-seq has enabled us to provide a high-resolution snapshot of differential gene expression between fat- and thin-tailed sheep breeds. Therefore, three RNA-seq datasets were meta-analyzed for the current work to elucidate the transcriptome profile differences between them. Specifically, we identified hub genes, performed gene ontology (GO) analysis, carried out enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and validated hub genes using machine learning algorithms. This approach revealed a total of 136 meta-genes, 39 of which were not significant in any of the individual studies, indicating the higher statistical power of the meta-analysis. Furthermore, the results derived from the use of machine learning revealed POSTN, K35, SETD4, USP29, ANKRD37, RTN2, PRG4, and LRRC4C as substantial genes that were assigned a higher weight (0.7) than other meta-genes. Among the decision tree models, the Random Forest ones surpassed the others in adipose tissue predictive power fat deposition in fat- and thin-tailed breeds (accuracy > 0.85%). In this regard, combining meta-analyses and machine learning approaches allowed for the identification of three important genes (POSTN, K35, SETD4) related to lipid metabolism, and our findings could help animal breeding strategies optimize fat-tailed breeds' tail sizes.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran; (S.F.); (J.S.G.)
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran; (S.F.); (J.S.G.)
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran; (S.F.); (J.S.G.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye;
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| |
Collapse
|
7
|
Jin M, Yuan Z, Li T, Wang H, Wei C. The Effects of DDI1 on Inducing Differentiation in Ovine Preadipocytes via Oar-miR-432. Int J Mol Sci 2023; 24:11567. [PMID: 37511326 PMCID: PMC10380388 DOI: 10.3390/ijms241411567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Reducing fat deposition in sheep (Ovis aries) tails is one of the most important ways to combat rising costs and control consumer preference. Our previous studies have shown that oar-miR-432 is differentially expressed in the tail adipose tissue of Hu (a fat-tailed sheep breed) and Tibetan (a thin-tailed sheep breed) sheep and is a key factor in the negative regulation of fat deposition through BMP2 in ovine preadipocytes. This study investigated the effect of oar-miR-432 and its target genes in ovine preadipocytes. A dual luciferase assay revealed that DDI1 is a direct target gene of oar-miR-432. We transfected an oar-miR-432 mimic and inhibitor into preadipocytes to analyze the expression of target genes. Overexpression of oar-miR-432 inhibits DDI1 expression, whereas inhibition showed the opposite results. Compared with thin-tailed sheep, DDI1 was highly expressed in the fat-tailed sheep at the mRNA and protein levels. Furthermore, we transfected the overexpression and knockdown target genes into preadipocytes to analyze their influence after inducing differentiation. Knockdown of DDI1 induced ovine preadipocyte differentiation into adipocytes but suppressed oar-miR-432 expression. Conversely, the overexpression of DDI1 significantly inhibited differentiation but promoted oar-miR-432 expression. DDI1 overexpression also decreased the content of triglycerides. Additionally, DDI1 is a nested gene in intron 1 of PDGFD. When DDI1 was overexpressed, the PDGFD expression also increased, whereas DDI1 knockdown showed the opposite results. This is the first study to reveal the biological mechanisms by which oar-miR-432 inhibits preadipocytes through DDI1 and provides insight into the molecular regulatory mechanisms of DDI1 in ovine preadipocytes. These results have important applications in animal breeding and obesity-related human diseases.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.); (T.L.)
| |
Collapse
|
8
|
Hosseini SF, Bakhtiarizadeh MR, Salehi A. Meta-analysis of RNA-Seq datasets highlights novel genes/pathways involved in fat deposition in fat-tail of sheep. Front Vet Sci 2023; 10:1159921. [PMID: 37252399 PMCID: PMC10213422 DOI: 10.3389/fvets.2023.1159921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Fat-tail in sheep is considered as an important energy reservoir to provide energy as a survival buffer during harsh challenges. However, fat-tail is losing its importance in modern sheep industry systems and thin-tailed breeds are more desirable. Using comparative transcriptome analysis to compare fat-tail tissue between fat- and thin-tailed sheep breeds provides a valuable approach to study the complex genetic factors associated with fat-tail development. However, transcriptomic studies often suffer from issues with reproducibility, which can be improved by integrating multiple studies based on a meta-analysis. Methods Hence, for the first time, an RNA-Seq meta-analysis on sheep fat-tail transcriptomes was performed using six publicly available datasets. Results and discussion A total of 500 genes (221 up-regulated, 279 down-regulated) were identified as differentially expressed genes (DEGs). A jackknife sensitivity analysis confirmed the robustness of the DEGs. Moreover, QTL and functional enrichment analysis reinforced the importance of the DEGs in the underlying molecular mechanisms of fat deposition. Protein-protein interactions (PPIs) network analysis revealed the functional interactions among the DEGs and the subsequent sub-network analysis led to identify six functional sub-networks. According to the results of the network analysis, down-regulated DEGs in green and pink sub-networks (like collagen subunits IV, V, and VI, integrins 1 and 2, SCD, SCD5, ELOVL6, ACLY, SLC27A2, and LPIN1) may impair lipolysis or fatty acid oxidation and cause fat accumulation in tail. On the other hand, up-regulated DEGs, especially those are presented in green and pink sub-networks (like IL6, RBP4, LEPR, PAI-1, EPHX1, HSD11B1, and FMO2), might contribute to a network controlling fat accumulation in the tail of sheep breed through mediating adipogenesis and fatty acid biosynthesis. Our results highlighted a set of known and novel genes/pathways associated with fat-tail development, which could improve the understanding of molecular mechanisms behind fat deposition in sheep fat-tail.
Collapse
|
9
|
Güngör ÖF, Özbeyaz C, Ünal N, Akçapınar H. The evaluation of the genotype and slaughter weight effect on meat quality and fatty acid profile from two native sheep. Trop Anim Health Prod 2023; 55:116. [PMID: 36928174 DOI: 10.1007/s11250-023-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
The purpose of this study is to investigate the quality characteristics and fatty acid composition of meat from male Akkaraman (AKK) and Bafra × Akkaraman B1 (BA B1) lambs slaughtered at different live weights. Thirty-six male lambs (18 AKK and 18 BA B1) were slaughtered at three different slaughter weights (35, 40, and 45 kg) after being fattened intensively. Meat physical quality characteristics and fatty acid profiles were used as response variables. Color parameters (L*, a*, and b*) and pH were not significantly influenced by genotype and slaughter weight (SW). Water-holding capacity (WHC) was significantly affected by SW (P < 0.05), cooking loss (CL) by genotype (P < 0.001). Increasing SW, intramuscular fat of the Longissimus thoracis muscle showed increased total unsaturated fatty acids (TUFA) (P < 0.01) and ratios of TUFA/saturated fatty acids (SFA) (P < 0.01), and decreased thrombogenic and atherogenic indices (P < 0.01). Monounsaturated fatty acids (MUFA) (P < 0.05) and polyunsaturated fatty acids (PUFA) (P < 0.01) varied on with the genotypes. In conclusion, genotype and SW did not greatly affect meat quality; however, MUFA and PUFA mutually changed according to the genotype, and fatty acid percentages improved according to the SW.
Collapse
Affiliation(s)
- Ömer Faruk Güngör
- Department of Veterinary, Vocational School, Bolu Abant Izzet Baysal University, Bolu, 14800, Turkey.
| | - Ceyhan Özbeyaz
- Department of Animal Breeding and Husbandry, Ankara University Faculty of Veterinary Medicine, 06110, Ankara, Turkey
| | - Necmettin Ünal
- Department of Animal Breeding and Husbandry, Ankara University Faculty of Veterinary Medicine, 06110, Ankara, Turkey
| | - Halil Akçapınar
- Department of Animal Breeding and Husbandry, Ankara University Faculty of Veterinary Medicine, 06110, Ankara, Turkey
| |
Collapse
|
10
|
Li R, Gong M, Zhang X, Wang F, Liu Z, Zhang L, Yang Q, Xu Y, Xu M, Zhang H, Zhang Y, Dai X, Gao Y, Zhang Z, Fang W, Yang Y, Fu W, Cao C, Yang P, Ghanatsaman ZA, Negari NJ, Nanaei HA, Yue X, Song Y, Lan X, Deng W, Wang X, Pan C, Xiang R, Ibeagha-Awemu EM, Heslop-Harrison PJS, Rosen BD, Lenstra JA, Gan S, Jiang Y. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res 2023; 33:463-477. [PMID: 37310928 PMCID: PMC10078295 DOI: 10.1101/gr.277372.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimeng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Huanhuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanpeng Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenwen Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuta Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunna Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz 7155863511, Iran
| | | | | | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruidong Xiang
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, 3052 Victoria, Australia
| | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Pat J S Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3508 TD, The Netherlands
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China;
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
12
|
Zhao B, Zhang H, Zhao D, Liang Y, Qiao L, Liu J, Pan Y, Yang K, Liu W. circINSR Inhibits Adipogenic Differentiation of Adipose-Derived Stromal Vascular Fractions through the miR-152/ MEOX2 Axis in Sheep. Int J Mol Sci 2023; 24:ijms24043501. [PMID: 36834919 PMCID: PMC9964708 DOI: 10.3390/ijms24043501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Adipose tissue plays a crucial role in energy metabolism. Several studies have shown that circular RNA (circRNA) is involved in the regulation of fat development and lipid metabolism. However, little is known about their involvement in the adipogenic differentiation of ovine stromal vascular fractions (SVFs). Here, based on previous sequencing data and bioinformatics analysis, a novel circINSR was identified in sheep, which acts as a sponge to promote miR-152 in inhibiting the adipogenic differentiation of ovine SVFs. The interactions between circINSR and miR-152 were examined using bioinformatics, luciferase assays, and RNA immunoprecipitation. Of note, we found that circINSR was involved in adipogenic differentiation via the miR-152/mesenchyme homeobox 2 (MEOX2) pathway. MEOX2 inhibited adipogenic differentiation of ovine SVFs and miR-152 inhibited the expression of MEOX2. In other words, circINSR directly isolates miR-152 in the cytoplasm and inhibits its ability to promote adipogenic differentiation of ovine SVFs. In summary, this study revealed the role of circINSR in the adipogenic differentiation of ovine SVFs and its regulatory mechanisms, providing a reference for further interpretation of the development of ovine fat and its regulatory mechanisms.
Collapse
|
13
|
Bedhiaf-Romdhani S, Baazaoui I, Dodds KG, Brauning R, Anderson RM, Van Stijn TC, McCulloch AF, McEwan JC. Efficiency of genotyping by sequencing in inferring genomic relatedness and molecular insights into fat tail selection in Tunisian sheep. Anim Genet 2023; 54:389-397. [PMID: 36727208 DOI: 10.1111/age.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
In developing countries, the use of simple and cost-efficient molecular technology is crucial for genetic characterization of local animal resources and better development of conservation strategies. The genotyping by sequencing (GBS) technique, also called restriction enzyme- reduced representational sequencing, is an efficient, cost-effective method for simultaneous discovery and genotyping of many markers. In the present study, we applied a two-enzyme GBS protocol (PstI/MspI) to discover and genotype SNP markers among 197 Tunisian sheep samples. A total of 100 333 bi-allelic SNPs were discovered and genotyped with an SNP call rate of 0.69 and mean sample depth 3.33. The genomic relatedness between 183 samples grouped the samples perfectly to their populations and pointed out a high genetic relatedness of inbred subpopulation reflecting the current adopted reproductive strategies. The genome-wide association study contrasting fat vs. thin-tailed breeds detected 41 significant variants including a peak positioned on OAR20. We identified FOXC1, GMDS, VEGFA, OXCT1, VRTN and BMP2 as the most promising for sheep tail-type trait. The GBS data have been useful to assess the population structure and improve our understanding of the genomic architecture of distinctive characteristics shaped by selection pressure in local sheep breeds. This study successfully investigates a cost-efficient method to discover genotypes, assign populations and understand insights into sheep adaptation to arid area. GBS could be of potential utility in livestock species in developing/emerging countries.
Collapse
Affiliation(s)
- Sonia Bedhiaf-Romdhani
- Laboratoire des Productions Animales et Fourragères, INRA-Tunisie, Université de Carthage, Tunis, Tunisia
| | - Imen Baazaoui
- Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ken G Dodds
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rayna M Anderson
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Alan F McCulloch
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - John Colin McEwan
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
14
|
Kalds P, Huang S, Chen Y, Wang X. Ovine HOXB13: expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Commun Biol 2022; 5:1196. [DOI: 10.1038/s42003-022-04199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
15
|
Germot A, Khodary MG, Othman OEM, Petit D. Shedding Light on the Origin of Egyptian Sheep Breeds by Evolutionary Comparison of Mitochondrial D-Loop. Animals (Basel) 2022; 12:ani12202738. [PMID: 36290124 PMCID: PMC9597797 DOI: 10.3390/ani12202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Egypt is a carrefour between North African Maghreb countries, East Tropical Africa, Arabian Peninsula, and Near East countries including Turkey. The aim of the present work was to describe the genetic relationships between several domestic sheep populations of these regions. All of the present-day Egyptian breeds are coarse woolen and fat-tailed, but archeologists indicate that this tail form was acquired in the Near East later from populations with a thin tail. To test this idea, we used a phylogenetic-derived program to compare the control region of mtDNA of 37 breeds with fat or thin tails. We showed that most breeds seemed to fit with the archeologist hypothesis, whereas one breed indicates a direct migration of a fat-tailed breed from Turkey. Unexpectedly, one of the breeds from South Egypt was strongly linked to the thin-tailed desert breeds of Sudan, raising the question of the events leading to this situation. Abstract (1) Background: It has been recognized that the origin of fat-tailed sheep occurred within coarse wool breeds and that this character was introgressed several times into thin-tailed populations. However, no study has investigated this idea for Egyptian breeds using mtDNA analyses. (2) Methods: Using new sequences of the control region, we constructed a database of 467 sequences representing 37 breeds including fat- and thin-tailed ones with 80 Egyptian individuals belonging to six local breeds (Barki, Fallahi, Ossimi, Rahmani, Saidi, Sohagi). The phylogenetic tree obtained with the maximum likelihood method was submitted to the Newick Extra program to count the direct and indirect links between the individuals of each breed. (3) Results: Several Egyptian breeds were strongly connected to “primitive” thin-tailed breeds from Europe, indicating a clear genetic background of the “thin tail” breed type that supports the view of archeologists. In several cases, we suspected Western Asian breeds to be involved in the introgression of the fat tail character. In contrast, the Ossimi breed showed a high affinity to a fat-tailed breed of Western Asia, suggesting a direct migration and no thin tail ancestors. The Saidi is unique as our analyses revealed its strong connection with thin-tailed Sudanese breeds.
Collapse
Affiliation(s)
- Agnès Germot
- LABCiS, University of Limoges, UR 22722, F-87000 Limoges, France
| | - Muhammad Gamal Khodary
- Integrative Biosciences (IBS) Department, Tuskegee University, 1200 W Montgomery Rd., Tuskegee, AL 36088, USA
- Cell Biology Department, National Research Center, El Buhouth St. (El Tahrir St.), Dokki, Giza 12311, Egypt
| | - Othman El-Mahdy Othman
- Cell Biology Department, National Research Center, El Buhouth St. (El Tahrir St.), Dokki, Giza 12311, Egypt
| | - Daniel Petit
- LABCiS, University of Limoges, UR 22722, F-87000 Limoges, France
- Correspondence:
| |
Collapse
|
16
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
17
|
McManus CM, Lucci CM, Maranhão AQ, Pimentel D, Pimentel F, Rezende Paiva S. Response to heat stress for small ruminants: Physiological and genetic aspects. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ahbara AM, Musa HH, Robert C, Abebe A, Al-Jumaili AS, Kebede A, Latairish S, Agoub MO, Clark E, Hanotte O, Mwacharo JM. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022; 114:110448. [PMID: 35964803 DOI: 10.1016/j.ygeno.2022.110448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.
Collapse
Affiliation(s)
- Abulgasim M Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya; School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK.
| | - Hassan H Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Christelle Robert
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Ayele Abebe
- Debre Berhan Research Centre, Debre Berhan, Ethiopia
| | - Ahmed S Al-Jumaili
- Department of Medical Laboratory Techniques, Al-Maarif University College, Ramadi, Anbar, Iraq
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia; Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Suliman Latairish
- Department of Animal Production, Faculty of Agriculture, Misurata University, Misurata, Libya
| | | | - Emily Clark
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia.
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK; Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK.
| |
Collapse
|
19
|
Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection. Animals (Basel) 2022; 12:ani12111423. [PMID: 35681887 PMCID: PMC9179914 DOI: 10.3390/ani12111423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Fatness-related traits are economically very important in sheep production and are associated with serious diseases in humans. Using a denser set of SNP markers and a variety of statistical approaches, our results were able to refine the regions associated with fat deposition and to suggest new insights into molecular aspects of fat tail selection. These results may provide a strong foundation for studying the regulation of fat deposition in sheep and do offer hope that the causal mutations and the mode of inheritance of this trait will soon be discovered by further investigation. Abstract The fat tail is a phenotype that divides indigenous Iranian sheep genetic resources into two major groups. The objective of the present study is to refine the map location of candidate regions associated with fat deposition, obtained via two separate whole genome scans contrasting thin and fat tail breeds, and to determine the nature of the selection occurring in these regions using a hitchhiking approach. Zel (thin tail) and Lori-Bakhtiari (fat tail) breed samples that had previously been run on the Illumina Ovine 50 k BeadChip, were genotyped with a denser set of SNPs in the three candidate regions using a Sequenom Mass ARRAY platform. Statistical tests were then performed using different and complementary methods based on either site frequency (FST and Median homozygosity) or haplotype (iHS and XP-EHH). The results from candidate regions on chromosome 5 and X revealed clear evidence of selection with the derived haplotypes that was consistent with selection to near fixation for the haplotypes affecting fat tail size in the fat tail breed. An analysis of the candidate region on chromosome 7 indicated that selection differentiated the beneficial alleles between breeds and homozygosity has increased in the thin tail breed which also had the ancestral haplotype. These results enabled us to confirm the signature of selection in these regions and refine the critical intervals from 113 kb, 201 kb, and 2831 kb to 28 kb, 142 kb, and 1006 kb on chromosome 5, 7, and X respectively. These regions contain several genes associated with fat metabolism or developmental processes consisting of TCF7 and PPP2CA (OAR5), PTGDR and NID2 (OAR7), AR, EBP, CACNA1F, HSD17B10,SLC35A2, BMP15, WDR13, and RBM3 (OAR X), and each of which could potentially be the actual target of selection. The study of core haplotypes alleles in our regions of interest also supported the hypothesis that the first domesticated sheep were thin tailed, and that fat tail animals were developed later. Overall, our results provide a comprehensive assessment of how and where selection has affected the patterns of variation in candidate regions associated with fat deposition in thin and fat tail sheep breeds.
Collapse
|
20
|
Han J, Ma S, Liang B, Bai T, Zhao Y, Ma Y, MacHugh DE, Ma L, Jiang L. Transcriptome Profiling of Developing Ovine Fat Tail Tissue Reveals an Important Role for MTFP1 in Regulation of Adipogenesis. Front Cell Dev Biol 2022; 10:839731. [PMID: 35350385 PMCID: PMC8957931 DOI: 10.3389/fcell.2022.839731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Fat-tail sheep exhibit a unique trait whereby substantial adipose tissue accumulates in the tail, a phenotype that is advantageous in many agroecological environments. In this study, we conducted histological assays, transcriptome analysis and functional assays to examine morphogenesis, characterize gene expression, and elucidate mechanisms that regulate fat tail development. We obtained the microstructure of tail before and after fat deposition, and demonstrated that measurable fat deposition occurred by the 80-day embryo (E80) stage, earlier than other tissues. Transcriptome profiling revealed 1,058 differentially expressed genes (DEGs) with six markedly different expression trends. GSEA enrichment and other downstream analyses showed important roles for genes and pathways involving in metabolism and that mitochondrial components were specifically overexpressed in the fat tail tissue of the 70-day embryo (E70). One hundred and eighty-three genes were further identified by leading edge gene analysis, among which, 17 genes have been reported in previous studies, including EEF1D, MTFP1, PPP1CA, PDGFD. Notably, the MTFP1 gene was highly correlated with the expression of other genes and with the highest enrichment score and gene expression change. Knockdown of MTFP1 in isolated adipose derived stem cells (ADSCs) inhibited cell proliferation and migration ability, besides, promoted the process of adipogenesis in vitro.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Sijia Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Benmeng Liang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tianyou Bai
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuhetian Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
21
|
Development and Application of a High-Resolution Melting Analysis with Unlabeled Probes for the Screening of Short-Tailed Sheep TBXT Heterozygotes. Animals (Basel) 2022; 12:ani12060792. [PMID: 35327188 PMCID: PMC8944613 DOI: 10.3390/ani12060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary TBXT (c.333G > C; c.334G > T) has been identified as a molecular genetic marker in short-tailed sheep. This paper describes a high-resolution melting (HRM) analysis using unlabeled probes and asymmetric PCR for the detection of genetic variants of TBXT in short-tailed sheep populations. The detection results of this method are consistent with those of Sanger sequencing and can help farmers with marker-assisted breeding. Abstract The short-tailed phenotype has long been considered one of the best traits for population genetic improvement in sheep breeding. In short-tailed sheep, not only is tail fat eliminated but also the pubic area is exposed due to the lack of a tail covering, giving them an advantage in reproduction. Recent studies have shown that two linked mutations in sheep TBXT at nucleotides 333 and 334 are associated with the short-tailed phenotype. In the population of short-tailed sheep, several heterozygous mutants of this gene are found. In our research, we used high-resolution melting (HRM) to identify homozygous and heterozygous genotypes in a flock of short-tailed sheep and compared the results with those of Sanger sequencing, which were identical. This demonstrates that our established HRM method, a rapid and inexpensive genotyping method, can be used to identify homozygous and heterozygous individuals in short-tailed sheep flocks.
Collapse
|