1
|
Yu X, Shao Y, Dong H, Zhang X, Ye G. Biological function and potential application of PANoptosis-related genes in colorectal carcinogenesis. Sci Rep 2024; 14:20672. [PMID: 39237645 PMCID: PMC11377449 DOI: 10.1038/s41598-024-71625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
PANoptosis induces programmed cell death (PCD) through extensive crosstalk and is associated with development of cancer. However, the functional mechanisms, clinical significance, and potential applications of PANoptosis-related genes (PRGs) in colorectal cancer (CRC) have not been fully elucidated. Functional enrichment of key PRGs was analyzed based on databases, and relationships between key PRGs and the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, signal transduction pathways, transcription factor regulation, and miRNA regulatory networks were systematically explored. This study identified 5 key PRGs associated with CRC: BCL10, CDKN2A, DAPK1, PYGM and TIMP1. Then, RT-PCR was used to verify expression of these genes in CRC cells and tissues. Clinical significance and prognostic value of key genes were further verified by multiple datasets. Analyses of the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, and signal transduction pathways suggest a close relationship between these key genes and development of CRC. In addition, a novel prognostic nomogram model for CRC was successfully constructed by combining important clinical indicators and the key genes. In conclusion, our findings offer new insights for understanding the pathogenesis of CRC, predicting CRC prognosis, and identifying multiple therapeutic targets for future CRC therapy.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Haotian Dong
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xinjun Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
2
|
Wang S, Wang K, Yue D, Yang X, Pan X, Kong F, Zhao R, Bie Q, Tian D, Zhu S, He B, Bin Z. MT1G induces lipid droplet accumulation through modulation of H3K14 trimethylation accelerating clear cell renal cell carcinoma progression. Br J Cancer 2024; 131:641-654. [PMID: 38906969 PMCID: PMC11333765 DOI: 10.1038/s41416-024-02747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Lipid droplet formation is a prominent histological feature in clear cell renal cell carcinoma (ccRCC), but the significance and mechanisms underlying lipid droplet accumulation remain unclear. METHODS Expression and clinical significance of MT1G in ccRCC were analyzed by using TCGA data, GEO data and scRNASeq data. MT1G overexpression or knockdown ccRCC cell lines were constructed and in situ ccRCC model, lung metastasis assay, metabolomics and lipid droplets staining were performed to explore the role of MT1G on lipid droplet accumulation in ccRCC. RESULTS Initially, we observed low MT1G expression in ccRCC tissues, whereas high MT1G expression correlated with advanced disease stage and poorer prognosis. Elevated MT1G expression promoted ccRCC growth and metastasis both in vitro and in vivo. Mechanistically, MT1G significantly suppressed acylcarnitine levels and downstream tricarboxylic acid (TCA) cycle activity, resulting in increased fatty acid and lipid accumulation without affecting cholesterol metabolism. Notably, MT1G inhibited H3K14 trimethylation (H3K14me3) modification. Under these conditions, MT1G-mediated H3K14me3 was recruited to the CPT1B promoter through direct interaction with specific promoter regions, leading to reduced CPT1B transcription and translation. CONCLUSIONS Our study unveils a novel mechanism of lipid droplet accumulation in ccRCC, where MT1G inhibits CPT1B expression through modulation of H3K14 trimethylation, consequently enhancing lipid droplet accumulation and promoting ccRCC progression. Graphical abstract figure Schematic diagram illustrating MT1G/H3K14me3/CPT1B-mediated lipid droplet accumulation promoted ccRCC progression via FAO inhibition.
Collapse
Affiliation(s)
- Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Kexin Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Dong Yue
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272007, China
| | - Xiaxia Yang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Xiaozao Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China
| | - Shuqing Zhu
- Department of Digestive Endoscopy, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272007, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China.
| | - Zhang Bin
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272007, China.
| |
Collapse
|
3
|
Zhang N, Wu J, Hossain F, Peng H, Li H, Gibson C, Chen M, Zhang H, Gao S, Zheng X, Wang Y, Zhu J, Wang JJ, Maze I, Zheng Q. Bioorthogonal Labeling and Enrichment of Histone Monoaminylation Reveal Its Accumulation and Regulatory Function in Cancer Cell Chromatin. J Am Chem Soc 2024. [PMID: 38848464 DOI: 10.1021/jacs.4c04249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Histone monoaminylation (i.e., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Min Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Huan Zhang
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xinru Zheng
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yongdong Wang
- Cerno Bioscience, Las Vegas, Nevada 89144, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jing J Wang
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Kim JY, Yang AY, Kim K, Kwon HH, Leem J, Kim YA. Pharmacological inhibition of p300 ameliorates steatosis, inflammation, and fibrosis in mice with non-alcoholic steatohepatitis. Heliyon 2024; 10:e30908. [PMID: 38774067 PMCID: PMC11107220 DOI: 10.1016/j.heliyon.2024.e30908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The histone acetyltransferase p300 plays a pivotal role in regulating gene expression and cellular phenotype through epigenetic mechanisms. It significantly influences lipid metabolism, which is a key factor in the pathogenesis of non-alcoholic steatohepatitis (NASH), by modulating the transcription of genes involved in lipid synthesis and accumulation. This study aimed to investigate the protective potential of inhibiting p300 in NASH. Male C57BL/6J mice were subjected to a methionine- and choline-deficient (MCD) diet for 4 weeks to induce NASH, and during this period, the p300 inhibitor C646 (10 mg/kg) was administered three times a week. C646 treatment reduced the elevation of p300 expression and histone H3 acetylation, leading to a decrease in liver injury markers in the serum and an improvement in the histological abnormalities observed in MCD diet-fed mice. C646 also reduced lipid accumulation by modulating de novo lipogenesis and suppressed inflammation, including cytokine overproduction and macrophage infiltration. Furthermore, C646 mitigated liver fibrosis and myofibroblast accumulation. This protective effect was achieved through the inhibition of apoptosis by reducing p53 and Bax expression and the suppression of ferroptosis by decreasing lipid peroxidation while enhancing antioxidant defenses. Additionally, C646 alleviated endoplasmic reticulum stress, as evidenced by the downregulation of unfolded protein response signaling molecules. These results highlight the potential of p300 as a therapeutic target for NASH.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Yun-A Kim
- Department of Family Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Zhang N, Wu J, Hossain F, Peng H, Li H, Gibson C, Chen M, Zhang H, Gao S, Zheng X, Wang Y, Zhu J, Wang JJ, Maze I, Zheng Q. Bioorthogonal labeling and enrichment of histone monoaminylation reveal its accumulation and regulatory function in cancer cell chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586010. [PMID: 38562869 PMCID: PMC10983900 DOI: 10.1101/2024.03.20.586010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Histone monoaminylation ( i . e ., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin. TOC
Collapse
|
7
|
Li CMY, Briggs MT, Lee YR, Tin T, Young C, Pierides J, Kaur G, Drew P, Maddern GJ, Hoffmann P, Klingler-Hoffmann M, Fenix K. Use of tryptic peptide MALDI mass spectrometry imaging to identify the spatial proteomic landscape of colorectal cancer liver metastases. Clin Exp Med 2024; 24:53. [PMID: 38492056 PMCID: PMC10944452 DOI: 10.1007/s10238-024-01311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. CRC liver metastases (CRLM) are often resistant to conventional treatments, with high rates of recurrence. Therefore, it is crucial to identify biomarkers for CRLM patients that predict cancer progression. This study utilised matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially map the CRLM tumour proteome. CRLM tissue microarrays (TMAs) of 84 patients were analysed using tryptic peptide MALDI-MSI to spatially monitor peptide abundances across CRLM tissues. Abundance of peptides was compared between tumour vs stroma, male vs female and across three groups of patients based on overall survival (0-3 years, 4-6 years, and 7+ years). Peptides were then characterised and matched using LC-MS/MS. A total of 471 potential peptides were identified by MALDI-MSI. Our results show that two unidentified m/z values (1589.876 and 1092.727) had significantly higher intensities in tumours compared to stroma. Ten m/z values were identified to have correlation with biological sex. Survival analysis identified three peptides (Histone H4, Haemoglobin subunit alpha, and Inosine-5'-monophosphate dehydrogenase 2) and two unidentified m/z values (1305.840 and 1661.060) that were significantly higher in patients with shorter survival (0-3 years relative to 4-6 years and 7+ years). This is the first study using MALDI-MSI, combined with LC-MS/MS, on a large cohort of CRLM patients to identify the spatial proteome in this malignancy. Further, we identify several protein candidates that may be suitable for drug targeting or for future prognostic biomarker development.
Collapse
Affiliation(s)
- Celine Man Ying Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, 5011, Australia
| | - Matthew T Briggs
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yea-Rin Lee
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Teresa Tin
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, 5011, Australia
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - John Pierides
- SA Pathology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, 5011, Australia
| | - Guy J Maddern
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, 5011, Australia
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, 5011, Australia.
| |
Collapse
|
8
|
Prabhu KS, Sadida HQ, Kuttikrishnan S, Junejo K, Bhat AA, Uddin S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol Res Pract 2024; 254:155174. [PMID: 38306863 DOI: 10.1016/j.prp.2024.155174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|