1
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Jahdi F, Ebadi A, Oskouie F, Kashanian M, Merghati-Khoei E. Development and psychometric evaluation of a Risky Sexual Behaviour Scale for Married Women (RSBS-MW) in Iran: a mixed-method study. HUM FERTIL 2023; 26:1286-1298. [PMID: 36644874 DOI: 10.1080/14647273.2023.2164940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/09/2022] [Indexed: 01/17/2023]
Abstract
A valid and reliable culture-based scale for the evaluation of risky sexual behaviours for married Iranian women is lacking. This study aimed to develop, and psychometrically test, a risky sexual behaviour scale for married Iranian women. A mixed-method sequential exploratory design was conducted from 2016 to 2020 in Tehran, Iran. First, a qualitative study was employed to define the concept of risky sexual behaviour using 16 semi-structured individual interviews and 10 focus group discussions (n = 100). Then, an item pool was generated, and the scale was developed. Finally, in the quantitative study, the psychometric properties of the scale were evaluated by validity and reliability tests. A maximum likelihood extraction with promax rotation was performed on 400 sexually active married women to assess the construct validity. The six components: (i) 'quality of sexual relations'; (ii) 'unusual pleasures in sexual relations'; (iii) 'sexual coercion'; (iv) 'verbal violence in sexual relations'; (v) 'self-care in sexual relations'; and (vi) 'concealment in sexual relations' could explain 57.49% of the total observed variance. The findings showed that the 27-item Risky Sexual Behaviour Scale (RSBS-MW) for married women in Iran has excellent internal consistency (α = 0.94) and stability (ICC = 0.98). Health care providers can use it to access risky sexual behaviours in married Iranian women.
Collapse
Affiliation(s)
- Fereshteh Jahdi
- Nursing and Midwifery Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ebadi
- Behavioral Sciences Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Nursing, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Oskouie
- Nursing and Midwifery Care Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Kashanian
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Merghati-Khoei
- Iranian National Center for Addiction Studies (INCAS), Institute for High-Risk Behavior Reduction, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institution, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Ravel J, Lai SK. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals. Acta Biomater 2023; 169:387-397. [PMID: 37499728 PMCID: PMC10619885 DOI: 10.1016/j.actbio.2023.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
In addition to direct neutralization and other classical effector functions, IgG possesses a little recognized and thus under-utilized effector function at mucosal surfaces: Fc-mucin bonds enable IgG to trap viruses in mucus. Due to the paucity of envelope glycoproteins that limits the number of IgG that can bind HIV, it remains poorly understood whether IgG-mucin interactions can effectively immobilize HIV in human cervicovaginal mucus (CVM). Here, we obtained 54 fresh, undiluted CVM specimens from 17 different women, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent HIV virus-like-particles in CVM treated with various HIV-specific IgG. We observed consistent and effective trapping of HIV by broadly neutralizing antibodies (VRC01, PGT121, and 2F5) in a subset of women. While trapping efficacy was not affected by the menstrual cycle, it was positively correlated with appreciable L. Crispatus populations in the microbiome, and negatively correlated with appreciable L. Iners or G. Vaginalis populations. Our work demonstrates for the first time that IgG-mucin crosslinking is capable of reinforcing the mucosal barrier against HIV, and motivates further investigation of passive immunization against vaginal transmission of STIs. STATEMENT OF SIGNIFICANCE: HIV transmission in women primarily occurs vaginally, yet the 3-way interactions between mucins and HIV virions mediated by HIV-binding antibodies in cervicovaginal mucus (CVM) is not well understood. While IgG-Fc possess weak affinity to mucins that trap virus/IgG complexes in mucus, the effectiveness against HIV remains unclear, due to the low number of virion-bound IgG. Here, we discovered that IgG can trap HIV consistently in CVM from select individuals regardless of their birth control status or menstrual cycle phase. IgG-mediated trapping of HIV was moderately associated with microbiome composition. These results suggest that IgG-mucin interactions could potentially reduce HIV transmission and highlight the importance of mucosal secretions in antibody-mediated prevention of HIV and other sexually transmitted infections.
Collapse
Affiliation(s)
- Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA
| | - Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Holly A Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Mike S Humphry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Samuel K Lai
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA; Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
6
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Yeruva T, Lee CH. Enzyme Responsive Delivery of Anti-Retroviral Peptide via Smart Hydrogel. AAPS PharmSciTech 2022; 23:234. [PMID: 36002705 DOI: 10.1208/s12249-022-02391-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
In response to an urgent need for advanced formulations for the delivery of anti-retrovirals, a stimuli-sensitive hydrogel formulation that intravaginally delivers HIV-1 entry inhibitor upon being exposed to a specific protease was developed. The hydrogel formulation consists of PEG-azide and PEG-DBCO covalently linked to the entry inhibitor peptide, enfuvirtide, via substrate linker that is designed to undergo proteolysis by prostate specific antigen (PSA) present in seminal fluid and release innate enfuvirtide. Of the tested PSA substrate linkers (HSSKLQYY, GISSFYSSK, AYLMYY, and AYLMGRR), HSSKLQ was found to be an optimal candidate for PEG-based hydrogel with kcat/KM of 2.2 M-1 s-1. The PEG-based hydrogel displayed a pseudoplastic, thixotropic behavior with overall viscosity varying between 1516 and 2.2 Pa.s, within the biologically relevant shear rates of 0.01-100 s-1. It also exhibited viscoelastic properties appropriate for uniform spreading and being retained in vagina. PEG-based hydrogels were loaded with N3-HSSKLQ-enfuvirtide (HF42) that is customarily synthesized enfuvirtide prodrug with its N-terminus connected to HSSKLQ linker. The stimuli-sensitive PEG-based hydrogel formulations upon being exposed to PSA released 36.5 ± 4.8% of enfuvirtide over 24 h in human ejaculate mimic of vaginal simulant fluid and seminal simulant fluid mixed in 1:3 ratio, which is significantly greater than its IC50. The PEG-based hydrogel was non-cytotoxic to both vaginal epithelial cells (VK2/E6E7) and murine macrophages (RAW 264.7) and did not significantly induce the production of nitric oxide, an inflammatory mediator. The PEG-based hydrogel is found to have suitable physicochemical properties for an intravaginal formulation of the PSA substrate-linked anti-retrovirals and is safe towards vaginal epithelium. It is capable of delivering enfuvirtide with effective concentrations to prevent women from HIV-1 infection.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte Street, HSB 4242, Kansas City, MO, 64108, USA
| | - Chi H Lee
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte Street, HSB 4242, Kansas City, MO, 64108, USA.
| |
Collapse
|
8
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
9
|
Hoang T, Toler E, DeLong K, Mafunda NA, Bloom SM, Zierden HC, Moench TR, Coleman JS, Hanes J, Kwon DS, Lai SK, Cone RA, Ensign LM. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. PLoS Pathog 2020; 16:e1008236. [PMID: 31971984 PMCID: PMC6999914 DOI: 10.1371/journal.ppat.1008236] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/04/2020] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Bacterial vaginosis (BV), a condition in which the vaginal microbiota consists of community of obligate and facultative anaerobes rather than dominated by a single species of Lactobacillus, affects ~30% of women in the US. Women with BV are at 60% increased risk for HIV acquisition and are 3-times more likely to transmit HIV to an uninfected partner. As cervicovaginal mucus (CVM) is the first line of defense against mucosal pathogens and the home of the resident vaginal microbiota, we hypothesized the barrier function of CVM to HIV may be diminished in BV. Here, we characterized CVM properties including pH, lactic acid content, and Nugent score to correlate with the microbiota community composition, which was confirmed by 16S rDNA sequencing on a subset of samples. We then quantified the mobility of fluorescently-labeled HIV virions and nanoparticles to characterize the structural and adhesive barrier properties of CVM. Our analyses included women with Nugent scores categorized as intermediate (4–6) and BV (7–10), women that were either symptomatic or asymptomatic, and a small group of women before and after antibiotic treatment for symptomatic BV. Overall, we found that HIV virions had significantly increased mobility in CVM from women with BV compared to CVM from women with Lactobacillus crispatus-dominant microbiota, regardless of whether symptoms were present. We confirmed using nanoparticles and scanning electron microscopy that the impaired barrier function was due to reduced adhesive barrier properties without an obvious degradation of the physical CVM pore structure. We further confirmed a similar increase in HIV mobility in CVM from women with Lactobacillus iners-dominant microbiota, the species most associated with transitions to BV and that persists after antibiotic treatment for BV. Our findings advance the understanding of the protective role of mucus and highlight the interplay between vaginal microbiota and the innate barrier function mucus. Bacterial vaginosis (BV), a condition characterized by the depletion of lactobacillus bacteria in the vagina, is the most common vaginal condition in reproductive age women. BV has been associated with many adverse reproductive and sexual health outcomes, including increased risk of HIV infection. Cervicovaginal mucus is the home to vaginal bacteria and acts as a first line of defense to protect the underlying tissues and cells from infection. Here, we studied the barrier properties of mucus from women with BV compared to women with vaginal bacteria dominated by lactobacilli. We found that mucus from women with BV and women with Lactobacillus iners were permissive to HIV-1, which may allow the virus to more easily reach target cells. These findings are in agreement with the observed increased risk for HIV acquisition seen in women with BV and L. iners bacteria. Furthermore, we found that the barrier against HIV is diminished in women with BV regardless of whether they have symptoms. Our findings highlight the important, yet unexplored interactions between the mucus barrier and the vaginal microbiota and the implications for human health.
Collapse
Affiliation(s)
- Thuy Hoang
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Toler
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kevin DeLong
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nomfuneko A. Mafunda
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hannah C. Zierden
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thomas R. Moench
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jenell S. Coleman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC/NCSU Joint Department of Biomedical Engineering, Department of Microbiology & Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Laura M. Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Showa SP, Nyabadza F, Hove-Musekwa SD. On the efficiency of HIV transmission: Insights through discrete time HIV models. PLoS One 2019; 14:e0222574. [PMID: 31532803 PMCID: PMC6750597 DOI: 10.1371/journal.pone.0222574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
There are different views on which of the two forms of viral spread is more efficient in vivo between cell-free and cell-associated virus. In this study, discrete time human immunodeficiency virus models are formulated and analysed with the goal of determining the form of viral spread that is more efficient in vivo. It is shown that on its own, cell-free viral spread cannot sustain an infection owing to the low infectivity of cell-free virus and cell-associated virus can sustain an infection because of the high infectivity of cell-associated virus. When acting concurrently, cell-associated virus is more efficient in spreading the infection upon exposure to the virus. However, in the long term, the two forms of viral spread contribute almost equally. Both forms of viral spread are shown to be able to initiate an infection.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Farai Nyabadza
- Department of Mathematics and Applied Mathematics, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Senelani D Hove-Musekwa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
11
|
Nodder SB, Gummuluru S. Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Front Immunol 2019; 10:1606. [PMID: 31396206 PMCID: PMC6664105 DOI: 10.3389/fimmu.2019.01606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome a post-integration transcriptional defect in these cells. Intriguingly, recent identification of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling complexes and prevent host-mediated transcriptional repression of both invading viral genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge between innate and adaptive immune responses to invading pathogens. Here, we seek to illustrate the numerous means by which Vpr manipulates the myeloid cellular environment and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic virus dissemination.
Collapse
Affiliation(s)
- Sarah Beth Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Comparisons of Human Immunodeficiency Virus Type 1 Envelope Variants in Blood and Genital Fluids near the Time of Male-to-Female Transmission. J Virol 2019; 93:JVI.01769-18. [PMID: 30996101 DOI: 10.1128/jvi.01769-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/15/2019] [Indexed: 11/20/2022] Open
Abstract
To better understand the transmission of human immunodeficiency virus type 1 (HIV-1), the genetic characteristics of blood and genital viruses from males were compared to those of the imputed founding virus population in their female partners. Initially serodiscordant heterosexual African couples with sequence-confirmed male-to-female HIV-1 transmission and blood and genital specimens collected near the time of transmission were studied. Single viral templates from blood plasma and genital tract RNA and DNA were sequenced across HIV-1 env gp160. Eight of 29 couples examined yielded viral sequences from both tissues. Analysis of these couples' sequences demonstrated, with one exception, that the women's founding viral populations arose from a single viral variant and were CCR5 tropic, even though CXCR4 variants were detected within four males. The median genetic distance of the imputed most recent common ancestor of the women's founder viruses showed that they were closer to the semen viruses than to the blood viruses of their transmitting male partner, but this finding was biased by detection of a greater number of viral clades in the blood. Using multiple assays, the blood and genital viruses were consistently found to be compartmentalized in only two of eight men. No distinct amino acid signatures in the men's viruses were found to link to the women's founders, nor did the women's env sequences have shorter variable loops or fewer N-linked glycosylation sites. The lack of selective factors, except for coreceptor tropism, is consistent with others' findings in male-to-female and high-risk transmissions. The infrequent compartmentalization between the transmitters' blood and semen viruses suggests that cell-free blood virus likely includes HIV-1 sequences representative of those of viruses in semen.IMPORTANCE Mucosal transmissions account for the majority of HIV-1 infections. Identification of the viral characteristics associated with transmission would facilitate vaccine design. This study of HIV strains from transmitting males and their seroconverting female partners found that the males' genital tract viruses were rarely distinct from the blood variants. The imputed founder viruses in women were genetically similar to both the blood and genital tract variants of their male partners, indicating a lack of evidence for genital tract-specific lineages. These findings suggest that targeting vaccine responses to variants found in blood are likely to also protect from genital tract variants.
Collapse
|
13
|
Quispe Calla NE, Vicetti Miguel RD, Glick ME, Kwiek JJ, Gabriel JM, Cherpes TL. Exogenous oestrogen inhibits genital transmission of cell-associated HIV-1 in DMPA-treated humanized mice. J Int AIDS Soc 2019; 21. [PMID: 29334191 PMCID: PMC5810324 DOI: 10.1002/jia2.25063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction HIV affects more women than any other life‐threatening infectious agent, and most infections are sexually transmitted. HIV must breach the female genital tract mucosal barrier to establish systemic infection, and clinical studies indicate virus more easily evades this barrier in women using depot‐medroxyprogesterone acetate (DMPA) and other injectable progestins for contraception. Identifying a potential mechanism for this association, we learned DMPA promotes susceptibility of wild‐type mice to genital herpes simplex virus type 2 (HSV‐2) infection by reducing genital tissue expression of the cell‐cell adhesion molecule desmoglein‐1 (DSG‐1) and increasing genital mucosal permeability. Conversely, DMPA‐mediated increases in genital mucosal permeability and HSV‐2 susceptibility were eliminated in mice concomitantly administered exogenous oestrogen (E). To confirm and extend these findings, herein we used humanized mice to define effects of systemic DMPA and intravaginal (ivag) E administration on susceptibility to genital infection with cell‐associated HIV‐1. Methods Effects of DMPA or an intravaginal (ivag) E cream on engraftment of NOD‐scid‐IL‐2Rgcnull (NSG) mice with human peripheral blood mononuclear cells (hPBMCs) were defined with flow cytometry. Confocal microscopy was used to evaluate effects of DMPA, DMPA and E cream, or DMPA and the pharmacologically active component of the cream on vaginal tissue DSG‐1 expression and genital mucosal permeability to low molecular weight (LMW) molecules and hPBMCs. In other studies, hPBMC‐engrafted NSG mice (hPBMC‐NSG) received DMPA or DMPA and ivag E cream before genital inoculation with 106 HIV‐1‐infected hPBMCs. Mice were euthanized 10 days after infection, and plasma HIV‐1 load quantified by qRT‐PCR and splenocytes used to detect HIV‐1 p24 antigen via immunohistochemistry and infectious virus via TZM‐bl luciferase assay. Results Whereas hPBMC engraftment was unaffected by DMPA or E treatment, mice administered DMPA and E (cream or the pharmacologically active cream component) displayed greater vaginal tissue expression of DSG‐1 protein and decreased vaginal mucosal permeability to LMW molecules and hPBMCs versus DMPA‐treated mice. DMPA‐treated hPBMC‐NSG mice were also uniformly susceptible to genital transmission of cell‐associated HIV‐1, while no animal concomitantly administered DMPA and E cream acquired systemic HIV‐1 infection. Conclusion Exogenous E administration reduces susceptibility of DMPA‐treated humanized mice to genital HIV‐1 infection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Melissa E Glick
- The Ohio State University (OSU) College of Veterinary Medicine, Columbus, OH, USA
| | - Jesse J Kwiek
- Department of Microbiology, OSU College of Arts and Sciences, Columbus, OH, USA
| | | | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Pepe G, Locati M, Della Torre S, Mornata F, Cignarella A, Maggi A, Vegeto E. The estrogen-macrophage interplay in the homeostasis of the female reproductive tract. Hum Reprod Update 2019; 24:652-672. [PMID: 30256960 DOI: 10.1093/humupd/dmy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and following tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its involvement in the FRT is still missing. OBJECTIVE AND RATIONALE Recent accomplishments encourage a revision of the literature on the ability of macrophages to respond to estrogens and induce tissue-specific functions required for reproductive events, with the aim to envision macrophages as key players in FRT homeostasis and mediators of the regenerative and trophic actions of estrogens. SEARCH METHODS We conducted a systematic search using PubMed and Ovid for human, animal (rodents) and cellular studies published until 2018 on estrogen action in macrophages and the activity of these cells in the FRT. OUTCOMES Our search identified the remarkable ability of macrophages to activate biochemical processes in response to estrogens in cell culture experiments. The distribution at specific locations, interaction with selected cells and acquisition of distinct phenotypes of macrophages in the FRT, as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of these cells in the homeostasis of reproductive events. Moreover, current evidence suggests an association between estrogen-macrophage signaling and the generation of a tolerant and regenerative environment in the FRT, although a causative link is still missing. WIDER IMPLICATIONS Dysregulation of the functions and estrogen responsiveness of FRT macrophages may be involved in infertility and estrogen- and macrophage-dependent gynecological diseases, such as ovarian cancer and endometriosis. Thus, more research is needed on the physiology and pharmacological control of this endocrine-immune interplay.
Collapse
Affiliation(s)
- Giovanna Pepe
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Segrate, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi, Segrate, Italy
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Federica Mornata
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padua, Largo Meneghetti 2, Padua, Italy
| | - Adriana Maggi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| |
Collapse
|
15
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
16
|
Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. Mucosa: Key Interactions Determining Sexual Transmission of the HIV Infection. Front Immunol 2019; 10:144. [PMID: 30787929 PMCID: PMC6373783 DOI: 10.3389/fimmu.2019.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
In the context of HIV sexual transmission at the genital mucosa, initial interactions between the virus and the mucosal immunity determine the outcome of the exposure. Hence, these interactions have been deeply explored in attempts to undercover potential targets for developing preventative strategies. The knowledge gained has led to propose a hypothetical model for mucosal HIV transmission. Subsequent research studies on this topic further revealed new mechanisms and identified new host-HIV interactions. This review aims at integrating these findings to inform better and update the current model of HIV transmission. At the earliest stage of virus exposure, the epithelial integrity and the presence of antiviral factors are critical in preventing viral entry to the submucosa. However, the virus has been shown to enter to the submucosa in the presence of physical abrasion or via epithelial transmigration using paracellular passage or transcytosis mechanisms. The efficiency of these processes is greater with cell-associated viral inoculums and can be influenced by the presence of viral and immune factors, and by the structure of the exposed epithelium. Once the virus reaches the submucosa, dendritic cells and fibroblasts, as recently described, have been shown in vitro of being capable of facilitating the transfer of viral particles to susceptible cells, leading to viral dissemination, most likely in a trans-infection manner. The presence of activated CD4+ T cells in submucosa increases the probability of infection, where the predominant microbiota could be implicated through the modulation of an inflammatory microenvironment. Other factors such as genital fluids and hormones could also play an essential role in HIV transmission. Here, we review the most recent evidence described for mucosal HIV-transmission contributing with the understanding of this phenomenon.
Collapse
Affiliation(s)
- Sandra M Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
17
|
Humoral responses against HIV in male genital tract: role in sexual transmission and perspectives for preventive strategies. AIDS 2017; 31:1055-1064. [PMID: 28323750 DOI: 10.1097/qad.0000000000001460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Most new HIV infections occur via sexual routes. The induction of protective anti-HIV antibodies in genital mucosa is an important step toward reducing HIV transmission. Mucosal anti-HIV antibodies may play a dual role by either protecting against HIV transmission or facilitating it. Protective properties against HIV of mucosal IgGs and IgAs exhibiting neutralizing or antibody-dependent cell-mediated cytotoxicity activities have been described in highly exposed seronegative individuals. Conversely, some IgGs may facilitate the crossing of HIV free-particles through epithelial barriers by transcytosis. Hence knowledge of the mechanisms underlying anti-HIV antibody production in the genital tract and their exact role in sexual transmission may help to develop appropriate preventive strategies based on passive immunization or mucosal vaccination approaches. Our review focuses on the characteristics of the humoral immune responses against HIV in the male genital tract and related prevention strategies.
Collapse
|
18
|
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K. Seminal plasma induces inflammation and enhances HIV-1 replication in human cervical tissue explants. PLoS Pathog 2017; 13:e1006402. [PMID: 28542587 PMCID: PMC5453613 DOI: 10.1371/journal.ppat.1006402] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/01/2017] [Accepted: 05/06/2017] [Indexed: 12/16/2022] Open
Abstract
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Collapse
Affiliation(s)
- Andrea Introini
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stéphanie Boström
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Frideborg Bradley
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gibbs
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Axel Glaessgen
- Department of Clinical Pathology and Cytology, Unilabs AB, Capio St Göran Hospital, Stockholm, Sweden
| | - Annelie Tjernlund
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Monocytes but Not Lymphocytes Carrying HIV-1 on Their Surface Transmit Infection to Human Tissue Ex Vivo. J Virol 2016; 90:9833-9840. [PMID: 27558419 DOI: 10.1128/jvi.00742-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Unprotected sexual intercourse with HIV-infected men is the major cause of new infections. HIV virions are released into semen by various cells of the male genital tract, as well as by infected monocytes and lymphocytes present in semen. Some of these virions may attach to the surfaces of cells, infected or uninfected. We investigated whether cells carrying attached HIV on their surfaces can transmit infection. We addressed this question in a model system of human tissue exposed ex vivo to monocytes and lymphocytes carrying HIV on their surfaces. We gamma irradiated the cells to prevent their productive infection. In spite of comparable amounts of HIV attached to monocytes and lymphocytes, only monocytes were capable of transmitting infection and triggering productive infection in tissue. This HIV-1 transmission was mediated by cell-cell contacts. Our experiments suggest that in vivo, HIV attached to infected or uninfected monocytes, which far outnumber lymphocytes in HIV-infected semen, may contribute to sexual transmission of HIV from men to their partners. IMPORTANCE The vast majority of new HIV infections occur through sexual transmission, in which HIV is transferred from the semen of an infected male to an uninfected partner. In semen, HIV-1 particles may exist as free-floating virions; inside infected cells; or attached to the surfaces of cells, whether they are infected or not. Here, we investigated whether HIV attached to the surfaces of monocytes or lymphocytes could transmit infection to human tissue. Incubation of human tissue with monocyte-attached HIV resulted in productive tissue infection. In contrast, there was no infection of tissues when they were incubated with lymphocyte-attached HIV-1. Our results highlight the important role that seminal monocytes may play in HIV transmission in vivo, especially since monocytes far outnumber lymphocytes in the semen of HIV-infected individuals.
Collapse
|
20
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) groups M, N, O, and P are the result of independent zoonotic transmissions of simian immunodeficiency viruses (SIVs) infecting great apes in Africa. Among these, only Vpu proteins of pandemic HIV-1 group M strains evolved potent activity against the restriction factor tetherin, which inhibits virus release from infected cells. Thus, effective Vpu-mediated tetherin antagonism may have been a prerequisite for the global spread of HIV-1. To determine whether this particular function enhances primary HIV-1 replication and interferon resistance, we introduced mutations into the vpu genes of HIV-1 group M and N strains to specifically disrupt their ability to antagonize tetherin, but not other Vpu functions, such as degradation of CD4, down-modulation of CD1d and NTB-A, and suppression of NF-κB activity. Lack of particular human-specific adaptations reduced the ability of HIV-1 group M Vpu proteins to enhance virus production and release from primary CD4+ T cells at high levels of type I interferon (IFN) from about 5-fold to 2-fold. Interestingly, transmitted founder HIV-1 strains exhibited higher virion release capacity than chronic control HIV-1 strains irrespective of Vpu function, and group M viruses produced higher levels of cell-free virions than an N group HIV-1 strain. Thus, efficient virus release from infected cells seems to play an important role in the spread of HIV-1 in the human population and requires a fully functional Vpu protein that counteracts human tetherin. Understanding which human-specific adaptations allowed HIV-1 to cause the AIDS pandemic is of great importance. One feature that distinguishes pandemic HIV-1 group M strains from nonpandemic or rare group O, N, and P viruses is the acquisition of mutations in the accessory Vpu protein that confer potent activity against human tetherin. Adaptation was required because human tetherin has a deletion that renders it resistant to the Nef protein used by the SIV precursor of HIV-1 to antagonize this antiviral factor. It has been suggested that these adaptations in Vpu were critical for the effective spread of HIV-1 M strains, but direct evidence has been lacking. Here, we show that these changes in Vpu significantly enhance virus replication and release in human CD4+ T cells, particularly in the presence of IFN, thus supporting an important role in the spread of pandemic HIV-1.
Collapse
|
21
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
22
|
Jiang Y, Cao S, Bright DK, Bever AM, Blakney AK, Suydam IT, Woodrow KA. Nanoparticle-Based ARV Drug Combinations for Synergistic Inhibition of Cell-Free and Cell-Cell HIV Transmission. Mol Pharm 2015; 12:4363-74. [PMID: 26529558 DOI: 10.1021/acs.molpharmaceut.5b00544] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanocarrier-based drug delivery systems are playing an emerging role in human immunodeficiency virus (HIV) chemoprophylaxis and treatment due to their ability to alter the pharmacokinetics and improve the therapeutic index of various antiretroviral (ARV) drug compounds used alone and in combination. Although several nanocarriers have been described for combination delivery of ARV drugs, measurement of drug-drug activities facilitated by the use of these nanotechnology platforms has not been fully investigated for topical prevention. Here, we show that physicochemically diverse ARV drugs can be encapsulated within polymeric nanoparticles to deliver multidrug combinations that provide potent HIV chemoprophylaxis in relevant models of cell-free, cell-cell, and mucosal tissue infection. In contrast to existing approaches that coformulate ARV drug combinations together in a single nanocarrier, we prepared single-drug-loaded nanoparticles that were subsequently combined upon administration. ARV drug-nanoparticles were prepared using emulsion-solvent evaporation techniques to incorporate maraviroc (MVC), etravirine (ETR), and raltegravir (RAL) into poly(lactic-co-glycolic acid) (PLGA) nanoparticles. We compared the antiviral potency of the free and formulated drug combinations for all pairwise and triple drug combinations against both cell-free and cell-associated HIV-1 infection in vitro. The efficacy of ARV-drug nanoparticle combinations was also assessed in a macaque cervicovaginal explant model using a chimeric simian-human immunodeficiency virus (SHIV) containing the reverse transcriptase (RT) of HIV-1. We observed that our ARV-NPs maintained potent HIV inhibition and were more effective when used in combinations. In particular, ARV-NP combinations involving ETR-NP exhibited significantly higher antiviral potency and dose-reduction against both cell-free and cell-associated HIV-1 BaL infection in vitro. Furthermore, ARV-NP combinations that showed large dose-reduction were identified to be synergistic, whereas the equivalent free-drug combinations were observed to be strictly additive. Higher intracellular drug concentration was measured for cells dosed with the triple ARV-NP combination compared to the equivalent unformulated drugs. Finally, as a first step toward evaluating challenge studies in animal models, we also show that our ARV-NP combinations inhibit RT-SHIV virus propagation in macaque cervicovaginal tissue and block virus transmission by migratory cells emigrating from the tissue. Our results demonstrate that ARV-NP combinations control HIV-1 transmission more efficiently than free-drug combinations. These studies provide a rationale to better understand the role of nanocarrier systems in facilitating multidrug effects in relevant cells and tissues associated with HIV infection.
Collapse
Affiliation(s)
- Yonghou Jiang
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Shijie Cao
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Danielle K Bright
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Alaina M Bever
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Anna K Blakney
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Ian T Suydam
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
23
|
MIV-150/zinc acetate gel inhibits cell-associated simian-human immunodeficiency virus reverse transcriptase infection in a macaque vaginal explant model. Antimicrob Agents Chemother 2015; 59:3829-37. [PMID: 25870063 DOI: 10.1128/aac.00073-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
The transmission of both cell-free and cell-associated immunodeficiency viruses has been demonstrated directly in multiple animal species and possibly occurs in humans, as suggested by genotyping of the infecting human immunodeficiency virus (HIV) in acutely infected women and in semen from their partners. Therefore, a microbicide may need to block both mechanisms of HIV transmission to achieve maximum efficacy. To date, most of the preclinical evaluation of candidate microbicides has been performed using cell-free HIV. New models of mucosal transmission of cell-associated HIV are needed to evaluate candidate microbicide performance. The MIV-150/zinc acetate/carrageenan (MZC) gel protects Depo-Provera-treated macaques against cell-free simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection when applied vaginally up to 8 h before challenge. We recently demonstrated the potent activity of MZC gel against cell-free SHIV-RT in macaque vaginal explants. In the current study, we established a cell-associated SHIV-RT infection model of macaque vaginal tissues and tested the activity of MZC gel in this model. MZC gel protected tissues against cell-associated SHIV-RT infection when present at the time of viral exposure or when applied up to 4 days prior to viral challenge. These data support clinical testing of the MZC gel. Overall, our ex vivo model of cell-associated SHIV-RT infection in macaque vaginal mucosa complements the cell-free infection models, providing tools for prioritization of products that block both modes of HIV transmission.
Collapse
|
24
|
Cone RA. Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV. J Infect Dis 2015; 210 Suppl 3:S616-21. [PMID: 25414415 DOI: 10.1093/infdis/jiu459] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vaginal microbiota and sexually transmitted infections (STIs) are likely to influence the transmission of cell-associated human immunodeficiency virus (HIV). Lactic acid produced by Lactobacillus-dominated microbiota (Nugent score 0-3) will likely inhibit transmission, especially female-to-male transmission. In contrast, polymicrobial microbiota (Nugent score 4-10), community state types IV-A and IV-B, and STIs will likely increase transmission of cell-associated HIV.
Collapse
Affiliation(s)
- Richard A Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|