1
|
Fedorka CE, Scoggin KE, Coleman SJ, Hatzel JN, Burleson MD, Troedsson MHT. Unveiling the equine placental transcriptome: A novel study on ICSI-derived pregnancies. Theriogenology 2025; 237:120-128. [PMID: 40009953 DOI: 10.1016/j.theriogenology.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alterations during the early stages of embryo development have been associated with long-term effects on the fetus, neonate, and adult, but this has not been investigated in horses. In recent years, intracytoplasmic sperm injection (ICSI) has gained in commercial popularity in the equine population. Research suggests an association between ICSI-produced embryos and placental malformations, but there exists little understanding of the physiology involved. Therefore, we aim to produce a complete transcriptomic analysis of chorioallantois and provide potential pathways that may be impacted following pregnancies associated with in vitro-produced equine embryos. To do so, seventeen warmblood mares were bred either naturally to produce in vivo-produced pregnancies that were carried by self (in vivo; n = 8) or with in vitro-produced pregnancies created via intracytoplasmic sperm injection (ICSI) that were transferred to a recipient (in vitro; n = 9). Mares were monitored throughout gestation to ensure the health of the pregnancy, and impending parturition was monitored for progress. Chorioallantois was collected immediately postpartum and placed in RNALater for future extraction. RNA was isolated using Trizol, and RNASeq was performed by Novogene, with 93.3 % total mapping and 40 million read depth. The false discovery rate (FDR) was set to <0.05. When comparing groups (in vivo vs. in vitro-produced embryos), 1589 genes were differentially expressed. This included an upregulation of 626 genes, alongside a downregulation of 963 genes. Impacted gene ontology included aspects of the central dogma of molecular biology, including ribosome biogenesis, RNA polymerase activity, and spliceosome function. Additional biological processes that were impacted included aspects of the immune system relating to auto-immunity and disordered antigen response, such as the IL-17 signaling pathway, rheumatoid arthritis, and lupus. Additionally, pathways relating to hypoxia and ribosome biogenesis were associated with in vitro-produced pregnancies. Overall, it appears that the in vitro production of pregnancies is associated with placental dysregulation during pregnancy, which may be related to poor fetal and neonatal outcomes that have been associated with ART in other species.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, USA.
| | - K E Scoggin
- Department of Veterinary Sciences, University of Kentucky, Lexington, USA
| | - S J Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, USA
| | - J N Hatzel
- Department of Clinical Sciences, Colorado State University, Fort Collins, USA
| | | | - M H T Troedsson
- Department of Veterinary Sciences, University of Kentucky, Lexington, USA
| |
Collapse
|
2
|
Zhao H, Wong RJ, Stevenson DK. The placental vasculature is affected by changes in gene expression and glycogen-rich cells in a diet-induced obesity mouse model. PLoS One 2023; 18:e0294185. [PMID: 37948457 PMCID: PMC10637699 DOI: 10.1371/journal.pone.0294185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Maternal obesity is a risk factor for pregnancy complications. Obesity caused by a high-fat diet (HFD) may alter maternal glucose/glycogen metabolism. Here, our objective was to investigate whether the placental vasculature is altered via changes in gene expression and glycogen-rich cells using a preclinical mouse model of diet-induced obesity. We subjected female FVB/N mice to one of three feeding regimens: regular chow (RC) given at preconception and during pregnancy (Control); RC given at preconception and then a HFD during pregnancy (HFD-P); or HFD initiated 4 weeks preconception and during pregnancy (HFD-PreCP). Daily food consumption and weekly maternal weights were recorded. Maternal blood glucose levels were measured at preconception and 4 gestational epochs (E6.5-E9.5, E10.5-E12.5, E13.5-E15.5, E16.5-E19.5). At E8.5-E16.5, total RNA in placentas were isolated for gene expression analyses. Placentas were also collected for HE and periodic acid Schiff's (PAS) staining and glycogen content assays. Dams in the HFD-P and HFD-PreCP groups gained significantly more weight than controls. Pre- and antenatal glucose levels were also significantly higher (15%-30%) in HFD-PreCP dams. Expression of several placental genes were also altered in HFD dams compared with controls. Consumption of the HFD also led to phenotypic and morphologic changes in glycogen trophoblasts (GlyTs) and uterine natural killer (uNK) cells. Alterations in vascularity were also observed in the labyrinth of HFD-PreCP placentas, which correlated with decreased placental efficiency. Overall, we observed that a HFD induces gestational obesity in mice, alters expression of placental genes, affects glucose homeostasis, and alters glycogen-positive GlyTs and uNK cells. All these changes may lead to impaired placental vascular development, and thus heighten the risk for pregnancy complications.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ronald J. Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
3
|
Gao X, Chang J, Chang Y, Fan L, Liu Z, Zhang C, Shimosawa T, Yang F, Xu Q. Esaxerenone Inhibits Renal Angiogenesis and Endothelial-Mesenchymal Transition via the VEGFA and TGF-β1 Pathways in Aldosterone-Infused Mice. Int J Mol Sci 2023; 24:11766. [PMID: 37511521 PMCID: PMC10380380 DOI: 10.3390/ijms241411766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Renal fibrosis is an inevitable process in the progression of chronic kidney disease (CKD). Angiogenesis plays an important role in this process. Vascular endothelial cells are involved in renal fibrosis by phenotypic transformation and secretion of extracellular matrix. Aldosterone stimulates mineralocorticoid receptor (MR) activation and induces inflammation, which is important for angiogenesis. Clinically, MR blockers (MRBs) have a protective effect on damaged kidneys, which may be associated with inhibition of angiogenesis. In this study, we used aldosterone-infused mice and found that aldosterone induced angiogenesis and that endothelial-mesenchymal transition (EndMT) in neovascular endothelial cells was involved in renal fibrosis. Notably, aldosterone induced inflammation and stimulated macrophages to secrete vascular endothelial growth factor (VEGF) A to regulate angiogenesis by activating MR, whereas EndMT occurred in response to transforming growth factor-β1 (TGF-β1) induction and participated in renal fibrosis. These effects were antagonized by the MRB esaxerenone. These findings suggest that reducing angiogenesis may be an effective strategy for treating renal fibrosis.
Collapse
Affiliation(s)
- Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingyue Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
4
|
Goudreau AD, Everest C, Tanara L, Tzaneva V, Adamo KB. Characterization of Hofbauer cell polarization and VEGF localization in human term placenta from active and inactive pregnant individuals. Physiol Rep 2023; 11:e15741. [PMID: 37269190 PMCID: PMC10238919 DOI: 10.14814/phy2.15741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Physical activity (PA) during pregnancy is associated with parental and fetal health benefits; however, the mechanisms through which these benefits arise are yet to be fully understood. In healthy pregnancies Hofbauer cells (HBCs) comprise a heterogenous population containing CD206+ and CD206- phenotypes. In healthy pregnancies, CD206+ represent the majority, while dysregulations have been associated with pathological conditions. HBCs have also been identified as potential drivers of angiogenesis. As PA induces changes in macrophage polarization in non-pregnant populations, this novel study examined the relationship between PA and HBC polarization and to identify which HBC phenotypes express VEGF. Participants were classified as active or inactive, and immunofluorescence cell-labelling was used to quantify total HBCs, CD206+ HBCs, and the proportion of total HBCs expressing CD206. Immunofluorescent colocalization assessed which phenotypes expressed VEGF. Protein and mRNA expression of CD68 and CD206 were measured in term placenta tissue using Western blot and RT-qPCR, respectively. Both CD206+ and CD206- HBCs expressed VEGF. The proportion of CD206+ HBCs was elevated in active individuals; however, CD206 protein expression was observed to be lower in active participants. Combined with a lack of significant differences in CD206 mRNA levels, these findings suggest potential PA-mediated responses in HBC polarization and CD206 translational regulation.
Collapse
Affiliation(s)
| | | | - Layli Tanara
- Faculty of ScienceUniversity of OttawaOttawaOntarioCanada
| | | | - Kristi B. Adamo
- Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
5
|
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol 2023; 229:106254. [PMID: 36681283 PMCID: PMC10038932 DOI: 10.1016/j.jsbmb.2023.106254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Progesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Tzu Ning Liu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
6
|
Bai H, Guo X, Tan Y, Wang Y, Feng J, Lei K, Liu X, Xiao Y, Bao C. Hypoxia inducible factor-1 signaling pathway in macrophage involved angiogenesis in materials-instructed osteo-induction. J Mater Chem B 2022; 10:6483-6495. [PMID: 35971918 DOI: 10.1039/d2tb00811d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although osteo-inductive materials are regarded as promising candidates for critical-sized bone repair, their clinical application is limited by ambiguous mechanisms. The hypoxia-inducible factor (HIF)-1 signaling pathway, which responds to hypoxic conditions, is involved in both angiogenesis and osteogenesis. Strategies harnessing HIF-1 signaling to promote angiogenesis have been applied and have succeeded in repairing segmental bone defects. Meanwhile, macrophages have been shown to have important immunoregulatory effects on material-induced osteo-induction and correlate with HIF-1 activity. Thus, it is reasonable to assume that HIF-activated macrophages may also play important roles in the angiogenesis of material-induced osteo-induction. To verify this assumption, a classical type of osteo-inductive calcium phosphate (TCPs) was utilized. First, using RNA sequencing, we found that hypoxia activated the HIF signaling pathway in macrophages, which contributed to angiogenesis in TCPs. In addition, after treatment with a conditioned medium extracted from the co-culture system of macrophages and TCPs under hypoxic conditions, the migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) significantly increased. In vivo, inhibition of HIF-1 or clearance of macrophages could result in impaired angiogenesis in TCPs. Finally, more blood vessels were formed in the TCPs group than in the control group. In conclusion, this study elucidated the vital role of the HIF signaling pathway in infiltrating macrophages during early vessel growth in material-induced osteo-induction. It is beneficial in advancing the exploration of the related mechanism and providing possible support for optimizing the applicability of osteo-inductive materials in bone repair.
Collapse
Affiliation(s)
- Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Xiaodong Guo
- National Center of Stomatology & National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Yujie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Jing Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Hu H, Ma T, Liu N, Hong H, Yu L, Lyu D, Meng X, Wang B, Jiang X. Immunotherapy checkpoints in ovarian cancer vasculogenic mimicry: Tumor immune microenvironments, and drugs. Int Immunopharmacol 2022; 111:109116. [PMID: 35969899 DOI: 10.1016/j.intimp.2022.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/09/2023]
Abstract
Vasculogenic mimicry (VM), a vessel-like structure independent of endothelial cells, commonly exists in solid tumors which requires blood vessels to grow. As a special source of blood supply for tumor progression to a more aggressive state, VM has been observed in a variety of human malignant tumors and is tightly associated with tumor proliferation, invasion, metastasis, and poor patient prognosis. So far, various factors, including immune cells and cytokines, were reported to regulate ovarian cancer progression by influencing VM formation. Herein, we review the mechanisms that regulate VM formation in ovarian cancer and the effect of cells, cytokines, and signaling molecules in the tumor microenvironment on VM formation, Furthermore, we summarize the current clinical application of drugs targeting VM formation.
Collapse
Affiliation(s)
- Haitao Hu
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, PR China.
| | - Ting Ma
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, PR China.
| | - Xuefeng Jiang
- Department of Immunology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
8
|
Scott RA, Kiick KL, Akins RE. Substrate stiffness directs the phenotype and polarization state of cord blood derived macrophages. Acta Biomater 2021; 122:220-235. [PMID: 33359292 DOI: 10.1016/j.actbio.2020.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023]
Abstract
Cord blood (CB) mononuclear cell populations have demonstrated significant promise in biomaterials-based regenerative therapies; however, the contributions of monocyte and macrophage subpopulations towards proper tissue healing and regeneration are not well understood, and the phenotypic responses of macrophage to microenvironmental cues have not been well-studied. In this work, we evaluated the effects of cytokine stimulation and altered substrate stiffness. Macrophage derived from CB CD14+ monocytes adopted distinct inflammatory (M1) and anti-inflammatory (M2a and M2c) phenotypes in response to cytokine stimulation (M1: lipopolysaccharide (LPS) and interferon (IFN-γ); M2a: interleukin (IL)-4 and IL-13; M2c: IL-10) as determined through expression of relevant cell surface markers and growth factors. Cytokine-induced macrophage readily altered their phenotypes upon sequential administration of different cytokine cocktails. The impact of substrate stiffness on macrophage phenotype was evaluated by seeding CB-derived macrophage on 3wt%, 6wt%, and 14wt% poly(ethylene glycol)-based hydrogels, which exhibited swollen shear moduli of 0.1, 3.4, and 10.3 kPa, respectively. Surface marker expression and cytokine production varied depending on modulus, with anti-inflammatory phenotypes increasing with elevated substrate stiffness. Integration of specific hydrogel moduli and cytokine cocktail treatments resulted in the differential regulation of macrophage phenotypic biomarkers. These data suggest that CB-derived macrophages exhibit predictable behaviors that can be directed and finely tuned by combinatorial modulation of substrate physical properties and cytokine profiles.
Collapse
|
9
|
The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int J Mol Sci 2021; 22:ijms22020704. [PMID: 33445783 PMCID: PMC7828278 DOI: 10.3390/ijms22020704] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is one of the three leading causes of maternal morbidity and mortality worldwide. It afflicts 2-8% of pregnancies and is the most common cause of gestational hypertension. This article is focused on nuclear factor kappa B (NF-κB), its role in normal and pathological spiral arteries remodelling and development of preeclampsia, with evaluation if it is a promising therapeutic target. NF-κB is a key mediator of placentation. Since insemination, it stimulates production of proinflammatory cytokines by the uterine epithelium, which leads to activation of macrophages, uterine natural killer cells (uNKs), and other leukocytes. The trophoblast/uNK/macrophage crosstalk is crucial for implantation and spiral arteries remodeling, and NF-κB regulates that process through modification of cytokine expression, as well as cell phenotype and function. In the course of preeclampsia, the remodeling processes is disturbed by excessive inflammation and increased NF-κB activation. The pathological remodeling leads to uteroplacental dysfunction, release of proinflammatory cytokines into the maternal circulation, endothelial stress, and development of preeclampsia. The analysis of genetic and environmental inductors of NF-κB helps to distinguish preeclampsia risk groups. Furthermore, a selective inhibition of NF-κB or NF-κB activating pathways alleviates symptoms of preeclampsia in rat models; therefore, this could be an efficient therapeutic option.
Collapse
|
10
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|
11
|
Zhao H, Narasimhan P, Kalish F, Wong RJ, Stevenson DK. Dysregulation of hypoxia-inducible factor-1α (Hif1α) expression in the Hmox1-deficient placenta. Placenta 2020; 99:108-116. [PMID: 32784053 PMCID: PMC7549641 DOI: 10.1016/j.placenta.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Introduction Severe hypoxia exists in placentas during early pregnancy, with reoxygenation during mid-gestation. Hypoxia-inducible factor-1α (Hif1α), an oxygen sensor, initiates placental vascular development. We have shown that the placental vasculature in Hmox1-deficient (Hmox1+/−, Het) pregnancies is impaired, with morphological defects similar to Hif1α-deficient placentas. Materials and methods Whole wild-type (WT) and Het mouse placentas were collected at E8.5 (1%–3% O2) and E9.5–15.5 (8%–10% O2). mRNA levels were determined using real-time RT-PCR or PCR arrays and protein levels using Western blot. Bone marrow-derived macrophages (BMDMs) from WT, Het, and Hmox1 knockout (KO) mice, representing different Hmox1 cellular levels, were generated to study the role of Hmox1 on Hif1α ′s response to hypoxia-reoxygenation and gestational age-specific placental lysates. Results Hif1α was expressed in WT and Het placentas throughout gestation, with protein levels peaking at E8.5 and mRNA levels significantly upregulated from E9.5–E13.5, but significantly lower in Het placentas. Genes associated with angiogenesis (Vegfa, Vegfr1, Mmp2, Cxcl12, Angpt1, Nos3), antioxidants (Sod1, Gpx1), and transcription factors (Ap2, Bach1, Nrf2) were significantly different in Het placentas. In response to in vitro hypoxia-reoxygenation and to WT or Het placental lysates, Hif1α transcription was lower in Het and Hmox1 KO BMDMs compared with WT BMDMs. Discussion These findings suggest that deficiencies in Hmox1 underlie the insufficient placental Hif1α response to hypoxia-reoxygenation during gestation and subsequently impair downstream placental vascular formation. Therefore, a dysregulation of Hif1α expression caused by any genetic defect or environmental influence in early pregnancy could be the root cause of pregnancy disorders. Expression of Hif1α in wild-type (WT) placentas is gestational age-dependent. Hif1α expression is reduced in Hmox1-deficient placentas. Expression of angiogenic genes is altered in Hmox1-deficient placentas. Hypoxia-reoxygenation induces a differential expression of Hif1α in cells. Adding placental lysates dysregulates expression of Hif1α in Hmox1-deficient cells.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Purnima Narasimhan
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Flora Kalish
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
13
|
Meyer N, Zenclussen AC. Immune Cells in the Uterine Remodeling: Are They the Target of Endocrine Disrupting Chemicals? Front Immunol 2020; 11:246. [PMID: 32140155 PMCID: PMC7043066 DOI: 10.3389/fimmu.2020.00246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sufficient uterine remodeling is essential for fetal survival and development. Pathologies related to poor remodeling have a negative impact on maternal and fetal health even years after birth. Research of the last decades yielded excellent studies demonstrating the key role of immune cells in the remodeling processes. This review summarizes the current knowledge about the relevance of immune cells for uterine remodeling during pregnancy and further discusses immunomodulatory effects of man-made endocrine disrupting chemicals on immune cells.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
14
|
Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci Rep 2019; 9:17621. [PMID: 31772245 PMCID: PMC6879619 DOI: 10.1038/s41598-019-54098-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated whether diet-induced changes in the maternal intestinal microbiota were associated with changes in bacterial metabolites and their receptors, intestinal inflammation, and placental inflammation at mid-gestation (E14.5) in female mice fed a control (17% kcal fat, n = 7) or a high-fat diet (HFD 60% kcal fat, n = 9; ad libitum) before and during pregnancy. Maternal diet-induced obesity (mDIO) resulted in a reduction in maternal fecal short-chain fatty acid producing Lachnospiraceae, lower cecal butyrate, intestinal antimicrobial peptide levels, and intestinal SCFA receptor Ffar3, Ffar2 and Hcar2 transcript levels. mDIO increased maternal intestinal pro-inflammatory NFκB activity, colonic CD3+ T cell number, and placental inflammation. Maternal obesity was associated with placental hypoxia, increased angiogenesis, and increased transcript levels of glucose and amino acid transporters. Maternal and fetal markers of gluconeogenic capacity were decreased in pregnancies complicated by obesity. We show that mDIO impairs bacterial metabolite signaling pathways in the mother at mid-gestation, which was associated with significant structural changes in placental blood vessels, likely as a result of placental hypoxia. It is likely that maternal intestinal changes contribute to adverse maternal and placental adaptations that, via alterations in fetal hepatic glucose handling, may impart increased risk of metabolic dysfunction in offspring.
Collapse
|
15
|
Gohir W, Kennedy KM, Wallace JG, Saoi M, Bellissimo CJ, Britz-McKibbin P, Petrik JJ, Surette MG, Sloboda DM. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 2019; 597:3029-3051. [PMID: 31081119 DOI: 10.1113/jp277353] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Maternal obesity has been associated with shifts in intestinal microbiota, which may contribute to impaired barrier function Impaired barrier function may expose the placenta and fetus to pro-inflammatory mediators We investigated the impacts of diet-induced obesity in mice on maternal and fetal intestinal structure and placental vascularization Diet-induced obesity decreased maternal intestinal short chain fatty acids and their receptors, impaired gut barrier integrity and was associated with fetal intestinal inflammation. Placenta from obese mothers showed blood vessel immaturity, hypoxia, increased transcript levels of inflammation, autophagy and altered levels of endoplasmic reticulum stress markers. These data suggest that maternal intestinal changes probably contribute to adverse placental adaptations and also impart an increased risk of obesity in the offspring via alterations in fetal gut development. ABSTRACT Shifts in maternal intestinal microbiota have been implicated in metabolic adaptations to pregnancy. In the present study, we generated cohorts of female C57BL/6J mice fed a control (17% kcal fat, n = 10-14) or a high-fat diet (HFD 60% kcal from fat, n = 10-14; ad libitum) aiming to investigate the impact on the maternal gut microbiota, intestinal inflammation and gut barrier integrity, placental inflammation and fetal intestinal development at embryonic day 18.5. HFD was associated with decreased relative abundances of short-chain fatty acid (SCFA) producing genera during pregnancy. These diet-induced shifts paralleled decreased maternal intestinal mRNA levels of SCFA receptor Gpr41, modestly decreased cecal butyrate, and altered mRNA levels of inflammatory cytokines and immune cell markers in the maternal intestine. Maternal HFD resulted in impaired gut barrier integrity, with corresponding increases in circulating maternal levels of lipopolysaccharide (LPS) and tumour necrosis factor. Placentas from HFD dams demonstrated blood vessel immaturity and hypoxia; decreased free carnitine, acylcarnitine derivatives and trimethylamine-N-oxide; and altered mRNA levels of inflammation, autophagy, and ER stress markers. HFD exposed fetuses had increased activation of nuclear factor-kappa B and inhibition of the unfolded protein response in the developing intestine. Taken together, these data suggest that HFD intake prior to and during pregnancy shifts the composition of the maternal gut microbiota and impairs gut barrier integrity, resulting in increased maternal circulating LPS, which may ultimate contribute to changes in placental vascularization and fetal gut development.
Collapse
Affiliation(s)
- Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | | | - Christian J Bellissimo
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | | | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute.,Department of Medicine
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute.,Department of Obstetrics and Gynecology.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Gill N, Leng Y, Romero R, Xu Y, Panaitescu B, Miller D, Arif A, Mumuni S, Qureshi F, Hsu CD, Hassan SS, Staff AC, Gomez-Lopez N. The immunophenotype of decidual macrophages in acute atherosis. Am J Reprod Immunol 2019; 81:e13098. [PMID: 30734977 PMCID: PMC6556389 DOI: 10.1111/aji.13098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Acute atherosis is a uteroplacental arterial lesion that is associated with pregnancy complications such as preeclampsia and preterm birth, the latter being the leading cause of perinatal morbidity and mortality worldwide. However, the immunobiology of acute atherosis is poorly understood. METHOD OF STUDY Placental basal plate samples were collected from women who delivered with (n = 11) and without (n = 31) decidua basalis lesions of acute atherosis. Multicolor flow cytometry was used to quantify M1- and M2-like macrophage subsets and the expression of iNOS and IL-12 by decidual macrophages. Multiplex fluorescence staining and phenoptics were performed to localize M1-, MOX-, and Mhem-like macrophages in the decidual basalis. RESULTS Macrophages displayed diverse phenotypes in the decidua basalis with acute atherosis. M2-like macrophages were the most abundant subset in the decidua; yet, this macrophage subset did not change with the presence of acute atherosis. Decidual M1-like macrophages were increased in acute atherosis, and such macrophages displayed a pro-inflammatory phenotype, as indicated by the expression of iNOS and IL-12. Decidual M1-like pro-inflammatory macrophages were localized near both transformed and non-transformed vessels in the decidua basalis with acute atherosis. MOX and Mhem macrophages were also identified near transformed vessels in the decidua basalis with acute atherosis. Finally, monocyte-like cells were present on the vessel wall of non-transformed decidual vessels, indicating a possible intravascular source for macrophages in acute atherosis. CONCLUSION Decidual macrophages display different phenotypes, namely M1-like, M2-like, MOX, and Mhem subsets. Yet, pro-inflammatory macrophages are enriched in the decidua basalis with acute atherosis. These findings provide a molecular foundation for future mechanistic inquiries about the role of pro-inflammatory macrophages in the pathogenesis of acute atherosis.
Collapse
Affiliation(s)
- Navleen Gill
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Salma Mumuni
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Division of Obstetrics and Gynecology, Oslo University Hospital, Norway
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Holbrook BD, Davies S, Cano S, Shrestha S, Jantzie LL, Rayburn WF, Bakhireva LN, Savage DD. The association between prenatal alcohol exposure and protein expression in human placenta. Birth Defects Res 2019; 111:749-759. [PMID: 30891944 DOI: 10.1002/bdr2.1488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The need for earlier recognition of children at risk for neurobehavioral problems associated with prenatal ethanol exposure (PAE) has prompted investigations of biomarkers prognostic for altered fetal development. Here, we examined whether PAE alters the expression of angiogenesis-related proteins and cytokines in human placenta in subjects from an Ethanol, Neurodevelopment, Infant and Child Health prospective cohort. METHODS PAE was ascertained by screening questionnaires, Time-line Follow-back interviews and a panel of ethanol biomarkers at two study visits. After delivery, placental tissue samples were collected for protein analysis. RESULTS No significant differences in the prevalence of substance use, demographic or medical characteristics were observed between the No PAE and PAE groups. PAE was associated with significant reductions in placental expression of VEGFR2 and annexin-A4, while the levels of VEGFR1 and CCM-3 trended downward. A trend toward higher expression of the cytokines TNF-α and IL-13 was also observed in the PAE group. Receiver operating characteristic analyses of the data demonstrated a moderate-to-high degree of diagnostic accuracy for individual placental proteins. Combinations of proteins substantially increased their ability to differentiate between PAE and No PAE subjects. CONCLUSIONS These results establish the feasibility of harvesting placental tissue for protein analyses of PAE in a prospective manner. In addition, given the importance of vascular remodeling in both placenta and developing brain, the role of angiogenic and cytokine proteins in this process warrants further investigation for their utility for predicting alterations in brain development, as well as their mechanistic role in PAE-induced pathology.
Collapse
Affiliation(s)
- Bradley D Holbrook
- Department of Obstetrics & Gynecology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Sandra Cano
- Department of Pharmacy Practice & Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Shikhar Shrestha
- Department of Pharmacy Practice & Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Lauren L Jantzie
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico.,Department of Pediatrics, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - William F Rayburn
- Department of Obstetrics & Gynecology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice & Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico.,Department of Family & Community Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico.,Department of Pediatrics, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|