1
|
Emerson D, Rabin Y, Kara LB. A simplified computational liver perfusion model, with applications to organ preservation. Sci Rep 2025; 15:2178. [PMID: 39820266 PMCID: PMC11739513 DOI: 10.1038/s41598-025-85170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Advanced liver preservation strategies could revolutionize liver transplantation by extending preservation time, thereby allowing for broader availability and better matching of transplants. However, developing new cryopreservation protocols requires exploration of a complex design space, further complicated by the scarcity of real human livers to experiment upon. We aim to create computational models of the liver to aid in the development of new cryopreservation protocols. Towards this goal, we present an approach for generating 3D models of the liver vasculature by building upon the space colonization algorithm. Additionally, we introduce the concept of a super lobule which enables a computational abstraction of biological liver lobules. User-tunable parameters allow for vasculatures of varying depth and topology to be generated. In each model, we solve for a common lumped resistance value assigned to the super lobules, allowing the overall physiological blood pressure and flow rate through the liver to be preserved. We demonstrate our approach's ability to maintain consistency between models of varying depth. Finally, we simulate steady state machine perfusion of the generated models and demonstrate how they can be used to quickly test the effect of different boundary conditions when designing organ preservation protocols.
Collapse
Affiliation(s)
- Daniel Emerson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yoed Rabin
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Levent Burak Kara
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Czigany Z, Shirini K, Putri AJ, Longchamp AE, Bhusal S, Kamberi S, Meier RPH. Bridging Therapies-Ex Vivo Liver Xenoperfusion and the Role of Machine Perfusion: An Update. Xenotransplantation 2025; 32:e70011. [PMID: 39825617 DOI: 10.1111/xen.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models. Current reports about artificial and bioartificial liver support combined with xenografts showcase the potential in ex vivo xenogeneic perfusion. Breakthroughs, such as the perfusion of genetically modified porcine liver with FDA-approved machine perfusion systems connected to human blood circulation, underscore the interest and potential feasibility of a "liver dialysis" bridge to allotransplantation or recovery. This review provides an overview of the past and current research in the field of ex vivo pig liver xenoperfusion.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Kasra Shirini
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aghnia J Putri
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alban E Longchamp
- Division of Transplant Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Subarna Bhusal
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shani Kamberi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Yemaneberhan KH, Kang M, Jang JH, Kim JH, Kim KS, Park HB, Choi D. Beyond the icebox: modern strategies in organ preservation for transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:377-403. [PMID: 39743232 PMCID: PMC11732768 DOI: 10.4285/ctr.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025]
Abstract
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
Collapse
Affiliation(s)
- Kidus Haile Yemaneberhan
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jun Hwan Jang
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Jin Hee Kim
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Muss TE, Loftin AH, Zamore ZH, Drivas EM, Guo YN, Zhang Y, Brassil J, Oh BC, Brandacher G. A Guide to the Implementation and Design of Ex Vivo Perfusion Machines for Vascularized Composite Allotransplantation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6271. [PMID: 39534373 PMCID: PMC11557116 DOI: 10.1097/gox.0000000000006271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background Ex vivo machine perfusion (EVMP) is a versatile platform utilized in vascularized composite allotransplantation (VCA) to prolong preservation, salvage tissue, and evaluate graft viability. However, there is no consensus on best practices for VCA. This article discusses the common components, modifications, and considerations necessary for a successful VCA perfusion. Methods A systematic literature review was performed in several databases (PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov) to identify articles published on VCA EVMP (face, limb, abdominal wall, uterus, penis, and free flaps) before August 2022. Graft type and animal model, general perfusion parameters, core components of the circuit, and optional components for enhanced monitoring were extracted from the articles. Results A total of 1370 articles were screened, and 46 articles met inclusion criteria. Most articles (84.8%) were published in the last 10 years. Pigs were the main model used, but 10 protocols used human grafts. Free flaps were the most common graft type (41.3%), then upper extremities/forelimbs (28.3%), uteruses (17.4%), and hindlimbs (13.0%). Postperfusion replantation occurred in 15.2% of studies. Normothermic perfusion predominated (54.1%), followed by hypothermic (24.3%), and subnormothermic (21.6%). The majority of studies (87.0%) oxygenated their systems, most commonly with carbogen. Conclusions EVMP is a rapidly growing area of research. Leveraging EVMP in VCA can optimize VCA procedures and allow for expansion into replantation, flap salvage, and other areas of plastic surgery. Currently, VCA EVMP is achieved through a variety of approaches, but standardization is necessary to advance this technology and attain clinical translation.
Collapse
Affiliation(s)
- Tessa E. Muss
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Amanda H. Loftin
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Zachary H. Zamore
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Eleni M. Drivas
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yi-Nan Guo
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yichuan Zhang
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | - Byoung Chol Oh
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Gerald Brandacher
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Scatton O, Turco C, Savier E, Pelissié J, Legallais C, Sakka M, Aoudjehane L, Wendum D, Migliazza J, Spiritelli S, Conti F, Goumard C. Preclinical validation of a customized circuit for ex situ uninterrupted cold-to-warm prolonged perfusion of the liver. Artif Organs 2024; 48:876-890. [PMID: 38553992 DOI: 10.1111/aor.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Clinical adoption of ex situ liver perfusion is growing. While hypothermic perfusion protects against ischemia-reperfusion injury in marginal grafts, normothermic perfusion enables organ viability assessment and therefore selection of borderline grafts. The combination of hypothermic and normothermic perfusion, known as "cold-to-warm," may be the optimal sequence for organ preservation, but is difficult to achieve with most commercial perfusion systems. We developed an adaptable customized circuit allowing uninterrupted "cold-to-warm" perfusion and conducted preclinical studies on healthy porcine livers and discarded human livers to demonstrate the circuit's efficacy. METHODS In collaboration with bioengineers, we developed a customized circuit that adapts to extracorporeal circulation consoles used in cardiovascular surgery and includes a proprietary reservoir enabling easy perfusate change without interrupting perfusion. This preclinical study was conducted on porcine and human livers. Perfusion parameters (pressures, flows, oxygenation) and organ viability were monitored. RESULTS The customized circuit was adapted to a LivaNova S5® console, and the perfusions were flow-driven with real-time pressure monitoring. Ten porcine liver and 12 discarded human liver perfusions were performed during 14 to 18 h and 7 to 25 h, respectively. No hyperpressure was observed (porcine and human portal pressure 2-6 and 2-8 mm Hg; arterial pressure 10-65 and 20-65 mm Hg, respectively). No severe histological tissue injury was observed (Suzuki score ≤ 3 at the end of perfusion). Seven (70%) porcine livers and five (42%) human livers met the UK viability criteria. CONCLUSION The customized circuit and system design enables smooth uninterrupted "cold-to-warm" perfusion not present in current commercial perfusion systems.
Collapse
Affiliation(s)
- Olivier Scatton
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Célia Turco
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Jérôme Pelissié
- Department of Extracorporeal Perfusion and Vascular Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Legallais
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Medhi Sakka
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lynda Aoudjehane
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Dominique Wendum
- Department of Pathology, Saint-Antoine Hospital (AP-HP), Paris, France
| | - John Migliazza
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Sandra Spiritelli
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Filomena Conti
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Department of Medical Liver Transplantation, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Claire Goumard
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Mojoudi M, Taggart M, Karadagi A, Hassan M, Tomosugi T, Tomofuji K, Agius T, Lyon A, Nakamura T, Taveras C, Ozgur OS, Kharga A, Matheson R, Riella LV, Kimura S, Yeh H, Markmann JF, Kawai T, Uygun K, Longchamp A. Two-day Static Cold Preservation of α1,3-Galactosyltransferase Knockout Kidney Grafts Before Simulated Xenotransplantation. Xenotransplantation 2024; 31:e12879. [PMID: 39166818 PMCID: PMC11343093 DOI: 10.1111/xen.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Transplantation remains the preferred treatment for end-stage kidney disease but is critically limited by the number of available organs. Xenografts from genetically modified pigs have become a promising solution to the loss of life while waiting for transplantation. However, the current clinical model for xenotransplantation will require off-site procurement, leading to a period of ischemia during transportation. As of today, there is limited understanding regarding the preservation of these organs, including the duration of viability, and the associated molecular changes. Thus, our aim was to evaluate the effects of static cold storage (SCS) on α1,3-galactosyltransferase knockout (GGTA1 KO) kidney. After SCS, viability was further assessed using acellular sub-normothermic ex vivo perfusion and simulated transplantation with human blood. Compared to baseline, tubular and glomerular interstitium was preserved after 2 days of SCS in both WT and GGTA1 KO kidneys. Bulk RNA-sequencing demonstrated that only eight genes were differentially expressed after SCS in GGTA1 KO kidneys. During sub-normothermic perfusion, kidney function, reflected by oxygen consumption, urine output, and lactate production was adequate in GGTA1 KO grafts. During a simulated transplant with human blood, macroscopic and histological assessment revealed minimal kidney injury. However, GGTA1 KO kidneys exhibited higher arterial resistance, increased lactate production, and reduced oxygen consumption during the simulated transplant. In summary, our study suggests that SCS is feasible for the preservation of porcine GGTA1 KO kidneys. However, alternative preservation methods should be evaluated for extended preservation of porcine grafts.
Collapse
Affiliation(s)
- Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Mclean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Ahmad Karadagi
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Madeeha Hassan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Toshihide Tomosugi
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Katsuhiro Tomofuji
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Thomas Agius
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Arnaud Lyon
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Tsukasa Nakamura
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Christopher Taveras
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - O. Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Anil Kharga
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Rudy Matheson
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Leonardo V. Riella
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Shoko Kimura
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Heidi Yeh
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Tatsuo Kawai
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Transplant Center, Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
de Haan MJA, Jacobs ME, Witjas FMR, de Graaf AMA, Sánchez-López E, Kostidis S, Giera M, Calderon Novoa F, Chu T, Selzner M, Maanaoui M, de Vries DK, Kers J, Alwayn IPJ, van Kooten C, Heijs B, Wang G, Engelse MA, Rabelink TJ. A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys. Nat Commun 2024; 15:3818. [PMID: 38740760 DOI: 10.1038/s41467-024-47106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.
Collapse
Affiliation(s)
- Marlon J A de Haan
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Franca M R Witjas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M A de Graaf
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tunpang Chu
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Mehdi Maanaoui
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, Lille, France
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian P J Alwayn
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Jain R, Ajenu EO, Lopera Higuita M, Hafiz EOA, Muzikansky A, Romfh P, Tessier SN. Real-time monitoring of mitochondrial oxygenation during machine perfusion using resonance Raman spectroscopy predicts organ function. Sci Rep 2024; 14:7328. [PMID: 38538723 PMCID: PMC10973340 DOI: 10.1038/s41598-024-57773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury (IRI) is a major challenge in the field as it can cause post-transplantation complications and limit the use of organs from extended criteria donors. Machine perfusion technology has the potential to mitigate IRI; however, it currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to assess organ quality during perfusion. We developed a real-time and non-invasive method of assessing organs during perfusion based on mitochondrial function and injury using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to quantify the oxidation state of mitochondrial cytochromes during perfusion. This index of mitochondrial oxidation, or 3RMR, was used to understand differences in mitochondrial recovery of cold ischemic rodent livers during machine perfusion at normothermic temperatures with an acellular versus cellular perfusate. Measurement of the mitochondrial oxidation revealed that there was no difference in 3RMR of fresh livers as a function of normothermic perfusion when comparing acellular versus cellular-based perfusates. However, following 24 h of static cold storage, 3RMR returned to baseline faster with a cellular-based perfusate, yet 3RMR progressively increased during perfusion, indicating injury may develop over time. Thus, this study emphasizes the need for further refinement of a reoxygenation strategy during normothermic machine perfusion that considers cold ischemia durations, gradual recovery/rewarming, and risk of hemolysis.
Collapse
Affiliation(s)
- Rohil Jain
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Shriners Children's Hospital, Boston, MA, USA
| | - Emmanuella O Ajenu
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Shriners Children's Hospital, Boston, MA, USA
| | - Manuela Lopera Higuita
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Shriners Children's Hospital, Boston, MA, USA
| | - Ehab O A Hafiz
- Department of Electron Microscopy Research, Clinical Laboratory Division, Theodor Bilharz Research Institute, Giza, Egypt
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
- Shriners Children's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Jain R, Ajenu EO, Hafiz EOA, Romfh P, Tessier SN. Real-time monitoring of mitochondrial oxygenation during machine perfusion using resonance Raman spectroscopy predicts organ function. RESEARCH SQUARE 2023:rs.3.rs-3740098. [PMID: 38196624 PMCID: PMC10775389 DOI: 10.21203/rs.3.rs-3740098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury is a major challenge in the field as it can cause post-transplantation complications and limits the use of organs from extended criteria donors. Machine perfusion technology is used to repair organs before transplant, however, currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to predict organ quality during perfusion. We developed a real-time and non-invasive method of assessing organ function and injury based on mitochondrial oxygenation using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to predict the oxidation state of mitochondrial cytochromes during perfusion, which vary due to differences in storage compositions and perfusate compositions. This index of mitochondrial oxidation, or 3RMR, was found to predict organ health based on clinically utilized markers of perfusion quality, tissue metabolism, and organ injury. It also revealed differences in oxygenation with perfusates that may or may not be supplemented with packed red blood cells as oxygen carriers. This study emphasizes the need for further refinement of a reoxygenation strategy during machine perfusion that is based on a gradual recovery from storage. Thus, we present a novel platform that provides a real-time and quantitative assessment of mitochondrial health during machine perfusion of livers, which is easy to translate to the clinic.
Collapse
Affiliation(s)
- Rohil Jain
- Harvard Medical School & Massachusetts General Hospital
| | | | | | | | | |
Collapse
|
10
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
11
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Lau NS, Ly M, Dennis C, Jacques A, Cabanes-Creus M, Toomath S, Huang J, Mestrovic N, Yousif P, Chanda S, Wang C, Lisowski L, Liu K, Kench JG, McCaughan G, Crawford M, Pulitano C. Long-term ex situ normothermic perfusion of human split livers for more than 1 week. Nat Commun 2023; 14:4755. [PMID: 37553343 PMCID: PMC10409852 DOI: 10.1038/s41467-023-40154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Current machine perfusion technology permits livers to be preserved ex situ for short periods to assess viability prior to transplant. Long-term normothermic perfusion of livers is an emerging field with tremendous potential for the assessment, recovery, and modification of organs. In this study, we aimed to develop a long-term model of ex situ perfusion including a surgical split and simultaneous perfusion of both partial organs. Human livers declined for transplantation were perfused using a red blood cell-based perfusate under normothermic conditions (36 °C) and then split and simultaneously perfused on separate machines. Ten human livers were split, resulting in 20 partial livers. The median ex situ viability was 125 h, and the median ex situ survival was 165 h. Long-term survival was demonstrated by lactate clearance, bile production, Factor-V production, and storage of adenosine triphosphate. Here, we report the long-term ex situ perfusion of human livers and demonstrate the ability to split and perfuse these organs using a standardised protocol.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Claude Dennis
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Andrew Jacques
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
| | - Shamus Toomath
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Joanna Huang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicole Mestrovic
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Paul Yousif
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Sumon Chanda
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Chuanmin Wang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141, Warsaw, Poland
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - James G Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Geoffrey McCaughan
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Centenary Institute, Sydney, New South Wales, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
13
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Han Z, Rao JS, Gangwar L, Namsrai BE, Pasek-Allen JL, Etheridge ML, Wolf SM, Pruett TL, Bischof JC, Finger EB. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat Commun 2023; 14:3407. [PMID: 37296144 PMCID: PMC10256770 DOI: 10.1038/s41467-023-38824-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Banking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform. Here we use "nanowarming," which employs alternating magnetic fields to heat nanoparticles within the organ vasculature, to achieve both rapid and uniform warming, after which the nanoparticles are removed by perfusion. We show that vitrified kidneys can be cryogenically stored (up to 100 days) and successfully recovered by nanowarming to allow transplantation and restore life-sustaining full renal function in nephrectomized recipients in a male rat model. Scaling this technology may one day enable organ banking for improved transplantation.
Collapse
Affiliation(s)
- Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | - Jacqueline L Pasek-Allen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Susan M Wolf
- Consortium on Law and Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Timothy L Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, Uygun K. Current practice and novel approaches in organ preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1156845. [PMID: 38993842 PMCID: PMC11235303 DOI: 10.3389/frtra.2023.1156845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Timothy L. Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - John C. Bischof
- Departments of Mechanical and Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Erik B. Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| |
Collapse
|
16
|
Gheorghe G, Diaconu CC, Bungau S, Bacalbasa N, Motas N, Ionescu VA. Biliary and Vascular Complications after Liver Transplantation-From Diagnosis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:850. [PMID: 37241082 PMCID: PMC10221850 DOI: 10.3390/medicina59050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
The last decades have brought impressive advances in liver transplantation. As a result, there was a notable rise in the number of liver transplants globally. Advances in surgical techniques, immunosuppressive therapies and radiologically guided treatments have led to an improvement in the prognosis of these patients. However, the risk of complications remains significant, and the management of liver transplant patients requires multidisciplinary teams. The most frequent and severe complications are biliary and vascular complications. Compared to vascular complications, biliary complications have higher incidence rates but a better prognosis. The early diagnosis and selection of the optimal treatment are crucial to avoid the loss of the graft and even the death of the patient. The development of minimally invasive techniques prevents surgical reinterventions with their associated risks. Liver retransplantation remains the last therapeutic solution for graft dysfunction, one of the main problems, in this case, being the low number of donors.
Collapse
Affiliation(s)
- Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Department of Visceral Surgery, Center of Excellence in Translational Medicine “Fundeni” Clinical Institute, 022328 Bucharest, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicolae Bacalbasa
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Department of Visceral Surgery, Center of Excellence in Translational Medicine “Fundeni” Clinical Institute, 022328 Bucharest, Romania
| | - Natalia Motas
- Institute of Oncology “Profesor Doctor Alexandru Trestioreanu” Bucharest, 022328 Bucharest, Romania;
- Department of Thoracic Surgery, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Vlad-Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
17
|
A Meta-Analysis and Systematic Review of Normothermic and Hypothermic Machine Perfusion in Liver Transplantation. J Clin Med 2022; 12:jcm12010235. [PMID: 36615037 PMCID: PMC9820958 DOI: 10.3390/jcm12010235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The gap between the demand and supply of donor livers is still a considerable challenge. Since static cold storage is not sufficient in marginal livers, machine perfusion is being explored as an alternative. The objective of this study was to assess (dual) hypothermic oxygenated machine perfusion (HOPE/D-HOPE) and normothermic machine perfusion (NMP) in contrast to static cold storage (SCS). METHODS Three databases were searched to identify studies about machine perfusion. Graft and patient survival and postoperative complications were evaluated using the random effects model. RESULTS the incidence of biliary complications was lower in HOPE vs. SCS (OR: 0.59, 95% CI: 0.36-0.98, p = 0.04, I2: 0%). There was no significant difference in biliary complications between NMP and SCS (OR: 0.76, 95% CI: 0.41-1.40, p = 0.38, I2: 55%). Graft and patient survival were significantly better in HOPE than in SCS (HR: 0.40, 95% CI: 0.23-0.71, p = 0.002, I2: 0%) and (pooled HR: 0.43, 95% CI: 0.20-0.93, p = 0.03, I2: 0%). Graft and patient survival were not significantly different between NMP and SCS. CONCLUSION HOPE/D-HOPE and NMP are promising alternatives to SCS for donor liver preservation. They may help address the widening gap between the demand for and availability of donor livers by enabling the rescue and transplantation of marginal livers.
Collapse
|
18
|
Li SX, Chen L, Li MQ, Lv GY. Pharmacological agents for defatting livers by normothermic machine perfusion. Artif Organs 2022. [PMID: 36514256 DOI: 10.1111/aor.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ex-vivo normothermic machine perfusion (NMP) preserves the liver metabolism at 37°C and has rapidly developed as a promising approach for assessing the viability and improving the performance of organs from expanded criteria donors, including fatty liver grafts. NMP is an effective method for defatting fatty livers when combined with pharmaceutical therapies. Pharmacological agents have been shown to facilitate liver defatting by NMP. OBSERVATIONS This systematic review summarizes available pharmacological therapies for liver defatting, with a particular emphasis on defatting agents that can be employed clinically as defatting components during liver NMP as an ex vivo translational paradigm. CONCLUSION NMP provides an opportunity for organ treatment and can be used as a defatting platform in the future with defatting agents. Nagrath's cocktail is the most commonly used defatting cocktail in NMP; however, its carcinogenic components may limit its clinical application. Thus, the combination of a defatting cocktail with a new clinically applicable component, for example, a polyphenolic natural compound, may be a novel pharmacological option.
Collapse
Affiliation(s)
- Shu-Xuan Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Ming-Qian Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| |
Collapse
|
19
|
Kanemitsu E, Zhao X, Iwaisako K, Inoue A, Takeuchi A, Yagi S, Masumoto H, Ohara H, Hosokawa M, Awaya T, Aoki J, Hatano E, Uemoto S, Hagiwara M. Antagonist of sphingosine 1-phosphate receptor 3 reduces cold injury of rat donor hearts for transplantation. Transl Res 2022; 255:26-36. [PMID: 36347491 DOI: 10.1016/j.trsl.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Cold storage is widely used to preserve an organ for transplantation; however, a long duration of cold storage negatively impacts graft function. Unfortunately, the mechanisms underlying cold exposure remain unclear. Based on the sphingosine-1-phosphate (S1P) signal involved in cold tolerance in hibernating mammals, we hypothesized that S1P signal blockage reduces damage from cold storage. We used an in vitro cold storage and rewarming model to evaluate cold injury and investigated the relationship between cold injury and S1P signal. Compounds affecting S1P receptors (S1PR) were screened for their protective effect in this model and its inhibitory effect on S1PRs was measured using the NanoLuc Binary Technology (NanoBiT)-β-arrestin recruitment assays. The effects of a potent antagonist were examined via heterotopic abdominal rat heart transplantation. The heart grafts were transplanted after 24-hour preservation and evaluated on day 7 after transplantation. Cold injury increased depending on the cold storage time and was induced by S1P. The most potent antagonist strongly suppressed cold injury consistent with the effect of S1P deprivation in vitro. In vivo, this antagonist enabled 24-hour preservation, and drastically improved the beating score, cardiac size, and serological markers. Pathological analysis revealed that it suppressed the interstitial edema, inflammatory cell infiltration, myocyte lesion, TUNEL-positive cell death, and fibrosis. In conclusion, S1PR3 antagonist reduced cold injury, extended the cold preservation time, and improved graft viability. Cold preservation strategies via S1P signaling may have clinical applications in organ preservation for transplantation and contribute to an increase in the donor pool.
Collapse
Affiliation(s)
- Eisho Kanemitsu
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Akihide Takeuchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroaki Ohara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Subnormothermic Ex Vivo Porcine Kidney Perfusion Improves Energy Metabolism: Analysis Using 31P Magnetic Resonance Spectroscopic Imaging. Transplant Direct 2022; 8:e1354. [PMID: 36176724 PMCID: PMC9514833 DOI: 10.1097/txd.0000000000001354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-reperfusion injury.
Collapse
|
21
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
22
|
Brüggenwirth IMA, van Leeuwen OB, Porte RJ, Martins PN. The Emerging Role of Viability Testing During Liver Machine Perfusion. Liver Transpl 2022; 28:876-886. [PMID: 33963657 DOI: 10.1002/lt.26092] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
The transplant community continues to be challenged by the disparity between the need for liver transplantation and the shortage of suitable donor organs. At the same time, the number of unused donor livers continues to increase, most likely attributed to the worsening quality of these organs. To date, there is no reliable marker of liver graft viability that can predict good posttransplant outcomes. Ex situ machine perfusion offers additional data to assess the viability of donor livers before transplantation. Hence, livers initially considered unsuitable for transplantation can be assessed during machine perfusion in terms of appearance and consistency, hemodynamics, and metabolic and excretory function. In addition, postoperative complications such as primary nonfunction or posttransplant cholangiopathy may be predicted and avoided. A variety of viability criteria have been used in machine perfusion, and to date there is no widely accepted composition of criteria for clinical use. This review discusses potential viability markers for hepatobiliary function during machine perfusion, describes current limitations, and provides future recommendations for the use of viability criteria in clinical liver transplantation.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| | - Otto B van Leeuwen
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| |
Collapse
|
23
|
Guo Z, Xu J, Huang S, Yin M, Zhao Q, Ju W, Wang D, Gao N, Huang C, Yang L, Chen M, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Chen H, Liu K, Lu Y, Ma Y, Hu A, Chen Y, Zhu X, He X. Abrogation of graft ischemia-reperfusion injury in ischemia-free liver transplantation. Clin Transl Med 2022; 12:e546. [PMID: 35474299 PMCID: PMC9042797 DOI: 10.1002/ctm2.546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Ischemia‐reperfusion injury (IRI) is considered an inherent component of organ transplantation that compromises transplant outcomes and organ availability. The ischemia‐free liver transplantation (IFLT) procedure has been developed to avoid interruption of blood supply to liver grafts. It is unknown how IFLT might change the characteristics of graft IRI. Methods Serum and liver biopsy samples were collected from IFLT and conventional liver transplantation (CLT) recipients. Pathological, metabolomics, transcriptomics, and proteomics analyses were performed to identify the characteristic changes in graft IRI in IFLT. Results Peak aspartate aminotransferase (539.59 ± 661.76 U/L versus 2622.28 ± 3291.57 U/L) and alanine aminotransferase (297.64 ± 549.50 U/L versus 1184.16 ± 1502.76 U/L) levels within the first 7 days and total bilirubin levels by day 7 (3.27 ± 2.82 mg/dl versus 8.33 ± 8.76 mg/dl) were lower in the IFLT versus CLT group (all p values < 0.001). The pathological characteristics of IRI were more obvious in CLT grafts. The antioxidant pentose phosphate pathway remained active throughout the procedure in IFLT grafts and was suppressed during preservation and overactivated postrevascularization in CLT grafts. Gene transcriptional reprogramming was almost absent during IFLT but was profound during CLT. Proteomics analysis showed that “metabolism of RNA” was the major differentially expressed process between the two groups. Several proinflammatory pathways were not activated post‐IFLT as they were post‐CLT. The activities of natural killer cells, macrophages, and neutrophils were lower in IFLT grafts than in CLT grafts. The serum levels of 14 cytokines were increased in CLT versus IFLT recipients. Conclusions IFLT can largely avoid the biological consequences of graft IRI, thus has the potential to improve transplant outcome while increasing organ utilization.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Meixian Yin
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Ningxin Gao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Haitian Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Kunpeng Liu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuting Lu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
24
|
Leber B, Schlechter S, Weber J, Rohrhofer L, Niedrist T, Aigelsreiter A, Stiegler P, Schemmer P. Experimental long-term sub-normothermic machine perfusion for non-allocable human liver grafts: first data towards feasibility. Eur Surg 2022. [DOI: 10.1007/s10353-022-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Summary
Background
Patients with end-stage liver disease can only be cured by liver transplantation. Due to the gap between demand and supply, surgeons are forced to use expanded criteria donor (ECD) organs, which are more susceptible to ischemia–reperfusion injury (IRI). Therefore, enhanced storing techniques are required. Machine perfusion (MP) has moved into the spotlight of research because of its feasibility for investigating liver function prior to implantation. However, as the perfect MP protocol has not yet been found, we aimed to investigate the potential of sub-normothermic (SN)MP in this field.
Methods
Non-allocable human livers were subjected to 24 h of SNMP at 21 °C after delivery to the study team. Perfusion was performed with Custodiol® (Dr. Franz Köhler Chemie, Bensheim, Germany) or Belzer MPS® (Bridge to Life Europe, London, UK) and perfusate liver parameters were determined. For determination of biliary conditions, pH, glucose, and HCO3- levels were measured.
Results
Liver parameters were slightly increased irrespective of perfusate or reason for liver rejection during 24 h of perfusion. Six livers failed to produce bile completely, whereas the remaining 10 livers produced between 2.4 ml and 179 ml of bile. Biliary carbonate was increased in all but one liver. The bile-glucose-to-perfusate-glucose ratio was near 1 for most of the organs and bile pH was above 7 in all but one case.
Conclusion
This study provides promising data on the feasibility of long-term SNMP as a tool to gain time during MP to optimize ECD organs to decrease the gap between organ demand and supply.
Long-term (24 h) sub-normothermic liver machine perfusion seems to be possible, although some adjustments to the protocol might be necessary to improve the general outcome. This has so far been shown for normothermic machine perfusion, bearing some drawbacks compared to the sub-normothermic variant.
Collapse
|
25
|
Kirste G. Cold but not too cold: advances in hypothermic and normothermic organ perfusion. KOREAN JOURNAL OF TRANSPLANTATION 2022; 36:2-14. [PMID: 35769433 PMCID: PMC9235527 DOI: 10.4285/kjt.22.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Transplantation is the method of choice and, in many cases, the only method of treatment for patients with end-stage organ disease. Excellent results have been achieved, and the main focus today is to extend the number of available donors. The use of extended-criteria donors or donors after circulatory death is standard, but is accompanied by an increased risk of ischemia reperfusion injury. This review presents newly developed machine perfusion techniques using hypothermic, subnormothermic, or normothermic conditions, with or without oxygenation. Possibilities for treatment and quality assessment in decision-making about organ acceptability are also discussed.
Collapse
Affiliation(s)
- Guenter Kirste
- Department of Surgery, University Hospital of Freiburg, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Abraham N, Zhang M, Cray P, Gao Q, Samy KP, Neill R, Cywinska G, Migaly J, Kahan R, Pontula A, Halpern SE, Rush C, Penaflor J, Kesseli SJ, Krischak M, Song M, Hartwig MG, Pollara JJ, Barbas AS. Two Compartment Evaluation of Liver Grafts During Acellular Room Temperature Machine Perfusion (acRTMP) in a Rat Liver Transplant Model. Front Med (Lausanne) 2022; 9:804834. [PMID: 35280912 PMCID: PMC8907827 DOI: 10.3389/fmed.2022.804834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Subnormothermic machine perfusion (SNMP) of liver grafts is currently less clinically developed than normothermic and hypothermic approaches, but may have logistical advantages. At intermediate temperatures, the oxygen demand of the graft is low enough to be satisfied with an acellular perfusate, obviating the need for oxygen carrying molecules. This intermediate metabolic rate, however, is sufficient to support the production of bile, which is emerging as an important indicator of graft injury and viability. In this study, we hypothesized that the biliary compartment would be more sensitive than perfusate in detecting graft injury during SNMP. Methods To test this hypothesis in a rat model, we performed liver transplants with DCD and control liver grafts after 1 h of acellular room temperature machine perfusion (acRTMP) or static cold storage (SCS). Point of care liver function tests were measured in biliary and perfusate samples after 1 h of machine perfusion. Following transplantation, rats were sacrificed at 24 h for assessment of post-transplant graft function and histology. Results All point-of-care liver function tests were significantly more concentrated in the biliary compartment than the perfusate compartment during acRTMP. DCD liver grafts could be distinguished from control liver grafts by significantly higher markers of hepatocyte injury (AST, ALT) in the biliary compartment, but not in the perfusate compartment. Classical markers of cholangiocyte injury, such as gammy-glut amyl transferase (GGT), amylase (AML), and alkaline phosphatase were detectable in the biliary compartment, but not in the perfusate compartment. In comparison to SCS, graft preservation by acRTMP produced a significant survival benefit in DCD liver transplantation (75 vs. 0%, p < 0.0030). Conclusion Together, these findings demonstrate that during acRTMP, the biliary compartment may be a more sensitive indicator of graft injury than the perfusate compartment. Moreover, acRTMP provides superior graft preservation to SCS in rat DCD liver transplantation.
Collapse
Affiliation(s)
- Nader Abraham
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Min Zhang
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Paul Cray
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Qimeng Gao
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Kannan P Samy
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Ryan Neill
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Greta Cywinska
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - JonCarlo Migaly
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Riley Kahan
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Arya Pontula
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samantha E Halpern
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Caroline Rush
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Jude Penaflor
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samuel J Kesseli
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Madison Krischak
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Mingqing Song
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Matthew G Hartwig
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Justin J Pollara
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Andrew S Barbas
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
27
|
Burlage LC, Lellouch AG, Taveau CB, Tratnig-Frankl P, Pendexter CA, Randolph MA, Porte RJ, Lantieri LA, Tessier SN, Cetrulo CL, Uygun K. Optimization of Ex Vivo Machine Perfusion and Transplantation of Vascularized Composite Allografts. J Surg Res 2022; 270:151-161. [PMID: 34670191 PMCID: PMC8712379 DOI: 10.1016/j.jss.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Machine perfusion is gaining interest as an efficient method of tissue preservation of Vascularized Composite Allografts (VCA). The aim of this study was to develop a protocol for ex vivo subnormothermic oxygenated machine perfusion (SNMP) on rodent hindlimbs and to validate our protocol in a heterotopic hindlimb transplant model. METHODS In this optimization study we compared three different solutions during 6 h of SNMP (n = 4 per group). Ten control limbs were stored in a preservation solution on Static Cold Storage [SCS]). During SNMP we monitored arterial flowrate, lactate levels, and edema. After SNMP, muscle biopsies were taken for histology examination, and energy charge analysis. We validated the best perfusion protocol in a heterotopic limb transplantation model with 30-d follow up (n = 13). As controls, we transplanted untreated limbs (n = 5) and hindlimbs preserved with either 6 or 24 h of SCS (n = 4 and n = 5). RESULTS During SNMP, arterial outflow increased, and lactate clearance decreased in all groups. Total edema was significantly lower in the HBOC-201 group compared to the BSA group (P = 0.005), 4.9 (4.3-6.1) versus 48.8 (39.1-53.2) percentage, but not to the BSA + PEG group (P = 0.19). Energy charge levels of SCS controls decreased 4-fold compared to limbs perfused with acellular oxygen carrier HBOC-201, 0.10 (0.07-0.17) versus 0.46 (0.42-0.49) respectively (P = 0.002). CONCLUSIONS Six hours ex vivo SNMP of rodent hindlimbs using an acellular oxygen carrier HBOC-201 results in superior tissue preservation compared to conventional SCS.
Collapse
Affiliation(s)
- Laura C Burlage
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Department of Surgery, University Medical Center Groningen, Groningen, Netherlands; Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts.
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, European George Pompidou Hospital, University of Paris, Paris, France
| | - Corentin B Taveau
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Philipp Tratnig-Frankl
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Robert J Porte
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Laurent A Lantieri
- Division of Plastic and Reconstructive Surgery within the Department of Surgery, European George Pompidou Hospital, University of Paris, Paris, France
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
Severe allograft dysfunction, as opposed to the expected immediate function, following liver transplantation is a major complication, and the clinical manifestations of such that lead to either immediate retransplant or death are the catastrophic end of the spectrum. Primary nonfunction (PNF) has declined in incidence over the years, yet the impact on patient and healthcare teams, and the burden on the organ pool in case of the need for retransplant should not be underestimated. There is no universal test to define the diagnosis of PNF, and current criteria are based on various biochemical parameters surrogate of liver function; moreover, a disparity remains within different healthcare systems on selecting candidates eligible for urgent retransplantation. The impact on PNF from traditionally accepted risk factors has changed somewhat, mainly driven by the rising demand for organs, combined with the concerted approach by clinicians on the in-depth understanding of PNF, optimal graft recipient selection, mitigation of the clinical environment in which a marginal graft is reperfused, and postoperative management. Regardless of the mode, available data suggest machine perfusion strategies help reduce the incidence further but do not completely avert the risk of PNF. The mainstay of management relies on identifying severe allograft dysfunction at a very early stage and aggressive management, while excluding other identifiable causes that mimic severe organ dysfunction. This approach may help salvage some grafts by preventing total graft failure and also maintaining a patient in an optimal physiological state if retransplantation is considered the ultimate patient salvage strategy.
Collapse
Affiliation(s)
- Hermien Hartog
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
29
|
Guo Z, Zhao Q, Huang S, Huang C, Wang D, Yang L, Zhang J, Chen M, Wu L, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Sun C, Xiong W, Shen Y, Chen X, Xu J, Wang T, Ma Y, Hu A, Chen Y, Zhu X, Rong J, Cai C, Gong F, Guan X, Huang W, Ko DSC, Li X, Tullius SG, Huang J, Ju W, He X. Ischaemia-free liver transplantation in humans: a first-in-human trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 16:100260. [PMID: 34590063 PMCID: PMC8406025 DOI: 10.1016/j.lanwpc.2021.100260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Background Ischaemia-reperfusion injury is considered an inevitable component of organ transplantation, compromising organ quality and outcomes. Although several treatments have been proposed, none has avoided graft ischaemia and its detrimental consequences. Methods Ischaemia-free liver transplantation (IFLT) comprises surgical techniques enabling continuous oxygenated blood supply to the liver of brain-dead donor during procurement, preservation, and implantation using normothermic machine perfusion technology. In this non-randomised study, 38 donor livers were transplanted using IFLT and compared to 130 conventional liver transplants (CLT). Findings Two recipients (5•3%) in the IFLT group experienced early allograft dysfunction, compared to 50•0% in patients receiving conventional transplants (absolute risk difference, 44•8%; 95% confidence interval, 33•6-55•9%). Recipients of IFLT had significantly reduced median (IQR) peak aspartate aminotransferase levels within the first week compared to CLT recipients (365, 238-697 vs 1445, 791-3244 U/L, p<0•001); likewise, median total bilirubin levels on day 7 were significantly lower (2•34, 1•39-4•09 mg/dL) in the IFLT group than in the CLT group (5•10, 1•90-11•65 mg/dL) (p<0•001). Moreover, IFLT recipients had a shorter median intensive care unit stay (1•48, 0•75-2•00 vs 1•81, 1•00-4•58 days, p=0•006). Both one-month recipient (97•4% vs 90•8%, p=0•302) and graft survival (97.4% vs 90•0%, p=0•195) were better for IFLT than CLT, albeit differences were not statistically significant. Subgroup analysis showed that the extended criteria donor livers transplanted using the IFLT technique yielded faster post-transplant recovery than did the standard criteria donor livers transplanted using the conventional approach. Interpretation IFLT provides a novel approach that may improve outcomes, and allow the successful utilisation of extended criteria livers. Funding This study was funded by National Natural Science Foundation of China, Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, and Guangdong Provincial international Cooperation Base of Science and Technology. Panel: Research in context.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510080, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Wei Xiong
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuekun Shen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiang Chen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Tielong Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anaesthesia Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenqi Huang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dicken Shiu-Chung Ko
- Department of Surgery, Steward St. Elizabeth's Medical Centre, Tufts University School of Medicine, Boston, MA 02115, USA
| | - Xianchang Li
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
- Immunobiology and Transplant Science Centre, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiefu Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| |
Collapse
|
30
|
de Vries RJ, Cronin SEJ, Romfh P, Pendexter CA, Jain R, Wilks BT, Raigani S, van Gulik TM, Chen P, Yeh H, Uygun K, Tessier SN. Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion. PLoS One 2021; 16:e0258833. [PMID: 34705828 PMCID: PMC8550443 DOI: 10.1371/journal.pone.0258833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.
Collapse
Affiliation(s)
- Reinier J. de Vries
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephanie E. J. Cronin
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Padraic Romfh
- Pendar Technologies, Cambridge, MA, United States of America
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Benjamin T. Wilks
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peili Chen
- Pendar Technologies, Cambridge, MA, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| |
Collapse
|
31
|
Lan Q, Li Y, Robertson J, Jin R. Modeling of pre-transplantation liver viability with spatial-temporal smooth variable selection. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106264. [PMID: 34256248 DOI: 10.1016/j.cmpb.2021.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Liver viability assessment plays a critical role in liver transplantation, and the accuracy of the assessment directly determines the success of the transplantation surgery and patient's outcomes. With various factors that affect liver viability, including pre-existing medical conditions of donors, the procurement process, and preservation conditions, liver viability assessment is typically subjective, invasive or inconsistent in results among different surgeons and pathologists. Motivated by these challenges, we aimed to create a non-invasive statistical model utilizing spatial-temporal infrared image (IR) data to predict the binary liver viability (acceptable/unacceptable) during the preservation. METHODS The spatial-temporal features of liver surface temperature, monitored by IR thermography, are significantly correlated with the liver viability. A spatial-temporal smooth variable selection (STSVS) method is proposed to define the smoothness of model parameters corresponding to different liver surface regions at different times. RESULTS A case study, using porcine livers, has been performed to validate the efficacy of the STSVS method. The comparison results show that STSVS has the better overall prediction performance compared to the past state-of-the-art predictive models, including generalized linear model (GLM), support vector machine (SVM), LASSO, and Fused LASSO. Moreover, the significant predictors identified by the STSVS method indicate the importance of edges of lobes in predicting liver viability during the pre-transplantation preservation. CONCLUSIONS The proposed method has the best performance in predicting liver viability. This 'real-time' prediction method may increase the utilization of donors' livers without damaging tissues and time-consuming, yet imprecise feature assessment.
Collapse
Affiliation(s)
- Qing Lan
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yifu Li
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, VA 24061, USA
| | - Ran Jin
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
32
|
Portillo DJ, Bayliss L, Rivas S, Pineda G, Kaur S, Bunegin L, Hood RL. Characterizing and Tuning Perfusion Parameters Within an Innovative, Versatile Oxygenating Perfusion System. Ann Biomed Eng 2021; 49:3154-3164. [PMID: 34414529 DOI: 10.1007/s10439-021-02843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/25/2021] [Indexed: 12/20/2022]
Abstract
The advantages of oxygenated perfusion are continuing to be demonstrated by many groups focused on improving the efficacy of tissue preservation for transplant, bioreactors for studies of basic tissue physiology, and closed-loop resuscitation. This work presents a novel and portable device that supplies oxygenated and pulsatile perfusion, both of which are regulated by a single pump-oxygenator component comprised of silicone tubes that are cyclically inflated/deflated with compressed oxygen. In this study, pump variables (oxygen supply pressure and length of a silicone tube) were evaluated against hydraulic elements that mimicked the vascular resistance of kidneys, livers, and hearts. The perfusion pressures, flow rates, and oxygenation rates produced by the device were characterized for all configurations of pump variables, and the pulse rates were tuned to improve performance. The device supplied perfusion pressures ranging from 3.5 to 109 mmHg, flow rates ranging from 1.4 to 71.8 mL min-1, and oxygenation rates up to 316.6 µmol min-1. From those results, it was determined that the device was capable of achieving perfusion parameters used in previous kidney, liver, and heart preservation studies. Ultimately, this research demonstrated the efficacy of a novel device that is designed to supply oxygenated perfusion across a range of applications.
Collapse
Affiliation(s)
- Daniel J Portillo
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Lauren Bayliss
- Department of Emergency Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin, JJL 260G, Houston, TX, 77030, USA.,Department of Internal Medicine, The University of Texas-Rio Grande Valley School of Medicine, 1201 W University Dr., Edinburg, TX, 78539, USA
| | - Stephen Rivas
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Gabriela Pineda
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Sukhwinder Kaur
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Leonid Bunegin
- Vascular Perfusion Solutions, Inc., San Antonio, TX, USA
| | - R Lyle Hood
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA. .,Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA. .,Department of Emergency Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
33
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
34
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
35
|
Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 2021; 52:359-368. [PMID: 33754175 DOI: 10.1007/s00595-021-02265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer-term outcomes, late biliary complications, outcomes in specific high-risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver-directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.
Collapse
|
36
|
Haque O, Yuan Q, Uygun K, Markmann JF. Evolving utilization of donation after circulatory death livers in liver transplantation: The day of DCD has come. Clin Transplant 2021; 35:e14211. [PMID: 33368701 PMCID: PMC7969458 DOI: 10.1111/ctr.14211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Compared to donation after brain death (DBD), livers procured for transplantation from donation after circulatory death (DCD) donors experience more ischemia-reperfusion injury and higher rates of ischemic cholangiopathy due to the period of warm ischemic time (WIT) following withdrawal of life support. As a result, utilization of DCD livers for liver transplant (LT) has generally been limited to short WITs and younger aged donor grafts, causing many recovered DCD organs to be discarded without consideration for transplant. This study assesses how DCD liver utilization and outcomes have changed over time, using OPTN data from adult, first-time, deceased donor, whole-organ LTs between January 1995 and December 2019. Results show that increased clinical experience with DCD LT has translated into increased use of livers from DCD donors, shorter ischemic times, shorter lengths of hospitalization after transplant, and lower rates of retransplantation. The data also reveal that over the past decade, the rate of increase in DCD LTs conducted in the United States has outpaced that of DBD. Together, these trends signal an opportunity for the field of liver transplantation to mitigate the organ shortage by capitalizing on DCD liver allografts that are currently not being utilized.
Collapse
Affiliation(s)
- Omar Haque
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard, Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Qing Yuan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard, Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Aufhauser DD, Foley DP. Beyond Ice and the Cooler: Machine Perfusion Strategies in Liver Transplantation. Clin Liver Dis 2021; 25:179-194. [PMID: 33978577 DOI: 10.1016/j.cld.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Machine perfusion (MP) has emerged as a promising preservation technique to reduce the risks associated with transplant of high risk (steatotic, elderly, and donation after circulatory death) hepatic allografts. Multiple strategies for MP are under investigation. MP facilitates assessment of organ viability and enables liver-directed therapy before transplant. Clinical trials suggest MP may improve the use of hepatic allografts, mitigate ischemia-reperfusion injury, and reduce the incidences of early allograft dysfunction, biliary complications, and ischemic cholangiopathy. As MP sees more widespread use outside of trial settings, more investigation will be needed to establish optimal application of this technology.
Collapse
Affiliation(s)
- David D Aufhauser
- Department of Surgery, Division of Transplantation, University of Wisconsin, 600 Highland Avenue, MC 7375, Madison, WI 53792, USA
| | - David P Foley
- Department of Surgery, Division of Transplantation, University of Wisconsin, CSC H5/701, 600 Highland Avenue, Madison, WI 52792, USA.
| |
Collapse
|
38
|
Gloria JN, Yerxa J, Kesseli SJ, Davis RP, Samoylova ML, Barbas AS, Hartwig MG. Subnormothermic ex vivo lung perfusion attenuates graft inflammation in a rat transplant model. J Thorac Cardiovasc Surg 2021; 164:e59-e70. [PMID: 33640121 DOI: 10.1016/j.jtcvs.2021.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ex vivo lung perfusion has emerged as a novel technique to safely preserve lungs before transplantation. Recent studies have demonstrated an accumulation of inflammatory molecules in the perfusate during ex vivo lung perfusion. These proinflammatory molecules, including damage-associated molecular patterns and inflammatory cytokines, may contribute to acute and chronic allograft dysfunction. At present, ex vivo lung perfusion is performed clinically at normothermic temperature (37°C). The effect of lowering temperature to the subnormothermic range during ex vivo lung perfusion has not been reported. In this study, we hypothesized that lower ex vivo lung perfusion temperature will lead to a reduction in allograft inflammation and result in improved post-transplant graft function. METHODS Lewis rat heart-lung blocs underwent 4 hours of ex vivo lung perfusion in 3 temperature groups: 37°C (MP37), 30°C (MP30), and 25°C (MP25). In the control group, lung grafts were preserved by static cold storage before transplantation. After ex vivo lung perfusion or static cold storage, the left lung was transplanted for 2 hours before the animal was killed. Sera and tissue were collected and analyzed. RESULTS There were no differences in partial pressure of arterial oxygenation to fraction of inspired oxygen ratios during 4 hours of ex vivo lung perfusion between temperature groups. Tumor necrosis factor α significantly increased in the MP37 group during ex vivo lung perfusion, whereas this was not seen at lower temperatures. Extracellular DNA and high-mobility group box 1 perfusate concentrations increased significantly during ex vivo lung perfusion in all groups, but the rate of increase was diminished at lower temperature. Two hours post-transplant, there were no significant differences in partial pressure of arterial oxygenation to fraction of inspired oxygen ratios of the lung graft or serum damage-associated molecular pattern levels among groups. On histologic grading after transplantation, greater injury was observed in the MP30 and MP37 groups, but not MP25, when compared with static cold storage. CONCLUSIONS Subnormothermic ex vivo lung perfusion at 25°C reduces the production of inflammatory mediators during ex vivo lung perfusion and is associated with reduced histologic graft injury after transplantation.
Collapse
Affiliation(s)
| | - John Yerxa
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Samuel J Kesseli
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC.
| | - Robert P Davis
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC
| | - Mariya L Samoylova
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Andrew S Barbas
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC
| | | |
Collapse
|
39
|
Gao J, He K, Xia Q, Zhang J. Research progress on hepatic machine perfusion. Int J Med Sci 2021; 18:1953-1959. [PMID: 33850464 PMCID: PMC8040389 DOI: 10.7150/ijms.56139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Nowadays, liver transplantation is the most effective treatment for end-stage liver disease. However, the increasing imbalance between growing demand for liver transplantation and the shortage of donor pool restricts the development of liver transplantation. How to expand the donor pool is a significant problem to be solved clinically. Many doctors have devoted themselves to marginal grafting, which introduces livers with barely passable quality but a high risk of transplant failure into the donor pool. However, existing common methods of preserving marginal grafts lead to both high risk of postoperative complications and high mortality. The application of machine perfusion allows surgeons to make marginal livers meet the standard criteria for transplant, which shows promising prospect in preserving and repairing donor livers and improving ischemia reperfusion injury. This review summarizes the progress of recent researches on hepatic machine perfusion.
Collapse
Affiliation(s)
- Junda Gao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers. Int J Mol Sci 2020; 22:ijms22010235. [PMID: 33379394 PMCID: PMC7795786 DOI: 10.3390/ijms22010235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 °C to 37 °C. Organ metabolism depends on oxygen to produce adenosine triphosphate and temperatures below 37 °C reduce the metabolic rate and oxygen requirements. The transport and delivery of oxygen in machine perfusion are key determinants in preserving organ viability and cellular function. Oxygen delivery is more challenging than carbon dioxide removal, and oxygenation of the perfusion fluid is temperature dependent. The maximal oxygen content of water-based solutions is inversely related to the temperature, while cellular oxygen demand correlates positively with temperature. Machine perfusion above 20 °C will therefore require an oxygen carrier to enable sufficient oxygen delivery to the liver. Human red blood cells are the most physiological oxygen carriers. Alternative artificial oxygen transporters are hemoglobin-based oxygen carriers, perfluorocarbons, and an extracellular oxygen carrier derived from a marine invertebrate. We describe the principles of oxygen transport, delivery, and consumption in machine perfusion for donor livers using different oxygen carrier-based perfusion solutions and we discuss the properties, advantages, and disadvantages of these carriers and their use.
Collapse
|
41
|
Bashyam A, Frangieh CJ, Raigani S, Sogo J, Bronson RT, Uygun K, Yeh H, Ausiello DA, Cima MJ. A portable single-sided magnetic-resonance sensor for the grading of liver steatosis and fibrosis. Nat Biomed Eng 2020; 5:240-251. [PMID: 33257853 DOI: 10.1038/s41551-020-00638-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Low-cost non-invasive diagnostic tools for staging the progression of non-alcoholic chronic liver failure from fatty liver disease to steatohepatitis are unavailable. Here, we describe the development and performance of a portable single-sided magnetic-resonance sensor for grading liver steatosis and fibrosis using diffusion-weighted multicomponent T2 relaxometry. In a diet-induced mouse model of non-alcoholic fatty liver disease, the sensor achieved overall accuracies of 92% (Cohen's kappa, κ = 0.89) and 86% (κ = 0.78) in the ex vivo grading of steatosis and fibrosis, respectively. Localization of the measurements in living mice through frequency-dependent spatial encoding led to an overall accuracy of 87% (κ = 0.81) for the grading of steatosis. In human liver samples, the sensor graded steatosis with an overall accuracy of 93% (κ = 0.88). The use of T2 relaxometry as a sensitive measure in fully automated low-cost magnetic-resonance devices at the point of care would alleviate the accessibility and cost limits of magnetic-resonance imaging for diagnosing liver disease and assessing liver health before liver transplantation.
Collapse
Affiliation(s)
- Ashvin Bashyam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chris J Frangieh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siavash Raigani
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Sogo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis A Ausiello
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Center for Assessment Technology and Continuous Health, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Cima
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
42
|
Panayotova GG, Lunsford KE, Guarrera JV. Bile formation in long-term (1 week), ex situ perfused livers: Analysis and commentary. Surgery 2020; 169:1551-1552. [PMID: 33218702 DOI: 10.1016/j.surg.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Guergana G Panayotova
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Keri E Lunsford
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ; Center for Immunity and Inflammation, Institute for Infectious and Inflammatory Disease, Rutgers New Jersey Medical School, Newark, NJ
| | - James V Guarrera
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ.
| |
Collapse
|
43
|
Quader M, Torrado JF, Mangino MJ, Toldo S. Temperature and flow rate limit the optimal ex-vivo perfusion of the heart - an experimental study. J Cardiothorac Surg 2020; 15:180. [PMID: 32698846 PMCID: PMC7376943 DOI: 10.1186/s13019-020-01223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ex-vivo heart perfusion can be utilized to study a variety of physiologic and molecular pathways in a controlled system outside of the body. It can also be used in clinical settings such as for organ preservation before transplantation. Myocardial oxygen consumption (MVO2) correlates with energy production in the myocardium and can also be used to determine the balance between the oxygen supply and demand of the perfused heart. This study sought to determine an ex-vivo perfusion rate that matches the metabolic demands of the heart according to different temperatures and solution compositions (with and without the addition of erythrocytes), a flow below which the supply of oxygen is not sufficient to maintain an aerobic state of the perfused heart (“DCRIT”). Methods Under general anesthesia, rat hearts were procured and preserved by perfusing with the University of Wisconsin Belzer machine perfusion system (UW Belzer MPS) solution saturated with 100% O2. The key elements of this solution include supraphysiological potassium (to stop the heartbeat and reduce the cellular metabolic demand), starch, gluconate and mannitol (to maintain cell wall integrity), glucose (to sustain basal metabolism), and glutathione (to scavenge free radicals). Three groups of rat hearts (n = 7) were randomly allocated to be perfused at 15 °C, 22 °C or 37 °C, at a varying flow index (FI) starting from a minimum of 380 mL/min/100 g to less than 50 mL/min/100 g, decreasing by 50 mL/min/100 g at 10 min intervals while measuring the MVO2 at each FI. Lactate was measured from coronary sinus samples to determine the onset of tissue hypoxia/anaerobic state. Results The DCRIT at 15 °C was 99.9 ± 4.9 mL/min/100 g; however, at 22 °C and 37 °C we could not reach a DCRIT. The myocardial oxygen demand could not be met at 22 °C and 37 °C with the maximum FI above 380 mL/min/100 g even when erythrocytes (10% V/V) were added to the solution. At 15 °C, the production of lactate was evident only below the DCRIT, while at 22 °C lactate production was present at all flow indices. Conclusions Determining the DCRIT for optimal ex-vivo perfusion of the heart is necessary to ensure adequate tissue oxygenation and limit anaerobic state. Temperatures employed above 15 °C limit the efficient ex-vivo perfusion preservation of heart with the UW Belzer MPS solution.
Collapse
Affiliation(s)
- Mohammed Quader
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA.,Department of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, Richmond, VA, 23298, USA
| | - Juan Francisco Torrado
- Department of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, Richmond, VA, 23298, USA.,Department of Cardiology, Clinic Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, Richmond, VA, 23298, USA.
| |
Collapse
|
44
|
Zhang A, Carroll C, Raigani S, Karimian N, Huang V, Nagpal S, Beijert I, Porte RJ, Yarmush M, Uygun K, Yeh H. Tryptophan Metabolism via the Kynurenine Pathway: Implications for Graft Optimization during Machine Perfusion. J Clin Med 2020; 9:E1864. [PMID: 32549246 PMCID: PMC7355886 DOI: 10.3390/jcm9061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP.
Collapse
Affiliation(s)
- Anna Zhang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Cailah Carroll
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Viola Huang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Irene Beijert
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Robert J. Porte
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Martin Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
45
|
Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers. Transplantation 2020; 103:1405-1413. [PMID: 30395120 PMCID: PMC6613725 DOI: 10.1097/tp.0000000000002500] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ex situ normothermic machine perfusion (NMP) can be used to assess viability of suboptimal donor livers before implantation. Our aim was to assess the diagnostic accuracy of bile biochemistry for the assessment of bile duct injury (BDI). METHODS In a preclinical study, 23 human donor livers underwent 6 hours of end-ischemic NMP to determine biomarkers of BDI. Livers were divided into groups with low or high BDI, based on a clinically relevant histological grading system. During NMP, bile was analyzed biochemically and potential biomarkers were correlated with the degree of BDI. Receiver operating characteristics curves were generated to determine optimal cutoff values. For clinical validation, identified biomarkers were subsequently included as viability criteria in a clinical trial (n = 6) to identify transplantable liver grafts with low BDI. RESULTS Biliary bicarbonate and pH were significantly higher and biliary glucose was significantly lower in livers with low BDI, compared with high BDI. The following cutoff values were associated with low BDI: biliary bicarbonate greater than 18 mmol/L (P = 0.002), biliary pH greater than 7.48 (P = 0.019), biliary glucose less than 16 mmol/L (P = 0.013), and bile/perfusate glucose ratio less than 0.67 (P = 0.013). In the clinical trial, 4 of 6 livers met these criteria and were transplanted, and none developed clinical evidence of posttransplant cholangiopathy. CONCLUSIONS Biliary bicarbonate, pH, and glucose during ex situ NMP of liver grafts are accurate biomarkers of BDI and can be easily determined point of care, making them suitable for the pretransplant assessment of bile duct viability. This may improve graft selection and decrease the risk of posttransplant cholangiopathy.
Collapse
|
46
|
de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, Hafiz EOA, van Gulik TM, Yarmush ML, Markmann JF, Toner M, Yeh H, Uygun K. Subzero non-frozen preservation of human livers in the supercooled state. Nat Protoc 2020; 15:2024-2040. [PMID: 32433625 DOI: 10.1038/s41596-020-0319-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.
Collapse
Affiliation(s)
- Reinier J de Vries
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Peony D Banik
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Ehab O A Hafiz
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.,Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - James F Markmann
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Heidi Yeh
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA. .,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.
| |
Collapse
|
47
|
|
48
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Zhang Z, Ju W, Tang Y, Wang L, Zhu C, Gao N, Zhao Q, Huang S, Wang D, Yang L, Han M, Xiong W, Wu L, Chen M, Zhang Y, Zhu Y, Sun C, Zhu X, Guo Z, He X. First Preliminary Experience with Preservation of Liver Grafts from Extended-Criteria Donors by Normothermic Machine Perfusion in Asia. Ann Transplant 2020; 25:e921529. [PMID: 32312947 PMCID: PMC7193227 DOI: 10.12659/aot.921529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Normothermic machine perfusion (NMP) can provide access to evaluate and resuscitate high-risk donor livers before transplantation. The purpose of this study was to determine the efficacy of NMP in preservation and assessment of extended-criteria donor (ECD) livers in China. CASE REPORT From September 2018 to March 2019, 4 liver grafts from 3 transplant center defined as ECD were subjected to NMP, and then were transplanted successfully. During perfusion, perfusion parameters such as vascular flow, glucose level, lactate clearance, and bile production/composition were recorded to assess graft viability. All recipients were followed up 6 months after transplantation. CONCLUSIONS NMP provides a potential tool for preservation and assessment of ECD livers in China.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Ningxin Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Wei Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Yanling Zhu
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, P.R. China
- Organ Transplant Center, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, P.R. China
| |
Collapse
|
50
|
Fahradyan V, Said SAD, Ordenana C, Dalla Pozza E, Frautschi R, Duraes EFR, Madajka-Niemeyer M, Papay FA, Rampazzo A, Bassiri Gharb B. Extended ex vivo normothermic perfusion for preservation of vascularized composite allografts. Artif Organs 2020; 44:846-855. [PMID: 32133657 DOI: 10.1111/aor.13678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/02/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Ischemia and reperfusion injury remains a significant limiting factor for the successful revascularization of amputated extremities. Ex vivo normothermic perfusion is a novel approach to prolong the viability of the amputated limbs by maintaining physiologic cellular metabolism. This study aimed to evaluate the outcomes of extended ex vivo normothermic limb perfusion (EVNLP) in preserving the viability of amputated limbs for over 24 hours. A total of 10 porcine forelimbs underwent EVNLP. Limbs were perfused using an oxygenated colloid solution at 38°C containing washed RBCs. Five forelimbs (Group A) were perfused for 12 hours and the following 5 (Group B) until the vascular resistance increased. Contralateral forelimbs in each group were preserved at 4°C as a cold storage control group. Limb viability was compared between the 2 groups through assessment of muscle contractility, compartment pressure, tissue oxygen saturation, indocyanine green (ICG) angiography and thermography. EVNLP was performed for 12 hours in group A and up to 44 hours (24-44 hours) in group B. The final weight increase (-1.28 ± 8.59% vs. 7.28 ± 15.05%, P = .548) and compartment pressure (16.50 ± 8.60 vs. 24.00 ± 9.10) (P = .151) were not significantly different between the two groups. Final myoglobin and CK mean values in group A and B were: 875.0 ± 325.8 ng/mL (A) versus 1133.8 ± 537.7 ng/mL (B) (P = .056) and 53 344.0 ± 16 603.0 U/L versus 64 333.3 ± 32 481.8 U/L (P = .286). Tissue oxygen saturation was stable until the end in both groups. Infra-red thermography and ICG-angiography detected variations of peripheral limb perfusion. Our results suggest that extended normothermic preservation of amputated limbs is feasible and that the outcomes of prolonged EVNLP (>24 hours) are not significantly different from short EVNLP (12 hours).
Collapse
Affiliation(s)
- Vahe Fahradyan
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Carlos Ordenana
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Frank A Papay
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|