1
|
Maung Myint T, Chong CH, von Huben A, Attia J, Webster AC, Blosser CD, Craig JC, Teixeira-Pinto A, Wong G. Serum and urine nucleic acid screening tests for BK polyomavirus-associated nephropathy in kidney and kidney-pancreas transplant recipients. Cochrane Database Syst Rev 2024; 11:CD014839. [PMID: 39606952 PMCID: PMC11603539 DOI: 10.1002/14651858.cd014839.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND BK polyomavirus-associated nephropathy (BKPyVAN) occurs when BK polyomavirus (BKPyV) affects a transplanted kidney, leading to an initial injury characterised by cytopathic damage, inflammation, and fibrosis. BKPyVAN may cause permanent loss of graft function and premature graft loss. Early detection gives clinicians an opportunity to intervene by timely reduction in immunosuppression to reduce adverse graft outcomes. Quantitative nucleic acid testing (QNAT) for detection of BKPyV DNA in blood and urine is increasingly used as a screening test as diagnosis of BKPyVAN by kidney biopsy is invasive and associated with procedural risks. In this review, we assessed the sensitivity and specificity of QNAT tests in patients with BKPyVAN. OBJECTIVES We assessed the diagnostic test accuracy of blood/plasma/serum BKPyV QNAT and urine BKPyV QNAT for the diagnosis of BKPyVAN after transplantation. We also investigated the following sources of heterogeneity: types and quality of studies, era of publication, various thresholds of BKPyV-DNAemia/BKPyV viruria and variability between assays as secondary objectives. SEARCH METHODS We searched MEDLINE (OvidSP), EMBASE (OvidSP), and BIOSIS, and requested a search of the Cochrane Register of diagnostic test accuracy studies from inception to 13 June 2023. We also searched ClinicalTrials.com and the WHO International Clinical Trials Registry Platform for ongoing trials. SELECTION CRITERIA We included cross-sectional or cohort studies assessing the diagnostic accuracy of two index tests (blood/plasma/serum BKPyV QNAT or urine BKPyV QNAT) for the diagnosis of BKPyVAN, as verified by the reference standard (histopathology). Both retrospective and prospective cohort studies were included. We did not include case reports and case control studies. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction from each study. We assessed the methodological quality of the included studies by using Quality Assessment of Diagnostic-Accuracy Studies (QUADAS-2) assessment criteria. We used the bivariate random-effects model to obtain summary estimates of sensitivity and specificity for the QNAT test with one positivity threshold. In cases where meta-analyses were not possible due to the small number of studies available, we detailed the descriptive evidence and used a summative approach. We explored possible sources of heterogeneity by adding covariates to meta-regression models. MAIN RESULTS We included 31 relevant studies with a total of 6559 participants in this review. Twenty-six studies included kidney transplant recipients, four studies included kidney and kidney-pancreas transplant recipients, and one study included kidney, kidney-pancreas and kidney-liver transplant recipients. Studies were carried out in South Asia and the Asia-Pacific region (12 studies), North America (9 studies), Europe (8 studies), and South America (2 studies). INDEX TEST blood/serum/plasma BKPyV QNAT The diagnostic performance of blood BKPyV QNAT using a common viral load threshold of 10,000 copies/mL was reported in 18 studies (3434 participants). Summary estimates at 10,000 copies/mL as a cut-off indicated that the pooled sensitivity was 0.86 (95% confidence interval (CI) 0.78 to 0.93) while the pooled specificity was 0.95 (95% CI 0.91 to 0.97). A limited number of studies were available to analyse the summary estimates for individual viral load thresholds other than 10,000 copies/mL. Indirect comparison of thresholds of the three different cut-off values of 1000 copies/mL (9 studies), 5000 copies/mL (6 studies), and 10,000 copies/mL (18 studies), the higher cut-off value at 10,000 copies/mL corresponded to higher specificity with lower sensitivity. The summary estimates of indirect comparison of thresholds above 10,000 copies/mL were uncertain, primarily due to a limited number of studies with wide CIs contributed to the analysis. Nonetheless, these indirect comparisons should be interpreted cautiously since differences in study design, patient populations, and methodological variations among the included studies can introduce biases. Analysis of all blood BKPyV QNAT studies, including various blood viral load thresholds (30 studies, 5658 participants, 7 thresholds), indicated that test performance remains robust, pooled sensitivity 0.90 (95% CI 0.85 to 0.94) and specificity 0.93 (95% CI 0.91 to 0.95). In the multiple cut-off model, including the various thresholds generating a single curve, the optimal cut-off was around 2000 copies/mL, sensitivity of 0.89 (95% CI 0.66 to 0.97) and specificity of 0.88 (95% CI 0.80 to 0.93). However, as most of the included studies were retrospective, and not all participants underwent the reference standard tests, this may result in a high risk of selection and verification bias. INDEX TEST urine BKPyV QNAT There was insufficient data to thoroughly investigate both accuracy and thresholds of urine BKPyV QNAT resulting in an imprecise estimation of its accuracy based on the available evidence. AUTHORS' CONCLUSIONS There is insufficient evidence to suggest the use of urine BKPyV QNAT as the primary screening tool for BKPyVAN. The summary estimates of the test sensitivity and specificity of blood/serum/plasma BKPyV QNAT test at a threshold of 10,000 copies/mL for BKPyVAN were 0.86 (95% CI 0.78 to 0.93) and 0.95 (95% CI 0.91 to 0.97), respectively. The multiple cut-off model showed that the optimal cut-off was around 2000 copies/mL, with test sensitivity of 0.89 (95% CI 0.66 to 0.97) and specificity of 0.88 (95% CI 0.80 to 0.93). While 10,000 copies/mL is the most commonly used cut-off, with good test performance characteristics and supports the current recommendations, it is important to interpret the results with caution because of low-certainty evidence.
Collapse
Affiliation(s)
- Thida Maung Myint
- John Hunter Hospital, Newcastle, Australia
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Chanel H Chong
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Amy von Huben
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - John Attia
- University of Newcastle, Newcastle, Australia
| | - Angela C Webster
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Westmead Applied Research Centre, The University of Sydney at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| | - Christopher D Blosser
- Department of Medicine, Nephrology, University of Washington & Seattle Children's Hospital, Seattle, WA, USA
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | | | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
2
|
Omić H, Eder M, Schrag TA, Kozakowski N, Kläger J, Bond G, Kikić Ž. Peritubular and Tubulointerstitial Inflammation as Predictors of Impaired Viral Clearance in Polyomavirus Nephropathy. J Clin Med 2024; 13:5714. [PMID: 39407774 PMCID: PMC11476510 DOI: 10.3390/jcm13195714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Polyomavirus-associated nephropathy (BKPyVAN) is a common complication in kidney transplant recipients. The histological changes in the context of BKPyVAN and their association with the viral load and outcomes are still being investigated. Methods: This retrospective study involved 100 adult patients transplanted between 2000 and 2021, with available archived biopsy slides, aiming to analyze associations between viral load clearance in the blood (reduction in BKPyVAN-DNAemia below detection level) and histological features in biopsy-proven BKPyVAN. A kidney pathologist blinded to the clinical data reassessed the BANFF 2019 lesion scores in the BKPyVAN index biopsy. The primary endpoint was viral clearance three months after the diagnosis. Results: The presence of tubulointerstitial inflammation, peritubular capillaritis, and higher PVN Class at the diagnosis was linked to a reduced likelihood of viral clearance three months later (interstitial inflammation OR = 0.2, 95% CI [0.07-0.55], tubulitis OR = 0.39, 95% CI [0.21-0.73], peritubular capillaritis OR = 0.25, 95% CI [0.08-0.82], PVN Score OR = 0.1, 95% CI [0.03-0.4]), independently of other covariates. Combining the four lesions using the ROC analysis enhanced their capability to predict persistent BK viremia after 3 months with an AUC of 0.94. Conclusions: The presence of interstitial inflammation, tubulitis, and peritubular capillaritis, as well as the higher PVN Score, was associated with an up to 90% lower likelihood of viral load clearance three months post-diagnosis. These findings underscore the importance of histological evaluation as a surrogate of subsequent viral clearance and offer valuable insights for the management of BKPyVAN.
Collapse
Affiliation(s)
- Haris Omić
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (M.E.); (T.A.S.); (G.B.)
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (M.E.); (T.A.S.); (G.B.)
| | - Tarek A. Schrag
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (M.E.); (T.A.S.); (G.B.)
| | - Nicolas Kozakowski
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (N.K.)
| | - Johannes Kläger
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (N.K.)
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (M.E.); (T.A.S.); (G.B.)
| | - Željko Kikić
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Zhou J, Li X, Demeke D, Dinh TA, Yang Y, Janowczyk AR, Zee J, Holzman L, Mariani L, Chakrabarty K, Barisoni L, Hodgin JB, Lafata KJ. Characterization of arteriosclerosis based on computer-aided measurements of intra-arterial thickness. J Med Imaging (Bellingham) 2024; 11:057501. [PMID: 39398866 PMCID: PMC11466048 DOI: 10.1117/1.jmi.11.5.057501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Our purpose is to develop a computer vision approach to quantify intra-arterial thickness on digital pathology images of kidney biopsies as a computational biomarker of arteriosclerosis. Approach The severity of the arteriosclerosis was scored (0 to 3) in 753 arteries from 33 trichrome-stained whole slide images (WSIs) of kidney biopsies, and the outer contours of the media, intima, and lumen were manually delineated by a renal pathologist. We then developed a multi-class deep learning (DL) framework for segmenting the different intra-arterial compartments (training dataset: 648 arteries from 24 WSIs; testing dataset: 105 arteries from 9 WSIs). Subsequently, we employed radial sampling and made measurements of media and intima thickness as a function of spatially encoded polar coordinates throughout the artery. Pathomic features were extracted from the measurements to collectively describe the arterial wall characteristics. The technique was first validated through numerical analysis of simulated arteries, with systematic deformations applied to study their effect on arterial thickness measurements. We then compared these computationally derived measurements with the pathologists' grading of arteriosclerosis. Results Numerical validation shows that our measurement technique adeptly captured the decreasing smoothness in the intima and media thickness as the deformation increases in the simulated arteries. Intra-arterial DL segmentations of media, intima, and lumen achieved Dice scores of 0.84, 0.78, and 0.86, respectively. Several significant associations were identified between arteriosclerosis grade and pathomic features using our technique (e.g., intima-media ratio average [ τ = 0.52 , p < 0.0001 ]) through Kendall's tau analysis. Conclusions We developed a computer vision approach to computationally characterize intra-arterial morphology on digital pathology images and demonstrate its feasibility as a potential computational biomarker of arteriosclerosis.
Collapse
Affiliation(s)
- Jin Zhou
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
| | - Xiang Li
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
| | - Dawit Demeke
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Timothy A. Dinh
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Yingbao Yang
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Andrew R. Janowczyk
- Geneva University Hospitals, Department of Oncology, Division of Precision Oncology, Geneva, Switzerland
- Geneva University Hospitals, Department of Diagnostics, Division of Clinical Pathology, Geneva, Switzerland
- Emory University, Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Jarcy Zee
- University of Pennsylvania, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Lawrence Holzman
- University of Pennsylvania, Department of Medicine, Renal-Electrolyte and Hypertension Division, Philadelphia, Pennsylvania, United States
| | - Laura Mariani
- University of Michigan, Department of Internal Medicine, Division of Nephrology, Ann Arbor, Michigan, United States
| | - Krishnendu Chakrabarty
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
| | - Laura Barisoni
- Duke University, Division of Artificial Intelligence and Computational Pathology, Department of Pathology, Durham, North Carolina, United States
- Duke University, Division of Nephrology Department of Medicine, Durham, North Carolina, United States
| | - Jeffrey B. Hodgin
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, United States
| | - Kyle J. Lafata
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Division of Artificial Intelligence and Computational Pathology, Department of Pathology, Durham, North Carolina, United States
- Duke University, Department of Radiology, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| |
Collapse
|
4
|
Kotton CN, Kamar N, Wojciechowski D, Eder M, Hopfer H, Randhawa P, Sester M, Comoli P, Tedesco Silva H, Knoll G, Brennan DC, Trofe-Clark J, Pape L, Axelrod D, Kiberd B, Wong G, Hirsch HH. The Second International Consensus Guidelines on the Management of BK Polyomavirus in Kidney Transplantation. Transplantation 2024; 108:1834-1866. [PMID: 38605438 PMCID: PMC11335089 DOI: 10.1097/tp.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
BK polyomavirus (BKPyV) remains a significant challenge after kidney transplantation. International experts reviewed current evidence and updated recommendations according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). Risk factors for BKPyV-DNAemia and biopsy-proven BKPyV-nephropathy include recipient older age, male sex, donor BKPyV-viruria, BKPyV-seropositive donor/-seronegative recipient, tacrolimus, acute rejection, and higher steroid exposure. To facilitate early intervention with limited allograft damage, all kidney transplant recipients should be screened monthly for plasma BKPyV-DNAemia loads until month 9, then every 3 mo until 2 y posttransplant (3 y for children). In resource-limited settings, urine cytology screening at similar time points can exclude BKPyV-nephropathy, and testing for plasma BKPyV-DNAemia when decoy cells are detectable. For patients with BKPyV-DNAemia loads persisting >1000 copies/mL, or exceeding 10 000 copies/mL (or equivalent), or with biopsy-proven BKPyV-nephropathy, immunosuppression should be reduced according to predefined steps targeting antiproliferative drugs, calcineurin inhibitors, or both. In adults without graft dysfunction, kidney allograft biopsy is not required unless the immunological risk is high. For children with persisting BKPyV-DNAemia, allograft biopsy may be considered even without graft dysfunction. Allograft biopsies should be interpreted in the context of all clinical and laboratory findings, including plasma BKPyV-DNAemia. Immunohistochemistry is preferred for diagnosing biopsy-proven BKPyV-nephropathy. Routine screening using the proposed strategies is cost-effective, improves clinical outcomes and quality of life. Kidney retransplantation subsequent to BKPyV-nephropathy is feasible in otherwise eligible recipients if BKPyV-DNAemia is undetectable; routine graft nephrectomy is not recommended. Current studies do not support the usage of leflunomide, cidofovir, quinolones, or IVIGs. Patients considered for experimental treatments (antivirals, vaccines, neutralizing antibodies, and adoptive T cells) should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Unit, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - David Wojciechowski
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmut Hopfer
- Division of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology/Oncology Unit, Department of Mother and Child Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Helio Tedesco Silva
- Division of Nephrology, Hospital do Rim, Fundação Oswaldo Ramos, Paulista School of Medicine, Federal University of São Paulo, Brazil
| | - Greg Knoll
- Department of Medicine (Nephrology), University of Ottawa and The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Jennifer Trofe-Clark
- Renal-Electrolyte Hypertension Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
- Transplantation Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Lars Pape
- Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - David Axelrod
- Kidney, Pancreas, and Living Donor Transplant Programs at University of Iowa, Iowa City, IA
| | - Bryce Kiberd
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Hans H. Hirsch
- Division of Transplantation and Clinical Virology, Department of Biomedicine, Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Cleenders E, Koshy P, Van Loon E, Lagrou K, Beuselinck K, Andrei G, Crespo M, De Vusser K, Kuypers D, Lerut E, Mertens K, Mineeva-Sangwo O, Randhawa P, Senev A, Snoeck R, Sprangers B, Tinel C, Van Craenenbroeck A, van den Brand J, Van Ranst M, Verbeke G, Coemans M, Naesens M. An observational cohort study of histological screening for BK polyomavirus nephropathy following viral replication in plasma. Kidney Int 2023; 104:1018-1034. [PMID: 37598855 DOI: 10.1016/j.kint.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Systematic screening for BKPyV-DNAemia has been advocated to aid prevention and treatment of polyomavirus associated nephropathy (PyVAN), an important cause of kidney graft failure. The added value of performing a biopsy at time of BKPyV-DNAemia, to distinguish presumptive PyVAN (negative SV40 immunohistochemistry) and proven PyVAN (positive SV40) has not been established. Therefore, we studied an unselected cohort of 950 transplantations, performed between 2008-2017. BKPyV-DNAemia was detected in 250 (26.3%) transplant recipients, and positive SV40 in 91 cases (9.6%). Among 209 patients with a concurrent biopsy at time of first BKPyV-DNAemia, 60 (28.7%) biopsies were SV40 positive. Plasma viral load showed high diagnostic value for concurrent SV40 positivity (ROC-AUC 0.950, 95% confidence interval 0.916-0.978) and the semiquantitatively scored percentage of tubules with evidence of polyomavirus replication (pvl score) (0.979, 0.968-0.988). SV40 positivity was highly unlikely when plasma viral load is below 4 log10 copies/ml (negative predictive value 0.989, 0.979-0.994). In SV40 positive patients, higher plasma BKPyV-DNA load and higher pvl scores were associated with slower viral clearance from the blood (hazard ratio 0.712, 95% confidence interval 0.604-0.839, and 0.327, 0.161-0.668, respectively), whereas the dichotomy positivity/negativity of SV40 immunohistochemistry did not predict viral clearance. Although the pvl score offers some prognostic value for viral clearance on top of plasma viral load, the latter provided good guidance for when a biopsy was unnecessary to exclude PyVAN. Thus, the distinction between presumptive and proven PyVAN, based on SV40 immunohistochemistry, has limited clinical value. Hence, management of BKPyV-DNAemia and immunosuppression reduction should be weighed against the risk of occurrence of rejection, or exacerbation of rejection observed concomitantly.
Collapse
Affiliation(s)
- Evert Cleenders
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Kurt Beuselinck
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar Medical Research Institute (IMIM), Hospital del Mar, Barcelona, Spain
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kris Mertens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Olga Mineeva-Sangwo
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, the Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center-Montefiore Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Robert Snoeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jan van den Brand
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Geert Verbeke
- Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Mayer KA, Omic H, Weseslindtner L, Doberer K, Reindl-Schwaighofer R, Viard T, Tillgren A, Haindl S, Casas S, Eskandary F, Heinzel A, Kozakowski N, Kikić Ž, Böhmig GA, Eder M. Levels of donor-derived cell-free DNA and chemokines in BK polyomavirus-associated nephropathy. Clin Transplant 2022; 36:e14785. [PMID: 35894263 PMCID: PMC10078585 DOI: 10.1111/ctr.14785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND BK polyomavirus-associated nephropathy (BKPyVAN) carries a risk of irreversible allograft injury. While detection of BK viremia and biopsy assessment are the current diagnostic gold standard, the diagnostic value of biomarkers reflecting tissue injury (donor-derived cell-free DNA [dd-cfDNA]) or immune activation (C-X-C motif chemokine ligand [CXCL]9 and CXCL10) remains poorly defined. METHODS For this retrospective study, 19 cases of BKPyVAN were selected from the Vienna transplant cohort (biopsies performed between 2012 and 2019). Eight patients with T cell-mediated rejection (TCMR), 17 with antibody-mediated rejection (ABMR) and 10 patients without polyomavirus nephropathy or rejection served as controls. Fractions of dd-cfDNA were quantified using next-generation sequencing and CXCL9 and CXCL10 were detected using multiplex immunoassays. RESULTS BKPyVAN was associated with a slight increase in dd-cfDNA (median; interquartile range: .38% [.27%-1.2%] vs. .21% [.12%-.34%] in non-rejecting control patients; p = .005). Levels were far lower than in ABMR (1.2% [.82%-2.5%]; p = .004]), but not different from TCMR (.54% [.26%-3.56%]; p = .52). Within the BKPyVAN cohort, we found no relationship between dd-cfDNA levels and the extent of tubulo-interstitial infiltrates, BKPyVAN class and BK viremia/viruria, respectively. In some contrast to dd-cfDNA, concentrations of urinary CXCL9 and CXCL10 exceeded those detected in ABMR, but similar increases were also found in TCMR. CONCLUSION BKPyVAN can induce moderate increases in dd-cfDNA and concomitant high urinary excretion of chemokines, but this pattern may be indistinguishable from that of TCMR. Our results argue against a significant value of these biomarkers to reliably distinguish BKPyVAN from rejection.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Haris Omic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thierry Viard
- CareDx Inc., Brisbane, San Francisco, California, USA
| | | | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Silvia Casas
- CareDx Inc., Brisbane, San Francisco, California, USA
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Imlay H, Baum P, Brennan DC, Hanson KE, Hodges MR, Hodowanec AC, Komatsu TE, Ljungman P, Miller V, Natori Y, Nickeleit V, O’Rear J, Pikis A, Randhawa PS, Sawinski D, Singh HK, Westman G, Limaye AP. Consensus Definitions of BK Polyomavirus Nephropathy in Renal Transplant Recipients for Clinical Trials. Clin Infect Dis 2022; 75:1210-1216. [PMID: 35100619 PMCID: PMC9525067 DOI: 10.1093/cid/ciac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) infection and BK polyomavirus nephropathy (BKPyVAN) are important causes of allograft dysfunction and premature allograft loss in renal transplant recipients. RESULTS AND DISCUSSION Controlled clinical trials to evaluate new agents for prevention and treatment are needed but are hampered by the lack of outcome measures that accurately assess the effect of the intervention, are clinically relevant, and are acceptable from a regulatory perspective. METHODS To facilitate consistent end points in clinical trials and to support clinical research and drug development, definitions of BKPyV infection and disease have been developed by the BK Disease Definitions Working Group of the Transplantation Associated Virus Infection Forum with the Forum for Collaborative Research, which consists of scientists, clinicians, regulators, and industry representatives. CONCLUSIONS These definitions refine established principles of "proven" BKPyV disease and introduce a "probable" disease category that could be used in clinical trials to prevent or treat BKPyVAN in renal transplant recipients.
Collapse
Affiliation(s)
- Hannah Imlay
- Correspondence: Hannah Imlay, University of Utah, 30 North 1900 East, School of Medicine, Salt Lake City, UT 84132 ()
| | - Paul Baum
- Roche Molecular Diagnostics, San Francisco, California, USA
| | - Daniel C Brennan
- Johns Hopkins Comprehensive Medical Center, Baltimore, Maryland, USA
| | - Kimberly E Hanson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | - Per Ljungman
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | - Yoichiro Natori
- Department of Medicine, University of Miami Miller School of Medicine/Miami Transplant Institute, Miami, Florida, USA
| | - Volker Nickeleit
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jules O’Rear
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andreas Pikis
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Parmjeet S Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Deirdre Sawinski
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harsharan K Singh
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Gabriel Westman
- Swedish Medical Products Agency, Uppsala University, Uppsala, Sweden
| | - Ajit P Limaye
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
8
|
Halloran PF, Madill-Thomsen KS, Böhmig GA, Myslak M, Gupta G, Kumar D, Viklicky O, Perkowska-Ptasinska A, Famulski KS. A 2-fold Approach to Polyoma Virus (BK) Nephropathy in Kidney Transplants: Distinguishing Direct Virus Effects From Cognate T Cell-mediated Inflammation. Transplantation 2021; 105:2374-2384. [PMID: 34310102 DOI: 10.1097/tp.0000000000003884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND BK nephropathy (BKN) in kidney transplants diagnosed by histology is challenging because it involves damage from both virus activity and cognate T cell-mediated inflammation, directed against alloantigens (rejection) or viral antigens. The present study of indication biopsies from the Integrated Diagnostic System in the International Collaborative Microarray Study Extension study measured major capsid viral protein 2 (VP2) mRNA to assess virus activity and a T cell-mediated rejection (TCMR) classifier to assess cognate T cell-mediated inflammation. METHODS Biopsies were assessed by local standard-of-care histology and by genome-wide microarrays and Molecular Microscope Diagnostic System (MMDx) algorithms to detect rejection and injury. In a subset of 102 biopsies (50 BKN and 52 BKN-negative biopsies with various abnormalities), we measured VP2 transcripts by real-time polymerase chain reaction. RESULTS BKN was diagnosed in 55 of 1679 biopsies; 30 had cognate T cell-mediated activity assessed by by MMDx and TCMR lesions, but only 3 of 30 were histologically diagnosed as TCMR. We developed a BKN probability classifier that predicted histologic BKN (area under the curve = 0.82). Virus activity (VP2 expression) was highly selective for BKN (area under the curve = 0.94) and correlated with acute injury, atrophy-fibrosis, macrophage activation, and the BKN classifier, but not with the TCMR classifier. BKN with molecular TCMR had more tubulitis and inflammation than BKN without molecular TCMR. In 5 BKN cases with second biopsies, VP2 mRNA decreased in second biopsies, whereas in 4 of 5 TCMR classifiers, scores increased. Genes and pathways associated with BKN and VP2 mRNA were similar, reflecting injury, inflammation, and macrophage activation but none was selective for BKN. CONCLUSIONS Risk-benefit decisions in BKN may be assisted by quantitative assessment of the 2 major pathologic processes, virus activity and cognate T cell-mediated inflammation.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marek Myslak
- Department of Nephrology and Kidney Transplantation, SPWSZ Hospital in Szczecin, Pomeranian Medical University, Szczecin, Poland
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Dhiren Kumar
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | |
Collapse
|
9
|
Tinel C, Vermorel A, Picciotto D, Morin L, Devresse A, Sauvaget V, Lebreton X, Aouni L, Prié D, Brabant S, Avettand-Fenoel V, Scemla A, Timsit MO, Snanoudj R, Legendre C, Terzi F, Rabant M, Anglicheau D. Deciphering the Prognostic and Predictive Value of Urinary CXCL10 in Kidney Recipients With BK Virus Reactivation. Front Immunol 2020; 11:604353. [PMID: 33362789 PMCID: PMC7759001 DOI: 10.3389/fimmu.2020.604353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023] Open
Abstract
BK virus (BKV) replication increases urinary chemokine C-X-C motif ligand 10 (uCXCL10) levels in kidney transplant recipients (KTRs). Here, we investigated uCXCL10 levels across different stages of BKV replication as a prognostic and predictive marker for functional decline in KTRs after BKV-DNAemia. uCXCL10 was assessed in a cross-sectional study (474 paired urine/blood/biopsy samples and a longitudinal study (1,184 samples from 60 KTRs with BKV-DNAemia). uCXCL10 levels gradually increased with urine (P-value < 0.0001) and blood BKV viral load (P < 0.05) but were similar in the viruria and no BKV groups (P > 0.99). In viremic patients, uCXCL10 at biopsy was associated with graft functional decline [HR = 1.65, 95% CI (1.08–2.51), P = 0.02], irrespective of baseline eGFR, blood viral load, or BKVN diagnosis. uCXL10/cr (threshold: 12.86 ng/mmol) discriminated patients with a low risk of graft function decline from high-risk patients (P = 0.01). In the longitudinal study, the uCXCL10 and BKV-DNAemia trajectories were superimposable. Stratification using the same uCXCL10/cr threshold at first viremia predicted the subsequent inflammatory response, assessed by time-adjusted uCXCL10/cr AUC (P < 0.001), and graft functional decline (P = 0.03). In KTRs, uCXCL10 increases in BKV-DNAemia but not in isolated viruria. uCXCL10/cr is a prognostic biomarker of eGFR decrease, and a 12.86 ng/ml threshold predicts higher inflammatory burdens and poor renal outcomes.
Collapse
Affiliation(s)
- Claire Tinel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| | - Agathe Vermorel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Daniela Picciotto
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lise Morin
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Arnaud Devresse
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Division of Nephrology, University Hospital Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Virginia Sauvaget
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France
| | - Xavier Lebreton
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laïla Aouni
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Prié
- Paris University, Paris, France.,Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Séverine Brabant
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Avettand-Fenoel
- Paris University, Paris, France.,Département of Virology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Scemla
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Olivier Timsit
- Paris University, Paris, France.,Department of Urology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Nephrology, Hemodialysis and Kidney Transplantation, Foch Hospital, Suresnes, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| | - Fabiola Terzi
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France
| | - Marion Rabant
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France.,Pathology Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| |
Collapse
|
10
|
Adam BA, Kikic Z, Wagner S, Bouatou Y, Gueguen J, Drieux F, Reid G, Du K, Bräsen JH, D'Agati VD, Drachenberg CB, Farkash EA, Brad Farris A, Geldenhuys L, Loupy A, Nickeleit V, Rabant M, Randhawa P, Regele H, Mengel M. Intragraft gene expression in native kidney BK virus nephropathy versus T cell-mediated rejection: Prospects for molecular diagnosis and risk prediction. Am J Transplant 2020; 20:3486-3501. [PMID: 32372431 DOI: 10.1111/ajt.15980] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 01/25/2023]
Abstract
Novel tools are needed to improve diagnostic accuracy and risk prediction in BK virus nephropathy (BKVN). We assessed the utility of intragraft gene expression testing for these purposes. Eight hundred genes were measured in 110 archival samples, including a discovery cohort of native kidney BKVN (n = 5) vs pure T cell-mediated rejection (TCMR; n = 10). Five polyomavirus genes and seven immune-related genes (five associated with BKVN and two associated with TCMR) were significantly differentially expressed between these entities (FDR < 0.05). These three sets of genes were further evaluated in samples representing a spectrum of BK infection (n = 25), followed by a multicenter validation cohort of allograft BKVN (n = 60) vs TCMR (n = 10). Polyomavirus 5-gene set expression reliably distinguished BKVN from TCMR (validation cohort AUC = 0.992), but the immune gene sets demonstrated suboptimal diagnostic performance (AUC ≤ 0.720). Within the validation cohort, no significant differences in index biopsy gene expression were identified between BKVN patients demonstrating resolution (n = 35), persistent infection (n = 14) or de novo rejection (n = 11) 6 months following a standardized reduction in immunosuppression. These results suggest that, while intragraft polyomavirus gene expression may be useful as an ancillary diagnostic for BKVN, assessment for concurrent TCMR and prediction of clinical outcome may not be feasible with current molecular tools.
Collapse
Affiliation(s)
- Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Zeljko Kikic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Siegfried Wagner
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Yassine Bouatou
- Paris Translational Research Center for Organ Transplantation, Paris, France
| | - Juliette Gueguen
- Paris Translational Research Center for Organ Transplantation, Paris, France
| | - Fanny Drieux
- Department of Pathology, Necker Hospital, Paris, France
| | - Graeme Reid
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Katie Du
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Jan H Bräsen
- Nephropathology Unit, Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Paris, France
| | - Volker Nickeleit
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marion Rabant
- Department of Pathology, Necker Hospital, Paris, France
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Masutani K, Matsukuma Y, Tsuchimoto A, Okabe Y, Doi A, Kaku K, Nakamura M, Nakano T, Tsuruya K, Kitazono T. Comparison of Immunohistochemical Staining for Large T Antigen and Capsid Protein VP1 in BK Polyomavirus-Associated Nephropathy. Nephron Clin Pract 2020; 144 Suppl 1:28-36. [PMID: 33221810 DOI: 10.1159/000510967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
AIM Most transplant centres use SV40 large T antigen (TAg) staining for the diagnosis and assessment of BK polyomavirus-associated nephropathy (BKPyVAN). This study was performed to evaluate the significance of capsid protein VP1 expression in BKPyVAN. METHODS We performed immunohistochemical staining using anti-SV40 TAg and anti-BKPyV VP1 antibodies in 16 index biopsies and 12 re-biopsies of BKPyVAN and compared the patterns of positivity and the percentage of positive tubules by counting whole specimens. We investigated the correlation between serum creatinine increase from baseline and the percentage of positive tubules for both markers in 16 index biopsies. RESULTS In VP1 staining, positive findings were observed not only in the nuclei of tubular epithelial cells but also in the cytoplasm, cells shedding into the lumen, intra-tubular casts, and in the interstitium. Two of 28 biopsies (7.1%) showed TAg-positive and VP1-negative results, in which TAg-positive cells were detected only in a single tubule. The median (interquartile range) percentage of positive tubules was 2.8% (0.7-9.8%) for TAg and 1.4% (0.5-3.9%) for VP1 staining (p = 0.2). In 16 index biopsies, serum creatinine increases significantly correlated with the percentage of VP1-positive tubules (r = 0.49, p = 0.02), while this correlation revealed borderline significance with TAg-positive tubules. CONCLUSIONS VP1 expression showed various patterns, but was detected in half as many tubules as TAg staining, which might lead to false negatives in the samples with minimal viral replication. However, increased VP1-positive tubules indicate advanced tubular damage and possible association with graft dysfunction.
Collapse
Affiliation(s)
- Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, .,Division of Nephrology and Rheumatology, Department of Internal Medicine, Fukuoka University, Fukuoka, Japan,
| | - Yuta Matsukuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Doi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Stefan G, Stancu S, Zugravu A, Petre N, Mandache E, Mircescu G. Towards a simplified renal histopathological prognostic score in glomerular nephropathies. Histopathology 2020; 77:926-935. [DOI: 10.1111/his.14175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Stefan
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| | - Simona Stancu
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| | - Adrian Zugravu
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| | - Nicoleta Petre
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| | - Eugen Mandache
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| | - Gabriel Mircescu
- Dr Carol Davila Teaching Hospital of Nephrology University of Medicine and Pharmacy Carol Davila Bucharest Romania
| |
Collapse
|
13
|
Huang YH, Yu KY, Huang SP, Chuang HW, Lin WZ, Cherng JH, Hung YW, Yeh MK, Hong PD, Liu CC. Development of a Nucleic Acid Lateral Flow Immunoassay for the Detection of Human Polyomavirus BK. Diagnostics (Basel) 2020; 10:E403. [PMID: 32545649 PMCID: PMC7345645 DOI: 10.3390/diagnostics10060403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023] Open
Abstract
The BK virus (BKV) is an emerging pathogen in immunocompromised individuals and widespread in the human population. Polymerase chain reaction is a simple and highly sensitive method for detecting BKV, but it is time consuming and requires expensive instruments and expert judgment. The lateral flow assay, a rapid, low-cost, minimal-labor, and easy-to-use diagnostic method, was successfully applied for pathogen detection. In this study, we used oligonucleotide probes to develop a simple and rapid sandwich-type lateral flow immunoassay for detecting BKV DNA within 45 minutes. The detection limit for the synthetic single-stranded DNA was 5 nM. The specificity study showed no cross-reactivity with other polyomaviruses, such as JC virus and simian virus 40. For the Escherichia coli containing BKV plasmid cultured samples, the sensitivity was determined to be 107 copies/mL. The approach offers great potential for BKV detection of various target analytes in point-of-care settings.
Collapse
Affiliation(s)
- Yi-Huei Huang
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Kuan-Yi Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (K.-Y.Y.); (H.-W.C.); (M.-K.Y.)
| | - Shou-Ping Huang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hui-Wen Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (K.-Y.Y.); (H.-W.C.); (M.-K.Y.)
| | - Wen-Zhi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (W.-Z.L.); (Y.-W.H.)
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Yao-Wen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (W.-Z.L.); (Y.-W.H.)
| | - Ming-Kung Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (K.-Y.Y.); (H.-W.C.); (M.-K.Y.)
| | - Po-Da Hong
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Cheng-Che Liu
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (W.-Z.L.); (Y.-W.H.)
| |
Collapse
|
14
|
A Multicenter Application of the 2018 Banff Classification for BK Polyomavirus-associated Nephropathy in Renal Transplantation. Transplantation 2020; 103:2692-2700. [PMID: 30896679 DOI: 10.1097/tp.0000000000002712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND With current immunosuppressive regimens, BK polyomavirus-associated nephropathy (BKPyVAN) is still a matter of concern. Stratification of patients at risk for allograft loss is of uttermost importance to guide treatment choice and assess prognosis. In 2018, the Banff working group proposed a classification scheme for the prognosis of BKPyVAN, but external application on independent cohorts is yet to be performed. We investigated how the 2018 Banff classification would perform in a multicenter cohort comprising 50 cases of biopsy-proven BKPyVAN compared to previously published classification systems. METHODS We analyzed consecutive BKPyVAN cases from two Dutch university hospitals between 2002 and 2013, retrieved clinical data, and scored all biopsies according to the Banff 2018 classification, and as a comparison, 4 previously proposed BKPyVAN classification systems. We used estimated glomerular filtration rate trajectories and death-censored graft survival as primary endpoints. RESULTS The 2018 Banff classification did not associate with estimated glomerular filtration rate decline or graft failure and performed only slightly better than the 4 previously proposed classifiers. Anti-human leukocyte antigen donor-specific antibodies (DSAs), especially in combination with ongoing biopsy-proven BKPyVAN on follow-up, did correlate with graft function and survival. Patients who were DSA+/BKPyVAN+ on follow-up had more inflammation at the baseline biopsy, which by itself was not associated with graft outcomes. CONCLUSIONS Neither the 2018 Banff BKPyVAN classification nor previously published stratification systems could be applied to our multicenter patient cohort. Our data suggest that there might be a prognostic value for follow-up biopsies and DSA measurements to improve risk stratification after BKPyVAN, although prospective multicenter efforts with protocol measurements are needed to confirm this.
Collapse
|
15
|
Costigliolo F, Lombardo K, Arend LJ, Rosenberg AZ, Matoso A, Carter-Monroe N, Bagnasco SM. BK Virus RNA in Renal Allograft Biopsies. J Histochem Cytochem 2020; 68:319-325. [PMID: 32352851 DOI: 10.1369/0022155420922604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BK polyomavirus-associated nephropathy (BKpyVAN) remains a cause of graft loss in kidney transplant recipients on immunosuppressive therapy. Its diagnosis relies on the identification of BK virus (BKV) in the renal allograft biopsy by positive immunohistochemical (IHC) stain for the viral SV40 large T antigen, although in situ hybridization (ISH) for viral DNA is used in some centers. We examined tissue detection of BKV RNA by RNAscope, a novel, automated ISH test, in 61 allograft biopsies from 56 patients with BKpyVAN. We found good correlation between the estimate of BKV tissue load by RNAscope ISH and SV40 IHC (R2 = 0.65, p<0.0001). RNAscope ISH showed 88% sensitivity and 79% specificity and, as an alternative test, could confirm the presence of BKV tissue in presumed BKpyVAN and rule out BKV as the causative agent in JC virus nephropathy. We also used tissue BK viral load estimates by both RNAscope ISH and SV40 IHC to examine the relation between tissue and plasma BK levels and found significant correlation only between BK viremia and tissue BK measured by RNAscope ISH. Our findings suggest that the RNAscope ISH assay could be a reliable test for BKV detection in allograft biopsies.
Collapse
Affiliation(s)
- Francesca Costigliolo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kara Lombardo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andres Matoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Naima Carter-Monroe
- Pathology and Laboratory Medicine, Veterans Administration Hospital, Baltimore, Maryland
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Alcendor DJ. BK Polyomavirus Virus Glomerular Tropism: Implications for Virus Reactivation from Latency and Amplification during Immunosuppression. J Clin Med 2019; 8:jcm8091477. [PMID: 31533282 PMCID: PMC6780320 DOI: 10.3390/jcm8091477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
BK polyomavirus (BKPyV), or BKV infection, is ubiquitous and usually non-pathogenic, with subclinical infections in 80–90% of adults worldwide. BKV infection is often associated with pathology in immunocompromised individuals. BKV infection often is associated with renal impairment, including ureteral stenosis, hemorrhagic cystitis, and nephropathy. BKV infection is less commonly associated with pneumonitis, retinitis, liver disease, and meningoencephalitis. BKV is known to replicate, establish latency, undergo reactivation, and induce clinical pathology in renal tubular epithelial cells. However, recent in vitro studies support the notion that BKV has expanded tropism-targeting glomerular parenchymal cells of the human kidney, which could impact glomerular function, enhance inflammation, and serve as viral reservoirs for reactivation from latency during immunosuppression. The implications of BKV expanded tropism in the glomerulus, and how specific host and viral factors that would contribute to glomerular inflammation, cytolysis, and renal fibrosis are related to BKV associated nephropathy (BKVAN), have not been explored. The pathogenesis of BKV in human glomerular parenchymal cells is poorly understood. In this review, I examine target cell populations for BKV infectivity in the human glomerulus. Specifically, I explore the implications of BKV expanded tropism in the glomerulus with regard viral entry, replication, and dissemination via cell types exposed to BKV trafficking in glomerulus. I also describe cellular targets shown to be permissive in vitro and in vivo for BKV infection and lytic replication, the potential role that glomerular parenchymal cells play in BKV latency and/or reactivation after immunosuppression, and the rare occurrence of BKV pathology in glomerular parenchymal cells in patients with BKVAN.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA.
| |
Collapse
|
17
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
18
|
Christakoudi S, Runglall M, Mobillo P, Tsui TL, Duff C, Domingo-Vila C, Kamra Y, Delaney F, Montero R, Spiridou A, Kassimatis T, Phin-Kon S, Tucker B, Farmer C, Strom TB, Lord GM, Rebollo-Mesa I, Stahl D, Sacks S, Hernandez-Fuentes MP, Chowdhury P. Development of a multivariable gene-expression signature targeting T-cell-mediated rejection in peripheral blood of kidney transplant recipients validated in cross-sectional and longitudinal samples. EBioMedicine 2019; 41:571-583. [PMID: 30833191 PMCID: PMC6441872 DOI: 10.1016/j.ebiom.2019.01.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/29/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Acute T-cell mediated rejection (TCMR) is usually indicated by alteration in serum-creatinine measurements when considerable transplant damage has already occurred. There is, therefore, a need for non-invasive early detection of immune signals that would precede the onset of rejection, prior to transplant damage. METHODS We examined the RT-qPCR expression of 22 literature-based genes in peripheral blood samples from 248 patients in the Kidney Allograft Immune Biomarkers of Rejection Episodes (KALIBRE) study. To account for post-transplantation changes unrelated to rejection, we generated time-adjusted gene-expression residuals from linear mixed-effects models in stable patients. To select genes, we used penalised logistic regression based on 27 stable patients and 27 rejectors with biopsy-proven T-cell-mediated rejection, fulfilling strict inclusion/exclusion criteria. We validated this signature in i) an independent group of stable patients and patients with concomitant T-cell and antibody-mediated-rejection, ii) patients from an independent study, iii) cross-sectional pre-biopsy samples from non-rejectors and iv) longitudinal follow-up samples covering the first post-transplant year from rejectors, non-rejectors and stable patients. FINDINGS A parsimonious TCMR-signature (IFNG, IP-10, ITGA4, MARCH8, RORc, SEMA7A, WDR40A) showed cross-validated area-under-ROC curve 0.84 (0.77-0.88) (median, 2.5th-97.5th centile of fifty cross-validation cycles), sensitivity 0.67 (0.59-0.74) and specificity 0.85 (0.75-0.89). The estimated probability of TCMR increased seven weeks prior to the diagnostic biopsy and decreased after treatment. Gene expression in all patients showed pronounced variability, with up to 24% of the longitudinal samples in stable patients being TCMR-signature positive. In patients with borderline changes, up to 40% of pre-biopsy samples were TCMR-signature positive. INTERPRETATION Molecular marker alterations in blood emerge well ahead of the time of clinically overt TCMR. Monitoring a TCMR-signature in peripheral blood could unravel T-cell-related pro-inflammatory activity and hidden immunological processes. This additional information could support clinical management decisions in cases of patients with stable but poor kidney function or with inconclusive biopsy results.
Collapse
Affiliation(s)
- Sofia Christakoudi
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; Biostatistics and Health Informatics Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom; Currently at Epidemiology and Biostatistics Department, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Manohursingh Runglall
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom
| | - Paula Mobillo
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Tjir-Li Tsui
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom; Renal Unit, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Claire Duff
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom
| | - Clara Domingo-Vila
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Yogesh Kamra
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom
| | - Florence Delaney
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom
| | - Rosa Montero
- Renal Unit, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom; Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Anastasia Spiridou
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom; Currently at Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom
| | - Theodoros Kassimatis
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Sui Phin-Kon
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, United Kingdom
| | - Beatriz Tucker
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, United Kingdom
| | - Christopher Farmer
- Department of Renal Medicine, East Kent Hospitals University NHS Foundation Trust, Kent, United Kingdom
| | - Terry B Strom
- Department of Medicine, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom; Renal Unit, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Irene Rebollo-Mesa
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; Biostatistics and Health Informatics Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom; Currently at UCB Celltech, Slough SL1 4NL, United Kingdom
| | - Daniel Stahl
- Biostatistics and Health Informatics Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Steven Sacks
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom; NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital, United Kingdom; Currently at UCB Celltech, Slough SL1 4NL, United Kingdom.
| | - Paramit Chowdhury
- Renal Unit, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
19
|
Sawinski D, Blumberg EA. Infection in Renal Transplant Recipients. CHRONIC KIDNEY DISEASE, DIALYSIS, AND TRANSPLANTATION 2019. [PMCID: PMC7152484 DOI: 10.1016/b978-0-323-52978-5.00040-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Höcker B, Tabatabai J, Schneble L, Oh J, Thiel F, Pape L, Rusai K, Topaloglu R, Kranz B, Klaus G, Printza N, Yavascan O, Fichtner A, Krupka K, Bruckner T, Waldherr R, Pawlita M, Schnitzler P, Hirsch HH, Tönshoff B. JC polyomavirus replication and associated disease in pediatric renal transplantation: an international CERTAIN Registry study. Pediatr Nephrol 2018; 33:2343-2352. [PMID: 30058047 DOI: 10.1007/s00467-018-4029-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND JC polyomavirus (JCPyV)-associated nephropathy (JCPyVAN) is a severe, but rare complication in adult renal transplant (RTx) recipients. Related data in pediatric patients are scarce. METHODS Based on the CERTAIN Registry, we therefore performed a multi-center, retrospective study on the JCPyV antibody status, prevalence of JCPyV replication, and its associated disease in 139 pediatric RTx recipients (mean age, 8.5 ± 5.3 years). JCPyV DNA in plasma and/or urine was measured by quantitative PCR at a median time of 3.2 (IQR, 0.3-8.1) years post-transplant. RESULTS 53.2% of patients were JCPyV-seronegative prior to transplantation; younger age was associated with JCPyV seronegativity. 34/139 (24.5%) patients post-transplant showed active JCPyV replication in either urine (22.0%), plasma (13.4%), or both (7.6%). JCPyV viremia occurred significantly (p < 0.001) more often in patients with viruria (34.6%) than in those without (7.6%), but 7/118 (5.9%) had isolated viremia. High-level viruria (> 107 copies/mL) was found in 29.6% of viruric patients. A higher net state of immunosuppression constituted an independent risk factor for JCPyV replication both in urine and plasma (OR 1.2, p < 0.02). Male patients tended to have a higher risk of JCPyV viremia than females (OR 4.3, p = 0.057). There was one male patient (0.7%) with JCPyVAN 7 years post-transplant, which resolved after reduction of immunosuppressive therapy. No patient exhibited progressive multifocal leukoencephalopathy. CONCLUSIONS This first multi-center study on JCPyV in pediatric renal transplant recipients shows that JCPyV replication is common (24.5%), with strong immunosuppression being a significant risk factor, but associated nephropathy is rare.
Collapse
Affiliation(s)
- Britta Höcker
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Julia Tabatabai
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
- German Center for Infection Research, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Lukas Schneble
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, Martinistr. 52, 20246, Hamburg, Germany
| | - Florian Thiel
- Department of Pediatric Nephrology, University Children's Hospital, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Pape
- Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Rezan Topaloglu
- Faculty of Medicine, Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey
| | - Birgitta Kranz
- Department of General Pediatrics, University Children's Hospital Münster, Waldeyerstraße 22, 48149, Münster, Germany
| | - Günter Klaus
- Department of Pediatric Nephrology, University Children's Hospital Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Nikoleta Printza
- 1st Pediatric Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Onder Yavascan
- Department of Pediatric Nephrology, Tepecik Teaching and Research Hospital, 1140/1 Sk No: 1, 35180 Yenisehir, İzmir, Turkey
| | - Alexander Fichtner
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Kai Krupka
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, 4009, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
21
|
Sakai K, Oguchi H, Muramatsu M, Shishido S. Protocol graft biopsy in kidney transplantation. Nephrology (Carlton) 2018; 23 Suppl 2:38-44. [DOI: 10.1111/nep.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Ken Sakai
- Department of Nephrology, Faculty of Medicine; Toho University; Tokyo Japan
| | - Hideyo Oguchi
- Department of Nephrology, Faculty of Medicine; Toho University; Tokyo Japan
| | - Masaki Muramatsu
- Department of Nephrology, Faculty of Medicine; Toho University; Tokyo Japan
| | - Seiichiro Shishido
- Department of Nephrology, Faculty of Medicine; Toho University; Tokyo Japan
| |
Collapse
|
22
|
Pelletier DJ, Czeczok TW, Bellizzi AM. A monoclonal antibody against SV40 large T antigen (PAb416) does not label Merkel cell carcinoma. Histopathology 2018; 73:162-166. [PMID: 29430700 DOI: 10.1111/his.13483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
AIMS Merkel cell carcinoma represents poorly differentiated neuroendocrine carcinoma of cutaneous origin. In most studies, the vast majority of Merkel cell carcinomas are Merkel cell polyomavirus (MCPyV)-associated. SV40 polyomavirus immunohistochemistry is typically used in the diagnosis of other polyomavirus-associated diseases, including tubulointerstitial nephritis and progressive multifocal leukoencephalopathy, given cross-reactivity with BK and JC polyomaviruses. MCPyV-specific immunohistochemistry is commercially available, but, if antibodies against SV40 also cross-reacted with MCPyV, that would be advantageous from a resource-utilisation perspective. METHODS AND RESULTS Tissue microarrays were constructed from 39 Merkel cell carcinomas, 24 small-cell lung carcinomas, and 18 extrapulmonary visceral small-cell carcinomas. SV40 large T antigen immunohistochemistry (clone PAb416) was performed; MCPyV large T antigen immunohistochemistry (clone CM2B4) had been previously performed. UniProt was used to compare the amino acid sequences of the SV40, BK, JC and MCPyV large T antigens, focusing on areas recognised by the PAb416 and CM2B4 clones. SV40 immunohistochemistry was negative in all tumours; MCPyV immunohistochemistry was positive in 38% of Merkel cell carcinomas and in 0% of non-cutaneous poorly differentiated neuroendocrine carcinomas. UniProt analysis revealed a high degree of similarity between SV40, BK, and JC viruses in the region recognised by PAb416. There was less homology between SV40 and MCPyV in this region, which was also interrupted by two long stretches of amino acids unique to MCPyV. The CM2B4 clone recognises a unique epitope in one of these stretches. CONCLUSIONS The PAb416 antibody against the SV40 large T antigen does not cross-react with MCPyV large T antigen, and thus does not label Merkel cell carcinoma.
Collapse
Affiliation(s)
- Daniel J Pelletier
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, IA, USA
| | - Thomas W Czeczok
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
23
|
Kassaby SS, Preiszner J, Youngberg GA. Optimizing the Use of a Voided Urine Cytology Specimen as Control Material for Anti-BK Virus Immunohistochemical Staining. Acta Cytol 2018; 62:234-236. [PMID: 29642056 DOI: 10.1159/000487792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022]
|
24
|
Nickeleit V, Singh HK, Randhawa P, Drachenberg CB, Bhatnagar R, Bracamonte E, Chang A, Chon WJ, Dadhania D, Davis VG, Hopfer H, Mihatsch MJ, Papadimitriou JC, Schaub S, Stokes MB, Tungekar MF, Seshan SV. The Banff Working Group Classification of Definitive Polyomavirus Nephropathy: Morphologic Definitions and Clinical Correlations. J Am Soc Nephrol 2017; 29:680-693. [PMID: 29279304 DOI: 10.1681/asn.2017050477] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/11/2017] [Indexed: 01/24/2023] Open
Abstract
Polyomavirus nephropathy (PVN) is a common viral infection of renal allografts, with biopsy-proven incidence of approximately 5%. A generally accepted morphologic classification of definitive PVN that groups histologic changes, reflects clinical presentation, and facilitates comparative outcome analyses is lacking. Here, we report a morphologic classification scheme for definitive PVN from the Banff Working Group on Polyomavirus Nephropathy, comprising nine transplant centers in the United States and Europe. This study represents the largest systematic analysis of definitive PVN undertaken thus far. In a retrospective fashion, clinical data were collected from 192 patients and correlated with morphologic findings from index biopsies at the time of initial PVN diagnosis. Histologic features were centrally scored according to Banff guidelines, including additional semiquantitative histologic assessment of intrarenal polyomavirus replication/load levels. In-depth statistical analyses, including mixed effects repeated measures models and logistic regression, revealed two independent histologic variables to be most significantly associated with clinical presentation: intrarenal polyomavirus load levels and Banff interstitial fibrosis ci scores. These two statistically determined histologic variables formed the basis for the definition of three PVN classes that correlated strongest with three clinical parameters: presentation at time of index biopsy, serum creatinine levels/renal function over 24 months of follow-up, and graft failure. The PVN classes 1-3 as described here can easily be recognized in routine renal biopsy specimens. We recommend using this morphologic PVN classification scheme for diagnostic communication, especially at the time of index diagnosis, and in scientific studies to improve comparative data analysis.
Collapse
Affiliation(s)
- Volker Nickeleit
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina;
| | - Harsharan K Singh
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh Medical Center-Montefiore, Pittsburgh, Pennsylvania
| | - Cinthia B Drachenberg
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Ramneesh Bhatnagar
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Erika Bracamonte
- Department of Pathology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - W James Chon
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke's Health System, Kansas City, Missouri
| | - Darshana Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Vicki G Davis
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | | | - John C Papadimitriou
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Stefan Schaub
- Transplantation Immunology and Nephrology, University Hospital of Basel, Basel, Switzerland
| | - Michael B Stokes
- Department of Pathology, Columbia Presbyterian Medical Center, New York, New York
| | - Mohammad F Tungekar
- Histopathology Department, St. Thomas' Hospital, Guy's and St. Thomas Foundation Trust and King's College London, London, United Kingdom; and
| | - Surya V Seshan
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | | |
Collapse
|
25
|
Primary Human Renal-Derived Tubular Epithelial Cells Fail to Recognize and Suppress BK Virus Infection. Transplantation 2017; 101:1820-1829. [PMID: 27755502 DOI: 10.1097/tp.0000000000001521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND BK polyomavirus (BKV)-associated nephropathy is a threat to kidney allograft survival affecting up to 15% of renal transplant patients. Previous studies revealed that tubular epithelial cells (TEC) show a limited response towards BKV infection. Here we investigated the interplay between BKV and TEC in more detail. In particular, we questioned whether BKV suppresses and/or evades antiviral responses. METHODS Human primary TEC and peripheral blood mononuclear cells were infected with BKV Dunlop strain or other viruses. Moreover, TEC were stimulated with genomic double-stranded (ds)DNA or IFN. Viral replication and cellular responses were measured using quantitative real time PCR and multiplex assay. RESULTS BKV infection of primary human TEC did not induce an antiviral response, whereas infection with influenza A virus, herpes simplex virus 1, or cytomegalovirus induced a strong antiviral response measured by upregulation of interferon-stimulated genes, such as CXCL10 and DAI. In addition, intracellular delivery of dsDNA or stimulation with IFN did elicit a rapid and pronounced response. However, BKV infection did not affect dsDNA-induced gene expression, indicating BKV did not modulate the antiviral response. Prestimulation of primary TEC with IFNα or dsDNA did not hamper replication of BKV, whereas influenza and herpes simplex virus 1 replication were clearly reduced. In contrast, BKV infection of leukocytes did elicit an antiviral response. CONCLUSIONS BKV specifically evades innate immunity in TEC and is not susceptible to an intrinsic interferon response, which may facilitate latent presence of the virus in this cell type.
Collapse
|
26
|
Mengel M. BK Virus Nephropathy Revisited. Am J Transplant 2017; 17:1972-1973. [PMID: 28510315 DOI: 10.1111/ajt.14358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/07/2017] [Accepted: 05/07/2017] [Indexed: 01/25/2023]
Affiliation(s)
- M Mengel
- University of Alberta, Department of Laboratory Medicine & Pathology, Edmonton, Canada
| |
Collapse
|
27
|
Barisoni L, Gimpel C, Kain R, Laurinavicius A, Bueno G, Zeng C, Liu Z, Schaefer F, Kretzler M, Holzman LB, Hewitt SM. Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology. Clin Kidney J 2017; 10:176-187. [PMID: 28584625 PMCID: PMC5455257 DOI: 10.1093/ckj/sfw129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022] Open
Abstract
The introduction of digital pathology to nephrology provides a platform for the development of new methodologies and protocols for visual, morphometric and computer-aided assessment of renal biopsies. Application of digital imaging to pathology made substantial progress over the past decade; it is now in use for education, clinical trials and translational research. Digital pathology evolved as a valuable tool to generate comprehensive structural information in digital form, a key prerequisite for achieving precision pathology for computational biology. The application of this new technology on an international scale is driving novel methods for collaborations, providing unique opportunities but also challenges. Standardization of methods needs to be rigorously evaluated and applied at each step, from specimen processing to scanning, uploading into digital repositories, morphologic, morphometric and computer-aided assessment, data collection and analysis. In this review, we discuss the status and opportunities created by the application of digital imaging to precision nephropathology, and present a vision for the near future.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Charlotte Gimpel
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center – University of Freiburg, Germany
| | - Renate Kain
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Arvydas Laurinavicius
- Faculty of Medicine and National Center of Pathology, Vilnius University, Vilnius, Lithuania
| | - Gloria Bueno
- VISILAB – E.T.S.I.I., University of Castilla-La Mancha, Ciudad Real, Spain
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Franz Schaefer
- University Children Hospital, Pediatric Nephrology, Heidelberg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lawrence B. Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
28
|
Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, Nankivell BJ, Colvin RB, Afrouzian M, Akalin E, Alachkar N, Bagnasco S, Becker JU, Cornell L, Drachenberg C, Dragun D, de Kort H, Gibson IW, Kraus ES, Lefaucheur C, Legendre C, Liapis H, Muthukumar T, Nickeleit V, Orandi B, Park W, Rabant M, Randhawa P, Reed EF, Roufosse C, Seshan SV, Sis B, Singh HK, Schinstock C, Tambur A, Zeevi A, Mengel M. The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology. Am J Transplant 2017; 17:28-41. [PMID: 27862883 PMCID: PMC5363228 DOI: 10.1111/ajt.14107] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 01/25/2023]
Abstract
The XIII Banff meeting, held in conjunction the Canadian Society of Transplantation in Vancouver, Canada, reviewed the clinical impact of updates of C4d-negative antibody-mediated rejection (ABMR) from the 2013 meeting, reports from active Banff Working Groups, the relationships of donor-specific antibody tests (anti-HLA and non-HLA) with transplant histopathology, and questions of molecular transplant diagnostics. The use of transcriptome gene sets, their resultant diagnostic classifiers, or common key genes to supplement the diagnosis and classification of rejection requires further consensus agreement and validation in biopsies. Newly introduced concepts include the i-IFTA score, comprising inflammation within areas of fibrosis and atrophy and acceptance of transplant arteriolopathy within the descriptions of chronic active T cell-mediated rejection (TCMR) or chronic ABMR. The pattern of mixed TCMR and ABMR was increasingly recognized. This report also includes improved definitions of TCMR and ABMR in pancreas transplants with specification of vascular lesions and prospects for defining a vascularized composite allograft rejection classification. The goal of the Banff process is ongoing integration of advances in histologic, serologic, and molecular diagnostic techniques to produce a consensus-based reporting system that offers precise composite scores, accurate routine diagnostics, and applicability to next-generation clinical trials.
Collapse
|
29
|
|
30
|
Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images. Mod Pathol 2016; 29:671-84. [PMID: 27102348 PMCID: PMC5515468 DOI: 10.1038/modpathol.2016.58] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/08/2022]
Abstract
The multicenter Nephrotic Syndrome Study Network (NEPTUNE) digital pathology scoring system employs a novel and comprehensive methodology to document pathologic features from whole-slide images, immunofluorescence and ultrastructural digital images. To estimate inter- and intra-reader concordance of this descriptor-based approach, data from 12 pathologists (eight NEPTUNE and four non-NEPTUNE) with experience from training to 30 years were collected. A descriptor reference manual was generated and a webinar-based protocol for consensus/cross-training implemented. Intra-reader concordance for 51 glomerular descriptors was evaluated on jpeg images by seven NEPTUNE pathologists scoring 131 glomeruli three times (Tests I, II, and III), each test following a consensus webinar review. Inter-reader concordance of glomerular descriptors was evaluated in 315 glomeruli by all pathologists; interstitial fibrosis and tubular atrophy (244 cases, whole-slide images) and four ultrastructural podocyte descriptors (178 cases, jpeg images) were evaluated once by six and five pathologists, respectively. Cohen's kappa for inter-reader concordance for 48/51 glomerular descriptors with sufficient observations was moderate (0.40<kappa≤0.60) for 17 and good (0.60<kappa≤0.80) for 8, for 52% with moderate or better kappas. Clustering of glomerular descriptors based on similar pathologic features improved concordance. Concordance was independent of years of experience, and increased with webinar cross-training. Excellent concordance was achieved for interstitial fibrosis and tubular atrophy. Moderate-to-excellent concordance was achieved for all ultrastructural podocyte descriptors, with good-to-excellent concordance for descriptors commonly used in clinical practice, foot process effacement, and microvillous transformation. NEPTUNE digital pathology scoring system enables novel morphologic profiling of renal structures. For all histologic and ultrastructural descriptors tested with sufficient observations, moderate-to-excellent concordance was seen for 31/54 (57%). Descriptors not sufficiently represented will require further testing. This study proffers the NEPTUNE digital pathology scoring system as a model for standardization of renal biopsy interpretation extendable outside the NEPTUNE consortium, enabling international collaborations.
Collapse
|
31
|
Hara S. Banff 2013 update: Pearls and pitfalls in transplant renal pathology. Nephrology (Carlton) 2016; 20 Suppl 2:2-8. [PMID: 26031578 DOI: 10.1111/nep.12474] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/16/2022]
Abstract
The pathological classification of rejection in renal allografts (Banff classification) has undergone substantial evolution for more than 20 years, and has been the diagnostic gold standard in clinical practice. The 2013 updated Banff classification encompasses a revised scheme of antibody-mediated rejection (ABMR) that consists of donor-specific antibody (DSA) positivity, characteristic histological manifestations for both acute and chronic ABMR, and DSA-induced endothelial cell injury which is represented by either C4d positivity, microvascular inflammation or expression of activated endothelial gene transcripts. Other modified criteria include a C4d positivity threshold, and histological definition of transplant glomerulitis and transplant glomerulopathy. Morphologically, glomerulonephritis, either recurrent or de novo, can be challenging to differentiate from ABMR-mediated transplant glomerulitis. Endothelial arteritis by itself does not warrant the diagnosis of acute T-cell mediated rejection; ABMR should also be considered based on the DSA test results. With regard to polyomavirus BK-associated nephropathy, immunohistochemical examination using anti-simian virus (SV) 40 antibody can be a promising method to assess the quantitative viral load of polyomavirus BK and graft survival. In summary, the 2013 updated Banff classification strictly defines ABMR with histopathological and serological criteria irrespective of C4d positivity. Inclusion of gene expression data relevant to ABMR highlights that the Banff criteria have entered the era of 'Seeing the Unseen' schemes, reflecting recent advances in understanding the molecular events in allograft injury.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
32
|
Troxell ML, Lanciault C. Practical Applications in Immunohistochemistry: Evaluation of Rejection and Infection in Organ Transplantation. Arch Pathol Lab Med 2016; 140:910-25. [PMID: 26759930 DOI: 10.5858/arpa.2015-0275-cp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT -Immunohistochemical analysis of tissue biopsy specimens is a crucial tool in diagnosis of both rejection and infection in patients with solid organ transplants. In the past 15 years, the concept of antibody-mediated rejection has been refined, and diagnostic criteria have been codified in renal, heart, pancreas, and lung allografts (with studies ongoing in liver, small intestine, and composite grafts), all of which include immunoanalysis for the complement split product C4d. OBJECTIVES -To review the general concepts of C4d biology and immunoanalysis, followed by organ-allograft-specific data, and interpretative nuances for kidney, pancreas, and heart, with discussion of early literature for lung and liver biopsies. Additionally, practical applications and limitations of immunostains for infectious organisms (Polyomavirus, Adenoviridae [adenovirus], and the herpes virus family, including Herpes simplex virus, Cytomegalovirus, Human herpes virus 8, and Epstein-Barr virus) are reviewed in the context of transplant recipients. DATA SOURCES -Our experience and published primary and review literature. CONCLUSIONS -Immunohistochemistry continues to have an important role in transplant pathology, most notably C4d staining in assessment of antibody-mediated rejection and assessment of viral pathogens in tissue. In all facets of transplant pathology, correlation of morphology with special studies and clinical data is critical, as is close communication with the transplant team.
Collapse
Affiliation(s)
| | - Christian Lanciault
- From the Department of Pathology, Oregon Health & Science University, Portland
| |
Collapse
|
33
|
Yapici Ü, Kers J, Slavujevic-Letic I, Stokman G, Roelofs JJTH, van Aalderen MC, Groothoff JW, de Boer OJ, van der Pant KAMI, Claessen N, Hilbrands LB, Bemelman FJ, Ten Berge IJM, Florquin S. Intragraft Blood Dendritic Cell Antigen-1-Positive Myeloid Dendritic Cells Increase during BK Polyomavirus-Associated Nephropathy. J Am Soc Nephrol 2015; 27:2502-10. [PMID: 26701980 DOI: 10.1681/asn.2015040442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022] Open
Abstract
Although both polyomavirus infection and T cell-mediated rejection (TCMR) are characterized by tubulointerstitial inflammation in the renal allograft, these conditions are treated with opposing therapeutic regimens. To gain more insight into the differences between antiviral and alloimmune responses, we performed a case-control study, in which we immunophenotyped the inflammatory infiltrates in renal biopsy specimens with BK polyomavirus-associated nephropathy (BKPyVAN) and specimens with TCMR. Compared with TCMR, BKPyVAN was diagnosed later after transplantation; therefore, BKPyVAN specimens showed more chronic damage than TCMR specimens showed. However, TCMR and BKPyVAN specimens had comparable levels of tubulointerstitial inflammation. Adjustment for confounders in various multivariable models revealed more blood dendritic cell antigen-1(+) (BDCA-1(+)) myeloid dendritic cells (mDCs) present during BKPyVAN (odds ratio, 2.31; 95% confidence interval, 1.03 to 5.16; P=0.04) than during TCMR. Double immunostaining for SV40 and BDCA-1 showed that, during BKPyVAN, BDCA-1(+) mDCs localized in proximity to the polyomavirus-infected tubular epithelial cells. We ensured that time of biopsy after transplantation was not a confounding factor by including additional specimens with late TCMR and protocol biopsy specimens matched for biopsy time. These additional specimens showed amounts of BDCA-1(+) mDCs comparable with amounts in the early TCMR specimens. These results suggest that BDCA-1(+) mDCs, known to be involved in the antiviral immune response during various viral infections, might have a pivotal role during BKPyVAN infection in the grafted kidney.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jaap W Groothoff
- Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; and
| | | | | | | | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Sequence Variation in Amplification Target Genes and Standards Influences Interlaboratory Comparison of BK Virus DNA Load Measurement. J Clin Microbiol 2015; 53:3842-52. [PMID: 26468499 DOI: 10.1128/jcm.02145-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
International guidelines define a BK virus (BKV) load of ≥4 log10 copies/ml as presumptive of BKV-associated nephropathy (BKVN) and a cutoff for therapeutic intervention. To investigate whether BKV DNA loads (BKVL) are comparable between laboratories, 2 panels of 15 and 8 clinical specimens (urine, whole blood, and plasma) harboring different BKV genotypes were distributed to 20 and 27 French hospital centers in 2013 and 2014, respectively. Although 68% of the reported results fell within the acceptable range of the expected result ±0.5 log10, the interlaboratory variation ranged from 1.32 to 5.55 log10. Polymorphisms specific to BKV genotypes II and IV, namely, the number and position of mutations in amplification target genes and/or deletion in standards, arose as major sources of interlaboratory disagreements. The diversity of DNA purification methods also contributed to the interlaboratory variability, in particular for urine samples. Our data strongly suggest that (i) commercial external quality controls for BKVL assessment should include all major BKV genotypes to allow a correct evaluation of BKV assays, and (ii) the BKV sequence of commercial standards should be provided to users to verify the absence of mismatches with the primers and probes of their BKV assays. Finally, the optimization of primer and probe design and standardization of DNA extraction methods may substantially decrease interlaboratory variability and allow interinstitutional studies to define a universal cutoff for presumptive BKVN and, ultimately, ensure adequate patient care.
Collapse
|
35
|
Abstract
Purpose of review Polyomavirus nephropathy (PVN) mainly caused by BK virus (BKV) remains the most common productive viral infection of the kidney. Over the past decade, clinical interest often focused on BK viremia and viruria as the diagnostic mainstays of patient management. The purpose of this review is to discuss viral nephropathy in the context of BK viremia and viruria and new strategies to optimize diagnostic accuracy and patient management. The emerging roles of polyomaviruses in oncogenesis, salivary gland disease, and post-bone marrow transplantation as well as novel Polyomavirus strains are highlighted. Recent findings Areas of investigation include proposals by the Banff working group on the classification of PVN and studies on PVN progression and resolution, including the role cellular immune responses may play during reconstitution injury. New noninvasive strategies to optimize the diagnosis of PVN, that is, the urinary ‘polyomavirus-haufen’ test and mRNA expression levels for BKV in the urine, hold great promise to accurately identify patients with viral nephropathy. Tools are now available to separate ‘presumptive’ from ‘definitive’ disease in various patient cohorts including individuals post-bone marrow transplantation. Recent observations also point to a currently underrecognized role of polyomaviruses in oncogenesis post-transplantation and salivary gland disease in patients with HIV-AIDS. Summary This review summarizes recent studies on PVN and the significance of the BKV strain in disease. Current paradigms for patient management post-(renal) transplantation are discussed in the setting of new observations. Issues that still require clarification and further validation are highlighted.
Collapse
|
36
|
Abstract
Background Determining eligibility for a kidney transplant is an important decision. Practice guidelines define contraindications to transplantation; however many are not evidence based. Canadian guidelines recommend that patients unlikely to survive the wait period not be evaluated. The purpose of this study was to evaluate what proportion of patients with a contraindication would survive the wait time. Methods Consecutive incident dialysis patients (January 2006 to December 2012) with a contraindication, defined using Canadian guidelines, were studied. Mortality rates were determined for each individual contraindication. Theoretical survival to the median wait time to transplantation was calculated. Results Of 746 incident patients, 435 (58 %) were deemed to have a contraindication at dialysis start. Nearly 80 % had a contraindication with a high mortality rate (dementia, multisystem disease, etc.). Patients with high mortality rates were less likely to survive the wait list than be transplanted. Patients with non-adherence, obesity, and potentially reversible disease had relatively low mortality rates, were more likely to survive, and possibly be transplanted at a time with the prospect of a better outcome. Conclusions This study gives some credence that many patients with a contraindication are not likely to benefit. A better framework of defining contraindications is needed to allow better decision-making.
Collapse
Affiliation(s)
- Bryce A Kiberd
- Department of Medicine, Dalhousie University, Queen Elizabeth II Health Sciences-VG Site, Room 5082 Dickson Building, 5820 University Avenue, Halifax, B3H 1V8 NS Canada
| | - Meteb M AlBugami
- Multiorgan Transplant Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Romuald Panek
- Department of Medicine, Dalhousie University, Queen Elizabeth II Health Sciences-VG Site, Room 5082 Dickson Building, 5820 University Avenue, Halifax, B3H 1V8 NS Canada
| | - Karthik Tennankore
- Department of Medicine, Dalhousie University, Queen Elizabeth II Health Sciences-VG Site, Room 5082 Dickson Building, 5820 University Avenue, Halifax, B3H 1V8 NS Canada
| |
Collapse
|
37
|
Adam B, Mengel M. Molecular nephropathology: ready for prime time? Am J Physiol Renal Physiol 2015; 309:F185-8. [PMID: 26017976 DOI: 10.1152/ajprenal.00153.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
In the current era of precision medicine, the existing nephropathology paradigm of light microscopy, immunofluorescence, and electron microscopy will become increasingly insufficient. There will be an expectation to supplement these traditional diagnostic tools with patient-specific information related to a growing understanding of molecular pathophysiology. Next generation sequencing technologies are expected to play a key role in the future of nephropathology, but transcriptomics is poised to represent the first major foray into routine molecular testing. The introduction of molecular techniques into clinical nephropathology has been hindered in part by the reliance of existing platforms on fresh tissue samples. The NanoString gene expression system works with formalin-fixed paraffin-embedded tissue and thus represents a promising solution to this technical barrier that may finally allow for the translation of recent transcriptomics discoveries into the enhancement of patient care. Widespread adoption of this new diagnostic dimension will require ongoing multidisciplinary cooperation between pathologists and clinicians, including molecular testing consensus generation and rigorous multicenter validation.
Collapse
Affiliation(s)
- Benjamin Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|