1
|
Lindeman JHN, Schaapherder AFM. Pathophysiological concepts of ischemia-reperfusion injury and normothermic, ex vivo kidney perfusion. Am J Transplant 2024; 24:1323-1324. [PMID: 38395150 DOI: 10.1016/j.ajt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Affiliation(s)
- Jan H N Lindeman
- Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
| | | |
Collapse
|
2
|
Liu H, Yeung WHO, Pang L, Liu J, Liu XB, Pan Ng KT, Zhang Q, Qiu WQ, Zhu Y, Ding T, Wang Z, Zhu JY, Lo CM, Man K. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts. JHEP Rep 2023; 5:100895. [PMID: 37916155 PMCID: PMC10616418 DOI: 10.1016/j.jhepr.2023.100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background & Aims The steatotic grafts have been applied in liver transplantation frequently owing to the high incidence of non-alcoholic fatty liver disease. However, fatty livers are vulnerable to graft injury. Myeloid-derived suppressor cell (MDSC) recruitment during liver graft injury promotes tumour recurrence. Lipid metabolism exerts the immunological influence on MDSCs in tumour progression. Here, we aimed to explore the role and mechanism of inflammasome activation in MDSCs induced by lipid metabolism during fatty liver graft injury and the subsequent effects on tumour recurrence. Methods MDSC populations and nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome levels were investigated in a clinical cohort and a rat liver transplantation model. The mechanism of NLRP3 activation by specific fatty acids was explored in mouse hepatic ischaemia/reperfusion injury (IRI) with tumour recurrence model and in vitro studies. Results MDSC populations and NLRP3 levels were increased with higher tumour recurrent rate in patients using steatotic grafts. NLRP3 was upregulated in MDSCs with lipid accumulation post mouse fatty liver IRI. Mechanistically, arachidonic acid was discovered to activate NLRP3 inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which was identified by screening lipid uptake receptors. The mitochondrial dysfunction with enhanced reactive oxygen species bridged arachidonic acid uptake and NLRP3 activation in MDSCs, which subsequently stimulated CD4+ T cells producing more IL-17 in fatty liver IRI. Blockade of FATP2 inhibited NLRP3 activation in MDSCs, IL-17 production in CD4+ T cells, and the tumour recurrence post fatty liver IRI. Conclusions During fatty liver graft injury, arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2, which subsequently stimulated CD4+ T cells producing IL-17 to promote tumour recurrence post transplantation. Impact and implications The high incidence of non-alcoholic fatty liver disease resulted in the frequent application of steatotic donors in liver transplantation. Our data showed that the patients who underwent liver transplantation using fatty grafts experienced higher tumour recurrence. We found that arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2 during fatty liver graft injury, which led to more IL-17 secretion of CD4+ T cells and promoted tumour recurrence post transplantation. The inflammasome activation by aberrant fatty acid metabolism in MDSCs bridged the acute-phase fatty liver graft injury and liver tumour recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wai Ho Oscar Yeung
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Pang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingmei Zhang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen Qi Qiu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe Wang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ji Ye Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
4
|
Oh CJ, Kim MJ, Lee JM, Kim DH, Kim IY, Park S, Kim Y, Lee KB, Lee SH, Lim CW, Kim M, Lee JY, Pagire HS, Pagire SH, Bae MA, Chanda D, Thoudam T, Khang AR, Harris RA, Ahn JH, Jeon JH, Lee IK. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion. Kidney Int 2023; 104:724-739. [PMID: 37399974 DOI: 10.1016/j.kint.2023.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Hun Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sanghee Park
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Kyung-Bok Lee
- Center for Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Chae Won Lim
- Department of Medicine, Graduate School, Daegu Catholic University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Myeongjin Kim
- Department of Medicine, Graduate School, Daegu Catholic University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jung-Yi Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ah Reum Khang
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Devaux JBL, Hedges CP, Birch N, Herbert N, Renshaw GMC, Hickey AJR. Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae). J Comp Physiol B 2023:10.1007/s00360-023-01495-4. [PMID: 37145369 DOI: 10.1007/s00360-023-01495-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
While oxygen is essential for oxidative phosphorylation, O2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O2 pressure (PO2) and has traditionally been assessed in O2 saturated media, PO2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO2, net ROS production was similar among all species; however at elevated PO2, brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic-hyperoxic transitions.
Collapse
Affiliation(s)
- Jules B L Devaux
- School of Biological Sciences, The University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Chris P Hedges
- School of Biological Sciences, The University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Nigel Birch
- School of Biological Sciences, The University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Neill Herbert
- Institute of Marine Science, The University Auckland, Auckland, 1142, New Zealand
| | - Gillian M C Renshaw
- School of Allied Health Sciences, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Anthony J R Hickey
- School of Biological Sciences, The University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
6
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
7
|
Kim JS, Chapman WC, Lin Y. Mitochondrial Autophagy in Ischemic Aged Livers. Cells 2022; 11:cells11244083. [PMID: 36552847 PMCID: PMC9816943 DOI: 10.3390/cells11244083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial autophagy (mitophagy) is a central catabolic event for mitochondrial quality control. Defective or insufficient mitophagy, thus, can result in mitochondrial dysfunction, and ultimately cell death. There is a strong causal relationship between ischemia/reperfusion (I/R) injury and mitochondrial dysfunction following liver resection and transplantation. Compared to young patients, elderly patients poorly tolerate I/R injury. Accumulation of abnormal mitochondria after I/R is more prominent in aged livers than in young counterparts. This review highlights how altered autophagy is mechanistically involved in age-dependent hypersensitivity to reperfusion injury.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence:
| | - William C. Chapman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| | - Yiing Lin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| |
Collapse
|
8
|
Atallah R, Olschewski A, Heinemann A. Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1. Biomedicines 2022; 10:3089. [PMID: 36551845 PMCID: PMC9775124 DOI: 10.3390/biomedicines10123089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis is an essential process by which new blood vessels develop from existing ones. While adequate angiogenesis is a physiological process during, for example, tissue repair, insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro- and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics. During the last decade, exciting data highlighted non-metabolic functions of intermediates of the mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate to angiogenesis in various contexts and through different mechanisms. As the concept of targeting metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive insight into how this metabolite functions as an angiogenic signal will provide a useful approach to understand diseases with aberrant or excessive angiogenic background, and may provide strategies to tackle them.
Collapse
Affiliation(s)
- Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Tong W, Hannou SA, Wang Y, Astapova I, Sargsyan A, Monn R, Thiriveedi V, Li D, McCann JR, Rawls JF, Roper J, Zhang GF, Herman MA. The intestine is a major contributor to circulating succinate in mice. FASEB J 2022; 36:e22546. [PMID: 36106538 PMCID: PMC9523828 DOI: 10.1096/fj.202200135rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Collapse
Affiliation(s)
- Wenxin Tong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - You Wang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Diana Li
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Jatin Roper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Guo-fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Ortona S, Barisione C, Ferrari PF, Palombo D, Pratesi G. PCSK9 and Other Metabolic Targets to Counteract Ischemia/Reperfusion Injury in Acute Myocardial Infarction and Visceral Vascular Surgery. J Clin Med 2022; 11:jcm11133638. [PMID: 35806921 PMCID: PMC9267902 DOI: 10.3390/jcm11133638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury complicates both unpredictable events (myocardial infarction and stroke) as well as surgically-induced ones when transient clampage of major vessels is needed. Although the main cause of damage is attributed to mitochondrial dysfunction and oxidative stress, the use of antioxidant compounds for protection gave poor results when challenged in clinics. More recently, there is an assumption that, in humans, profound metabolic changes may prevail in driving I/R injury. In the present work, we narrowed the field of search to I/R injury in the heart/brain/kidney axis in acute myocardial infarction, major vascular surgery, and to the current practice of protection in both settings; then, to help the definition of novel strategies to be translated clinically, the most promising metabolic targets with their modulatory compounds—when available—and new preclinical strategies against I/R injury are described. The consideration arisen from the broad range of studies we have reviewed will help to define novel therapeutic approaches to ensure mitochondrial protection, when I/R events are predictable, and to cope with I/R injury, when it occurs unexpectedly.
Collapse
Affiliation(s)
- Silvia Ortona
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
| | - Chiara Barisione
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-010-555-7881
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145 Genoa, Italy;
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, Via Montallegro, 1, 16145 Genoa, Italy
| | - Giovanni Pratesi
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
11
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Lindeman JH, Wijermars LG, Kostidis S, Mayboroda OA, Harms AC, Hankemeier T, Bierau J, Sai Sankar Gupta KB, Giera M, Reinders ME, Zuiderwijk MC, Le Dévédec SE, Schaapherder AF, Bakker JA. Results of an explorative clinical evaluation suggest immediate and persistent post-reperfusion metabolic paralysis drives kidney ischemia reperfusion injury. Kidney Int 2020; 98:1476-1488. [PMID: 32781105 DOI: 10.1016/j.kint.2020.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023]
Abstract
Delayed graft function is the manifestation of ischemia reperfusion injury in the context of kidney transplantation. While hundreds of interventions successfully reduce ischemia reperfusion injury in experimental models, all clinical interventions have failed. This explorative clinical evaluation examined possible metabolic origins of clinical ischemia reperfusion injury combining data from 18 pre- and post-reperfusion tissue biopsies with 36 sequential arteriovenous blood samplings over the graft in three study groups. These groups included living and deceased donor grafts with and without delayed graft function. Group allocation was based on clinical outcome. Magic angle NMR was used for tissue analysis and mass spectrometry-based platforms were used for plasma analysis. All kidneys were functional at one-year. Integration of metabolomic data identified a discriminatory profile to recognize future delayed graft function. This profile was characterized by post-reperfusion ATP/GTP catabolism (significantly impaired phosphocreatine recovery and significant persistent (hypo)xanthine production) and significant ongoing tissue damage. Failing high-energy phosphate recovery occurred despite activated glycolysis, fatty-acid oxidation, glutaminolysis and autophagia, and related to a defect at the level of the oxoglutarate dehydrogenase complex in the Krebs cycle. Clinical delayed graft function due to ischemia reperfusion injury associated with a post-reperfusion metabolic collapse. Thus, efforts to quench delayed graft function due to ischemia reperfusion injury should focus on conserving metabolic competence, either by preserving the integrity of the Krebs cycle and/or by recruiting metabolic salvage pathways.
Collapse
Affiliation(s)
- Jan H Lindeman
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands.
| | - Leonie G Wijermars
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - Sarantos Kostidis
- Department of Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Oleg A Mayboroda
- Department of Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Amy C Harms
- Department of Analytical BioSciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Martin Giera
- Department of Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Marlies E Reinders
- Department of Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Melissa C Zuiderwijk
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands; Department of Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Department of Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Jaap A Bakker
- Department of Clinical Chemistry & Laboratory Medicine, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
13
|
Beach TE, Prag HA, Pala L, Logan A, Huang MM, Gruszczyk AV, Martin JL, Mahbubani K, Hamed MO, Hosgood SA, Nicholson ML, James AM, Hartley RC, Murphy MP, Saeb-Parsy K. Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. Redox Biol 2020; 36:101640. [PMID: 32863205 PMCID: PMC7372157 DOI: 10.1016/j.redox.2020.101640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Renal ischemia reperfusion (IR) injury leads to significant patient morbidity and mortality, and its amelioration is an urgent unmet clinical need. Succinate accumulates during ischemia and its oxidation by the mitochondrial enzyme succinate dehydrogenase (SDH) drives the ROS production that underlies IR injury. Consequently, compounds that inhibit SDH may have therapeutic potential against renal IR injury. Among these, the competitive SDH inhibitor malonate, administered as a cell-permeable malonate ester prodrug, has shown promise in models of cardiac IR injury, but the efficacy of malonate ester prodrugs against renal IR injury have not been investigated. Here we show that succinate accumulates during ischemia in mouse, pig and human models of renal IR injury, and that its rapid oxidation by SDH upon reperfusion drives IR injury. We then show that the malonate ester prodrug, dimethyl malonate (DMM), can ameliorate renal IR injury when administered at reperfusion but not prior to ischemia in the mouse. Finally, we show that another malonate ester prodrug, diacetoxymethyl malonate (MAM), is more potent than DMM because of its faster esterase hydrolysis. Our data show that the mitochondrial mechanisms of renal IR injury are conserved in the mouse, pig and human and that inhibition of SDH by ‘tuned’ malonate ester prodrugs, such as MAM, is a promising therapeutic strategy in the treatment of clinical renal IR injury. Accumulation of succinate during renal ischemia is conserved across species. Succinate dehydrogenase is a key therapeutic target in renal ischemia-reperfusion. Malonate may inhibit succinate dehydrogenase during ischemia and on reperfusion. Ester prodrugs enable delivery of malonate to succinate dehydrogenase in vivo. Malonate ester prodrugs may be ‘fine-tuned’ to optimise their delivery and efficacy.
Collapse
Affiliation(s)
- Timothy E Beach
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Laura Pala
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Margaret M Huang
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jack L Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Krishnaa Mahbubani
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Mazin O Hamed
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sarah A Hosgood
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michael L Nicholson
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
14
|
Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets. PROTOPLASMA 2020; 257:335-343. [PMID: 31612315 DOI: 10.1007/s00709-019-01439-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/30/2019] [Indexed: 05/05/2023]
Abstract
Stroke is one of the main causes of mortality and disability in most countries of the world. The only way of managing patients with ischemic stroke is the use of intravenous tissue plasminogen activator and endovascular thrombectomy. However, very few patients receive these treatments as the therapeutic time window is narrow after an ischemic stroke. The paucity of stroke management approaches can only be addressed by identifying new possible therapeutic targets. Mitochondria have been a rare target in the clinical management of stroke. Previous studies have only investigated the bioenergetics and apoptotic roles of this organelle; however, the mitochondrion is now considered as a key organelle that participates in many cellular and molecular functions. This review discusses the mitochondrial mechanisms in cerebral ischemia such as its role in reactive oxygen species (ROS) generation, apoptosis, and electron transport chain dysfunction. Understanding the mechanisms of mitochondria in neural cell death during ischemic stroke might help to design new therapeutic targets for ischemic stroke as well as other neurological diseases.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| |
Collapse
|
15
|
Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, Kim SJ, Shao YF, Zhang YH. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch 2020; 472:367-374. [DOI: 10.1007/s00424-020-02355-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
|
16
|
The Neglectable Impact of Delayed Graft Function on Long-term Graft Survival in Kidneys Donated After Circulatory Death Associates With Superior Organ Resilience. Ann Surg 2019; 270:877-883. [DOI: 10.1097/sla.0000000000003515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Choi J, Shoaib M, Yin T, Nayyar G, Shinozaki K, Stevens JF, Becker LB, Kim J. Tissue-Specific Metabolic Profiles After Prolonged Cardiac Arrest Reveal Brain Metabolome Dysfunction Predominantly After Resuscitation. J Am Heart Assoc 2019; 8:e012809. [PMID: 31475603 PMCID: PMC6755859 DOI: 10.1161/jaha.119.012809] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Cardiac arrest (CA) has been a leading cause of death for many decades. Despite years of research, we still do not understand how each organ responds to the reintroduction of blood flow after prolonged CA. Following changes in metabolites of individual organs after CA and resuscitation gives context to the efficiency and limitations of current resuscitation protocols. Methods and Results Adult male Sprague–Dawley rats were arbitrarily assigned into 3 groups: control, 20 minutes of CA, or 20 minutes of CA followed by 30 minutes of cardiopulmonary bypass resuscitation. The rats were euthanized by decapitation to harvest brain, heart, kidney, and liver tissues. The obtained tissue samples were analyzed by ultra‐high‐performance liquid chromatography–high‐accuracy mass spectrometry for comprehensive metabolomics evaluation. After resuscitation, the brain showed decreased glycolysis metabolites and fatty acids and increased amino acids compared with control. Similarly, the heart displayed alterations mostly in amino acids. The kidney showed decreased amino acid and fatty acid pools with severely increased tricarboxylic acid cycle metabolites following resuscitation, while the liver showed minimal alterations with slight changes in the lipid pool. Each tissue has a distinct pattern of metabolite changes after ischemia/reperfusion. Furthermore, resuscitation worsens the metabolic dysregulation in the brain and kidney, while it normalizes metabolism in the heart. Conclusions Developing metabolic profiles using a global metabolome analysis identifies the variable nature of metabolites in individual organs after CA and reperfusion, establishing a stark contrast between the normalized heart and liver and the exacerbated brain and kidney, only after the reestablishment of blood circulation.
Collapse
Affiliation(s)
- Jaewoo Choi
- Linus Pauling Institute Oregon State University Corvallis OR
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| | - Tai Yin
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY
| | | | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY
| | - Jan F Stevens
- Linus Pauling Institute Oregon State University Corvallis OR.,Department of Pharmaceutical Sciences Oregon State University Corvallis OR
| | - Lance B Becker
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY.,Department of Emergency Medicine North Shore University Hospital Manhasset NY
| | - Junhwan Kim
- Laboratory for Critical Care Physiology Feinstein Institute for Medical Research Manhasset NY.,Department of Molecular Medicine Zucker School of Medicine at Hofstra/Northwell Hempstead NY.,Department of Emergency Medicine North Shore University Hospital Manhasset NY
| |
Collapse
|
18
|
Increase in post-reperfusion sensitivity to tissue plasminogen activator-mediated fibrinolysis during liver transplantation is associated with abnormal metabolic changes and increased blood product utilisation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:312-320. [PMID: 30747704 DOI: 10.2450/2019.0205-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Increased systemic fibrinolytic activity can occur in liver transplant recipients after the donor graft is reperfused. However, it remains unclear whether this is related solely to tissue plasminogen activator (t-PA) levels or whether unique metabolic changes can alter t-PA activity and enhance fibrinolytic activity. We hypothesise that an increase in sensitivity to t-PA-mediated fibrinolysis (StF) following liver reperfusion is associated with specific metabolic abnormalities. MATERIALS AND METHODS Liver transplant recipients had serial blood samples analysed with a modified thrombelastography assay using exogenous t-PA to measure sensitivity/resistance to fibrinolysis with the lysis 30 min after maximum clot strength (tLY30). Paired plasma samples were analysed with mass spectroscopy-based metabolomics. The tLY30 was correlated to metabolites using Spearman's rho. StF was defined as a tLY30 change of >8.5% from the anhepatic phase to 30 min after reperfusion based on the distribution of tLY30 in a healthy control population. RESULTS StF occurred in 53% of patients. Cohorts had similar MELD scores (18 vs 16, p=0.876) and tLY30 at baseline (p=0.867) and anhepatic phase of surgery (p=0.463). Thirty min after reperfusion, the tLY30 was 73% in patient with StF vs 33% in those without StF 33% (p=0.006). StF was associated with increased red blood cell transfusions (p=0.035), during the first 2 hours of reperfusion. Nine metabolites demonstrated a correlation with tLY30 (p<0.05). DISCUSSION StF is a transient event that resolves within 2 hours of graft reperfusion and is associated with increased blood product use. This phenomenon correlates with derangements in citric acid cycle, purine and amino acid metabolism. Future research is needed to determine whether these metabolites are biomarkers or mechanistically linked to increased sensitivity to t-PA-mediated fibrinolytic activity following graft reperfusion.
Collapse
|
19
|
Kostidis S, Bank JR, Soonawala D, Nevedomskaya E, van Kooten C, Mayboroda OA, de Fijter JW. Urinary metabolites predict prolonged duration of delayed graft function in DCD kidney transplant recipients. Am J Transplant 2019; 19:110-122. [PMID: 29786954 DOI: 10.1111/ajt.14941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/25/2023]
Abstract
Extending kidney donor criteria, including donation after circulatory death (DCD), has resulted in increased rates of delayed graft function (DGF) and primary nonfunction. Here, we used Nuclear Magnetic Resonance (NMR) spectroscopy to analyze the urinary metabolome of DCD transplant recipients at multiple time points (days 10, 42, 180, and 360 after transplantation). The aim was to identify markers that predict prolonged duration of functional DGF (fDGF). Forty-seven metabolites were quantified and their levels were evaluated in relation to fDGF. Samples obtained at day 10 had a different profile than samples obtained at the other time points. Furthermore, at day 10 there was a statistically significant increase in eight metabolites and a decrease in six metabolites in the group with fDGF (N = 53) vis-à-vis the group without fDGF (N = 22). In those with prolonged fDGF (≥21 days) (N = 17) urine lactate was significantly higher and pyroglutamate lower than in those with limited fDGF (<21 days) (N = 36). In order to further distinguish prolonged fDGF from limited fDGF, the ratios of all metabolites were analyzed. In a logistic regression analysis, the sum of branched-chain amino acids (BCAAs) over pyroglutamate and lactate over fumarate, predicted prolonged fDGF with an AUC of 0.85. In conclusion, kidney transplant recipients with fDGF can be identified based on their altered urinary metabolome. Furthermore, two ratios of urinary metabolites, lactate/fumarate and BCAAs/pyroglutamate, adequately predict prolonged duration of fDGF.
Collapse
Affiliation(s)
- S Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J R Bank
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - D Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Nevedomskaya
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol 2019; 34:1167-1174. [PMID: 29860579 PMCID: PMC6366561 DOI: 10.1007/s00467-018-3984-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.
Collapse
Affiliation(s)
- Jack L Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Timothy E Beach
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
21
|
Propofol Prevents Oxidative Stress by Decreasing the Ischemic Accumulation of Succinate in Focal Cerebral Ischemia–Reperfusion Injury. Neurochem Res 2017; 43:420-429. [DOI: 10.1007/s11064-017-2437-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
|
22
|
Galkin A, Moncada S. Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. Interface Focus 2017; 7:20160104. [PMID: 28382200 DOI: 10.1098/rsfs.2016.0104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, there have been significant advances in our understanding of the functions of mitochondrial complex I other than the generation of energy. These include its role in generation of reactive oxygen species, involvement in the hypoxic tissue response and its possible regulation by nitric oxide (NO) metabolites. In this review, we will focus on the hypoxic conformational change of this mitochondrial enzyme, the so-called active/deactive transition. This conformational change is physiological and relevant to the understanding of certain pathological conditions including, in the cardiovascular system, ischaemia/reperfusion (I/R) damage. We will discuss how complex I can be affected by NO metabolites and will outline some potential mitochondria-targeted therapies in I/R damage.
Collapse
Affiliation(s)
- Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, 5th floor, New York, NY 10065, USA; Queens University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Salvador Moncada
- Manchester Cancer Research Centre , University of Manchester , Wilmslow Road, Manchester M20 4QL , UK
| |
Collapse
|