1
|
Song D, Wei W, Zhang J, Zhang L, Huo J, Wang W. The mechanism of baicalin in improving pulmonary inflammatory response and injury and regulating intestinal flora in Mycoplasma pneumoniae pneumonia mice. Cell Signal 2025; 126:111530. [PMID: 39603438 DOI: 10.1016/j.cellsig.2024.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. We explored the mechanisms of baicalin (BIA) affecting pulmonary inflammation and injury and regulated their intestinal flora through the TLR4/NF-κB pathway in MP pneumonia (MPP) mice with intestinal dysbiosis. METHODS The intestinal dysbiosis and the MPP mouse models with intestinal dysbiosis were established and treated with different doses of BIA, with lung wet-to-dry weight (W/D) ratio weighed. Kits were conducted to detect MP expression and serum C-reactive protein (CRP)/INF-γ/TNF-α/IL-1β/IL-8 levels, and RT-qPCR and Western blot to determine TLR4/MyD88/NF-κBp65 levels. Lung injury was assessed using HE staining, and intestinal flora structure using 16S rDNA sequencing. Gas chromatography-mass spectrometry determined fecal short-chain fatty acid (SFCA) content. RESULTS The broad-spectrum antibiotic mixture caused enlarged cecum, increased contents, darker color, weight loss, decreased intestinal flora abundance and diversity, and intestinal flora structure imbalance in mice. The MP-infected intestinal dysbiosis mice exhibited elevated MP expression, reduced body weight, increased W/D ratio, elevated serum CRP/INF-γ/TNFα/IL-1β/IL-8 levels, as well as interstitial pneumonitis in lungs. TLR4/MyD88/NF-κB p65 were elevated in lung tissues of MPP mice with intestinal dysbiosis. BIA partially reversed pulmonary inflammation and injury, and restored the flora diversity and SCFAs in MPP mice with intestinal dysbiosis. CONCLUSION BIA attenuated pulmonary inflammation and injury and modulated their intestinal flora imbalance by inhibiting the TLR4/NF-κB pathway in MPP mice with intestinal dysbiosis.
Collapse
Affiliation(s)
- Dan Song
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Jie Zhang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Lu Zhang
- Heilongjiang Nursing College, Harbin 150086, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China.
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| |
Collapse
|
2
|
Rhim JW, Kang JH, Lee KY. Etiological and pathophysiological enigmas of severe coronavirus disease 2019, multisystem inflammatory syndrome in children, and Kawasaki disease. Clin Exp Pediatr 2022; 65:153-166. [PMID: 34809418 PMCID: PMC8990954 DOI: 10.3345/cep.2021.01270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a novel multisystem inflammatory syndrome in children (MIS-C) has been reported worldwide since the first cases were reported in Europe in April 2020. MIS-C is temporally associated with severe acute respiratory syndrome coronavirus 2 infection and shows Kawasaki disease (KD)-like features. The epidemiological and clinical characteristics in COVID-19, KD, and MIS-C differ, but severe cases of each disease share similar clinical and laboratory findings such as a protracted clinical course, multiorgan involvement, and similar activated biomarkers. These findings suggest that a common control system of the host may act against severe disease insult. To solve the enigmas, we proposed the protein-homeostasis-system hypothesis in that every disease involves etiological substances and the host's immune system controls them by their size and biochemical properties. Also, it is proposed that the etiological agents of KD and MIS-C might be certain strains in the microbiota of human species and etiological substances in severe COVID-19, KD, and MIS-C originate from pathogen-infected cells. Since disease severity depends on the amounts of inflammation-inducing substances and corresponding immune activation in the early stage of the disease, an early proper dose of corticosteroids and/or intravenous immunoglobulin (IVIG) may help reduce morbidity and possibly mortality among patients with these diseases. Corticosteroids are low cost and an analogue of host-origin cortisol among immune modulators. This study's findings will help clinicians treating severe COVID-19, KD, and MIS-C, especially in developing countries, where IVIG and biologics supplies are insufficient.
Collapse
Affiliation(s)
- Jung-Woo Rhim
- Department of Pediatrics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jin-Han Kang
- Department of Pediatrics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyung-Yil Lee
- Department of Pediatrics, The Catholic University of Korea College of Medicine, Seoul, Korea.,Junglock Biomedical Institute, Daejeon, Korea
| |
Collapse
|
3
|
Hu W, Gao W, Liu Z, Fang Z, Zhao J, Zhang H, Lu W, Chen W. Biodiversity and Physiological Characteristics of Novel Faecalibacterium prausnitzii Strains Isolated from Human Feces. Microorganisms 2022; 10:microorganisms10020297. [PMID: 35208752 PMCID: PMC8876097 DOI: 10.3390/microorganisms10020297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 01/27/2023] Open
Abstract
Faecalibacterium prausnitzii is prevalent in the human gut and is a potential candidate for next-generation probiotics (NGPs) or biotherapeutics. However, the biodiversity and physiological characteristics of Faecalibacterium prausnitzii remain unclear. This study isolated 26 novel F. prausnitzii strains from human feces using a combination of negative screening and prime-specific PCR amplification (NSPA). Based on a 16S rRNA gene analysis, F. prausnitzii strains can be classified into two main phylogroups (phylogroups I and II), which were further clustered into five subgroups (I-A, II-B, II-C, II-D, and II-E). The ultrastructure, colony morphology, growth performance, and short-chain fatty acids (SCFAs)-producing ability were found to be variable among these F. prausnitzii isolates. The optimal pH for the isolates growth ranged between 6.0 and 7.0, while most isolates were inhibited by 0.1% of bile salts. Antimicrobial resistance profiles showed that all F. prausnitzii isolates were susceptible to vancomycin, whereas >80% were kanamycin and gentamicin resistant. Additionally, all strains can utilize maltose, cellulose, and fructose but not xylose, sorbose, and 2′-FL. Overall, our work provides new insights into the biodiversity and physiological characteristics of F. prausnitzii, as well as the choices of strains suitable for NGPs.
Collapse
Affiliation(s)
- Wenbing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyu Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zongmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85197302
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Liwinski T, Elinav E. Harnessing the microbiota for therapeutic purposes. Am J Transplant 2020; 20:1482-1488. [PMID: 31858698 DOI: 10.1111/ajt.15753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
The myriads of microorganisms colonizing the human host (microbiome) affect virtually every aspect of its physiology in health and disease. The past decade witnessed unprecedented advances in microbiome research. The field rapidly transitioned from descriptive studies to deep mechanistic insights into host-microbiome interactions. This offers the opportunity for microbiome-targeted therapeutic manipulation. Currently, several strategies of microbiome-targeted interventions are intensively explored. Best evidence from human randomized clinical trials is available for fecal microbiota transplantation (FMT). However, patient eligibility as well as long-term efficacy and safety are not sufficiently defined. Therefore, there is currently no officially approved indication for FMT. Probiotics (live microorganisms) have long been discussed as a means to aid human health but have yielded varying results. Emerging techniques utilizing microbiota-targeted diets, small microbial molecules, recombinant bacteriophages, and precise control of strain abundance recently yielded promising results but require further investigation. The rapid technological progress of "omics" tools spurs advances in personalized medicine. Understanding and integration of interindividual microbiome variability holds potential to promote personalized preventive and therapeutic approaches. Emerging evidence points towards the microbiome as an important player having an impact on transplantation outcomes. Microbiome-targeted interventions have potential to aid against the many challenges faced by transplant recipients.
Collapse
Affiliation(s)
- Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
von Gerichten J, Lamprecht D, Opálka L, Soulard D, Marsching C, Pilz R, Sencio V, Herzer S, Galy B, Nordström V, Hopf C, Gröne HJ, Trottein F, Sandhoff R. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J Lipid Res 2019; 60:1892-1904. [PMID: 31484693 DOI: 10.1194/jlr.ra119000236] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Robert Pilz
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Valentin Sencio
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
6
|
Rey K, Manku S, Enns W, Van Rossum T, Bushell K, Morin RD, Brinkman FSL, Choy JC. Disruption of the Gut Microbiota With Antibiotics Exacerbates Acute Vascular Rejection. Transplantation 2019. [PMID: 29538261 DOI: 10.1097/tp.0000000000002169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The gut microbiota influences many immunological processes but how its disruption affects transplant rejection is poorly understood. METHODS Interposition grafting of aortic segments was used to examine vascular rejection. The gut microbiota was disrupted in graft recipients using an antibiotic cocktail (ampicillin, vancomycin, metronidazole, neomycin sulfate) in their drinking water. RESULTS Treatment of mice with antibiotics severely reduced total bacterial content in the intestine and disrupted the bacterial composition. Short-term treatment of mice for only the first 3 weeks of life resulted in the population of the intestine in mature mice with bacterial communities that were mildly different from untreated mice, containing slightly more Clostridia and less Bacteroides. Antibiotic disruption of the gut microbiota of graft recipients, either for their entire life or only during the first 3 weeks of life, resulted in increased medial injury of allograft arteries that is reflective of acute vascular rejection but did not affect intimal thickening reflective of transplant arteriosclerosis. Exacerbated vascular rejection resulting from disruption of the gut microbiota was related to increased infiltration of allograft arteries by neutrophils. CONCLUSIONS Disruption of the gut microbiota early in life results in exacerbation of immune responses that cause acute vascular rejection.
Collapse
Affiliation(s)
- Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sukhbir Manku
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
7
|
Rhim JW, Kang HM, Han JW, Lee KY. A Presumed Etiology of Kawasaki Disease Based on Epidemiological Comparison With Infectious or Immune-Mediated Diseases. Front Pediatr 2019; 7:202. [PMID: 31165053 PMCID: PMC6536658 DOI: 10.3389/fped.2019.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Kawasaki disease (KD) may be associated with infection of unknown pathogen(s). For predicting of the etiology of KD, we evaluated epidemiological characteristics in KD, common infectious diseases and immune-mediated diseases in childhood. Methods: We respectively, reviewed the data of patients with KD, influenza, aseptic meningitis, exanthem subitum (ES), Mycoplasma pneumoniae (MP) pneumonia, acute pyelonephritis (APN), Henoch-Schönlein purpura (HSP), acute poststreptococcal glomerulonephritis (APSGN), and childhood asthma. We compared and interpreted epidemiological data across the groups. Results: In age distribution, KD, APN, and ES showed a similar pattern in that majority of patients were infants or young children, and other diseases showed a relatively even age-distribution which had a peak age, mainly 5-6 years, with bell-shape patterns. In annual-case pattern, there were epidemic years in aseptic meningitis and MP pneumonia, and the fluctuated annual cases were seen in other diseases. The trends of decreasing cases were seen in APSGN, HSP, and childhood asthma in recent years. In seasonal frequency, influenza or aseptic meningitis occurred in mainly winter or summer season, respectively. HSP and APSGN cases had less in summer, and KD, APN, and ES showed relatively even occurrence throughout a year without significant seasonal variations. Conclusions: Our results suggest that KD agents may be associated with normal flora that are influenced by environmental changes, since pathogens of APN and ES could be regarded as normal flora that originate from the host itself or ubiquitously existing human reservoirs.
Collapse
Affiliation(s)
- Jung-Woo Rhim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Pediatrics, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, South Korea
| | - Hyun Mi Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Pediatrics, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, South Korea
| | - Ji-Whan Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung-Yil Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Pediatrics, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, South Korea
| |
Collapse
|