1
|
Jeon JE, Rajapaksa Y, Keshavjee S, Liu M. Applications of transcriptomics in ischemia reperfusion research in lung transplantation. J Heart Lung Transplant 2024; 43:1501-1513. [PMID: 38513917 DOI: 10.1016/j.healun.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Ischemia-reperfusion (IR) injury contributes to primary graft dysfunction, a major cause of early mortality after lung transplantation. Transcriptomics uses high-throughput techniques to profile the RNA transcripts within a sample and provides a unique view of the mechanisms underlying various biological processes. This review aims to highlight the applications of transcriptomics in lung IR injury studies, which have thus far revealed inflammatory responses to be the major event activated by IR, identified potential biomarkers and therapeutic targets, and investigated the mechanisms of therapeutic interventions. Ex vivo lung perfusion, together with advanced bioinformatic and transcriptomic techniques, including single-cell RNA-sequencing, microRNA profiling, and multi-omics, continue to expand the capabilities of transcriptomics. In the future, the construction of biospecimen banks and the promotion of international collaborations among clinicians and researchers have the potential to advance our understanding of IR injury and improve the management of lung transplant recipients.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yasal Rajapaksa
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024; 12:1793. [PMID: 39200257 PMCID: PMC11351513 DOI: 10.3390/biomedicines12081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a well-established method of lung preservation in clinical transplantation. Transcriptomic analyses of cells and tissues uncover gene expression patterns which reveal granular molecular pathways and cellular programs under various conditions. Coupling EVLP and transcriptomics may provide insights into lung allograft physiology at a molecular level with the potential to develop targeted therapies to enhance or repair the donor lung. This review examines the current landscape of transcriptional analysis of lung allografts in the context of state-of-the-art therapeutics that have been developed to optimize lung allograft function.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| | - Sean Lau
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| |
Collapse
|
3
|
Gouchoe DA, Cui EY, Satija D, Henn MC, Choi K, Rosenheck JP, Nunley DR, Mokadam NA, Ganapathi AM, Whitson BA. Ex Vivo Lung Perfusion and Primary Graft Dysfunction Following Lung Transplantation: A Contemporary United Network for Organ Sharing Database Analysis. J Clin Med 2024; 13:4440. [PMID: 39124711 PMCID: PMC11313603 DOI: 10.3390/jcm13154440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Primary graft dysfunction (PGD) has detrimental effects on recipients following lung transplantation. Here, we determined the contemporary trends of PGD in a national database, factors associated with the development of PGD grade 3 (PGD3) and ex vivo lung perfusion's (EVLP) effect on this harmful postoperative complication. Methods: The United Network for Organ Sharing database was queried from 2015 to 2023, and recipients were stratified into No-PGD, PGD1/2, or PGD3. The groups were analyzed with comparative statistics, and survival was determined with Kaplan-Meier methods. Multivariable Cox regression was used to determine factors associated with increased mortality. PGD3 recipients were then stratified based on EVLP use prior to transplantation, and a 3:1 propensity match was performed to determine outcomes following transplantation. Finally, logistic regression models based on select criteria were used to determine risk factors associated with the development of PGD3 and mortality within 1 year. Results: A total of 21.4% of patients were identified as having PGD3 following lung transplant. Those with PGD3 suffered significantly worse perioperative morbidity, mortality, and had worse long-term survival. PGD3 was also independently associated with increased mortality. Matched EVLP PGD3 recipients had significantly higher use of ECMO postoperatively; however, they did not suffer other significant morbidity or mortality as compared to PGD3 recipients without EVLP use. Importantly, EVLP use prior to transplantation was significantly associated with decreased likelihood of PGD3 development, while having no significant association with early mortality. Conclusions: EVLP is associated with decreased PGD3 development, and further optimization of this technology is necessary to expand the donor pool.
Collapse
Affiliation(s)
- Doug A. Gouchoe
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
- COPPER Laboratory, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ervin Y. Cui
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
- COPPER Laboratory, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Divyaam Satija
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew C. Henn
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
| | - Kukbin Choi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
| | - Justin P. Rosenheck
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David R. Nunley
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nahush A. Mokadam
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
| | - Asvin M. Ganapathi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
| | - Bryan A. Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.A.G.)
- COPPER Laboratory, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
De Wolf J, Gouin C, Jouneau L, Glorion M, Premachandra A, Pascale F, Huriet M, Estephan J, Leplat JJ, Egidy G, Richard C, Gelin V, Urien C, Roux A, Le Guen M, Schwartz-Cornil I, Sage E. Prolonged dialysis during ex vivo lung perfusion promotes inflammatory responses. Front Immunol 2024; 15:1365964. [PMID: 38585271 PMCID: PMC10995259 DOI: 10.3389/fimmu.2024.1365964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.
Collapse
Affiliation(s)
- Julien De Wolf
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Matthieu Glorion
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Florentina Pascale
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Maxime Huriet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | | | - Edouard Sage
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
5
|
Allen J, Sage AT, Yamamoto H, Wilson GW, Liu M, Cypel M, Keshavjee S, Yeung JC. Ex vivo lung perfusion moderates gene expression differences between cardiac death and brain death donor lungs. JHLT OPEN 2024; 3:100027. [PMID: 40145109 PMCID: PMC11935343 DOI: 10.1016/j.jhlto.2023.100027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Donation after cardiac death (DCD) donor lungs have been shown to express less proinflammatory genes than donation after brain death (DBD) lungs, likely due to the absence of brain-death related inflammatory physiology. However, it is unclear whether this difference is clinically significant following reperfusion. To avoid confounding by the recipient immune system and activation state, we utilized ex vivo lung perfusion (EVLP) as a reperfusion-like event and examined the effect of EVLP on the transcriptome of DCD (n = 39) and DBD (n = 49) lungs. To validate our RNA results, banked EVLP perfusates from a separate cohort of DCD (n = 24) and DBD (n = 24) cases were assayed for IL-6, IL-8, IL-10, IL-1β, soluble TNFα receptor-1 (sTNFR1), and soluble triggering receptor expressed on myeloid cells-1 (sTREM1) protein levels at 15 minutes intervals for 3 hours. While DCD lungs demonstrated lower levels of proinflammatory transcripts and perfusate cytokine protein levels than DBD lungs prior to EVLP, after EVLP, there were no significant gene expression differences or cytokine protein levels between groups. Therefore, while DCD and DBD lungs differ by the amounts of proinflammatory cytokines following procurement, the propagation of inflammation becomes limited during EVLP, and DBD and DCD lungs reach a similar plateau of transcript expression, including proinflammatory cytokines at the end of perfusion. EVLP may therefore play a preconditioning role by dampening the proinflammatory state prior to transplant reperfusion.
Collapse
Affiliation(s)
- Jonathan Allen
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Sage
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Haruchika Yamamoto
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin W Wilson
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Yeung
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Jeon JE, Huang L, Zhu Z, Wong A, Keshavjee S, Liu M. Acellular ex vivo lung perfusate silences pro-inflammatory signaling in human lung endothelial and epithelial cells. J Transl Med 2023; 21:729. [PMID: 37845763 PMCID: PMC10580637 DOI: 10.1186/s12967-023-04601-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is a key complication following lung transplantation. The clinical application of ex vivo lung perfusion (EVLP) to assess donor lung function has significantly increased the utilization of "marginal" donor lungs with good clinical outcomes. The potential of EVLP on improving organ quality and ameliorating ischemia-reperfusion injury has been suggested. METHODS To determine the effects of ischemia-reperfusion and EVLP on gene expression in human pulmonary microvascular endothelial cells and epithelial cells, cell culture models were used to simulate cold ischemia (4 °C for 18 h) followed by either warm reperfusion (DMEM + 10% FBS) or EVLP (acellular Steen solution) at 37 °C for 4 h. RNA samples were extracted for bulk RNA sequencing, and data were analyzed for significant differentially expressed genes and pathways. RESULTS Endothelial and epithelial cells showed significant changes in gene expressions after ischemia-reperfusion or EVLP. Ischemia-reperfusion models of both cell types showed upregulated pro-inflammatory and downregulated cell metabolism pathways. EVLP models, on the other hand, exhibited downregulation of cell metabolism, without any inflammatory signals. CONCLUSION The commonly used acellular EVLP perfusate, Steen solution, silenced the activation of pro-inflammatory signaling in both human lung endothelial and epithelial cells, potentially through the lack of serum components. This finding could establish the basic groundwork of studying the benefits of EVLP perfusate as seen from current clinical practice.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Otolaryngology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Gouin C, Vu Manh TP, Jouneau L, Bevilacqua C, De Wolf J, Glorion M, Hannouche L, Urien C, Estephan J, Roux A, Magnan A, Le Guen M, Da Costa B, Chevalier C, Descamps D, Schwartz-Cornil I, Dalod M, Sage E. Cell type- and time-dependent biological responses in ex vivo perfused lung grafts. Front Immunol 2023; 14:1142228. [PMID: 37465668 PMCID: PMC10351384 DOI: 10.3389/fimmu.2023.1142228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.
Collapse
Affiliation(s)
- Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Laurent Hannouche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| |
Collapse
|
8
|
Coliță CI, Olaru DG, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023; 24:ijms24065744. [PMID: 36982814 PMCID: PMC10059721 DOI: 10.3390/ijms24065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as “posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death”.
Collapse
Affiliation(s)
- Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Denissa-Greta Olaru
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Daniela Glavan
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Correspondence: (D.G.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (D.G.); (A.P.-W.)
| |
Collapse
|
9
|
Roesel MJ, Wiegmann B, Ius F, Knosalla C, Iske J. The role of ex-situ perfusion for thoracic organs. Curr Opin Organ Transplant 2022; 27:466-473. [PMID: 35950888 DOI: 10.1097/mot.0000000000001008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Ex-situ machine perfusion for both heart (HTx) and lung transplantation (LuTx) reduces ischemia-reperfusion injury (IRI), allows for greater flexibility in geographical donor management, continuous monitoring, organ assessment for extended evaluation, and potential reconditioning of marginal organs. In this review, we will delineate the impact of machine perfusion, characterize novel opportunities, and outline potential challenges lying ahead to improve further implementation. RECENT FINDINGS Due to the success of several randomized controlled trials (RCT), comparing cold storage to machine perfusion in HTx and LuTx, implementation and innovation continues. Indeed, it represents a promising interface for organ-specific therapies targeting IRI, allo-immune responses, and graft reconditioning. These mostly experimental efforts range from genetic approaches and nanotechnology to cellular therapies, involving mesenchymal stem cell application. Despite tremendous potential, prior to clinical transition, more data is needed. SUMMARY Collectively, machine perfusion constitutes the vanguard in thoracic organ transplantation research with extensive potential for expanding the donor pool, enhancing transplant outcomes as well as developing novel therapy approaches.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- DFG Priority Program SPP 2014, German Research Foundation, Bonn, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
10
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
11
|
Challenging the Ex Vivo Lung Perfusion Procedure With Continuous Dialysis in a Pig Model. Transplantation 2021; 106:979-987. [PMID: 34468431 DOI: 10.1097/tp.0000000000003931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS We analyzed the physiological, metabolic and genome-wide response of lungs undergoing a 6-hour EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialysable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.
Collapse
|
12
|
Hasenauer A, Bédat B, Parapanov R, Lugrin J, Debonneville A, Abdelnour-Berchtold E, Gonzalez M, Perentes JY, Piquilloud L, Szabo C, Krueger T, Liaudet L. Effects of cold or warm ischemia and ex-vivo lung perfusion on the release of damage associated molecular patterns and inflammatory cytokines in experimental lung transplantation. J Heart Lung Transplant 2021; 40:905-916. [PMID: 34193360 DOI: 10.1016/j.healun.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung transplantation (LTx) is associated with sterile inflammation, possibly related to the release of damage associated molecular patterns (DAMPs) by injured allograft cells. We have measured cellular damage and the release of DAMPs and cytokines in an experimental model of LTx after cold or warm ischemia and examined the effect of pretreatment with ex-vivo lung perfusion (EVLP). METHODS Rat lungs were exposed to cold ischemia alone (CI group) or with 3h EVLP (CI-E group), warm ischemia alone (WI group) or with 3 hour EVLP (WI-E group), followed by LTx (2 hour). Bronchoalveolar lavage (BAL) was performed before (right lung) or after (left lung) LTx to measure LDH (marker of cellular injury), the DAMPs HMGB1, IL-33, HSP-70 and S100A8, and the cytokines IL-1β, IL-6, TNFα, and CXCL-1. Graft oxygenation capacity and static compliance after LTx were also determined. RESULTS Compared to CI, WI displayed cellular damage and inflammation without any increase of DAMPs after ischemia alone, but with a significant increase of HMGB1 and functional impairment after LTx. EVLP promoted significant inflammation in both cold (CI-E) and warm (WI-E) groups, which was not associated with cell death or DAMP release at the end of EVLP, but with the release of S100A8 after LTx. EVLP reduced graft damage and dysfunction in warm ischemic, but not cold ischemic, lungs. CONCLUSIONS The pathomechanisms of sterile lung inflammation during LTx are significantly dependent on the conditions. The release of HMGB1 (in the absence of EVLP) and S100A8 (following EVLP) may be important factors in the pathogenesis of LTx.
Collapse
Affiliation(s)
- Arpad Hasenauer
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Benoît Bédat
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Roumen Parapanov
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Michel Gonzalez
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Y Perentes
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Piquilloud
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
13
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Prasad NK, Pasrija C, Talaie T, Krupnick AS, Zhao Y, Lau CL. Ex Vivo Lung Perfusion: Current Achievements and Future Directions. Transplantation 2021; 105:979-985. [PMID: 33044428 PMCID: PMC8792510 DOI: 10.1097/tp.0000000000003483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a severe shortage in the availability of donor organs for lung transplantation. Novel strategies are needed to optimize usage of available organs to address the growing global needs. Ex vivo lung perfusion has emerged as a powerful tool for the assessment, rehabilitation, and optimization of donor lungs before transplantation. In this review, we discuss the history of ex vivo lung perfusion, current evidence on its use for standard and extended criteria donors, and consider the exciting future opportunities that this technology provides for lung transplantation.
Collapse
Affiliation(s)
- Nikhil K. Prasad
- Department of Surgery, University of Maryland School of Medicine
| | - Chetan Pasrija
- Department of Surgery, University of Maryland School of Medicine
| | - Tara Talaie
- Department of Surgery, University of Maryland School of Medicine
| | | | - Yunge Zhao
- Department of Surgery, University of Maryland School of Medicine
| | - Christine L. Lau
- Department of Surgery, University of Maryland School of Medicine
| |
Collapse
|
15
|
Use of metabolomics to identify strategies to improve and prolong ex vivo lung perfusion for lung transplants. J Heart Lung Transplant 2021; 40:525-535. [PMID: 33849769 DOI: 10.1016/j.healun.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) allows for functional assessment of donor lungs; thus has increased the use of marginal lungs for transplantation. To extend EVLP for advanced organ reconditioning and regenerative interventions, cellular metabolic changes need to be understood. We sought to comprehensively characterize the dynamic metabolic changes of the lungs during EVLP, and to identify strategies to improve EVLP. METHODS Human donor lungs (n = 50) were assessed under a 4-hour Toronto EVLP protocol. EVLP perfusate was sampled at first (EVLP-1h) and fourth hour (EVLP-4h) of perfusion and were submitted for mass spectrometry-based untargeted metabolic profiling. Differentially expressed metabolites between the 2 timepoints were identified and analyzed from the samples of lungs transplanted post-EVLP (n = 42) to determine the underlying molecular mechanisms. RESULTS Of the total 312 detected metabolites, 84 were up-regulated and 103 were down-regulated at EVLP-4h relative to 1h (FDR adjusted p < .05, fold change ≥ |1.1|). At EVLP-4h, markedly decreased energy substrates were observed, accompanied by the increase in fatty acid β-oxidation. Concurrently, accumulation of amino acids and nucleic acids was evident, indicative of increased protein and nucleotide catabolism. The uniform decrease in free lysophospholipids and polyunsaturated fatty acids at EVLP-4h suggests cell membrane remodeling. CONCLUSIONS Untargeted metabolomics revealed signs of energy substrate consumption and metabolic by-product accumulation under current EVLP protocols. Strategies to supplement nutrients and to maintain homeostasis will be vital in improving the current clinical practice and prolonging organ perfusion for therapeutic application to further enhance donor lung utilization.
Collapse
|
16
|
Ordies S, Orlitova M, Heigl T, Sacreas A, Van Herck A, Kaes J, Saez B, Vanstapel A, Ceulemans L, Vanaudenaerde BM, Vos R, Verschakelen J, Verleden GM, Verleden SE, Van Raemdonck DE, Neyrinck AP. Flow-controlled ventilation during EVLP improves oxygenation and preserves alveolar recruitment. Intensive Care Med Exp 2020; 8:70. [PMID: 33237343 PMCID: PMC7686942 DOI: 10.1186/s40635-020-00360-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is a widespread accepted platform for preservation and evaluation of donor lungs prior to lung transplantation (LTx). Standard lungs are ventilated using volume-controlled ventilation (VCV). We investigated the effects of flow-controlled ventilation (FCV) in a large animal EVLP model. Fourteen porcine lungs were mounted on EVLP after a warm ischemic interval of 2 h and randomized in two groups (n = 7/group). In VCV, 7 grafts were conventionally ventilated and in FCV, 7 grafts were ventilated by flow-controlled ventilation. EVLP physiologic parameters (compliance, pulmonary vascular resistance and oxygenation) were recorded hourly. After 6 h of EVLP, broncho-alveolar lavage (BAL) was performed and biopsies for wet-to-dry weight (W/D) ratio and histology were taken. The left lung was inflated, frozen in liquid nitrogen vapors and scanned with computed tomography (CT) to assess regional distribution of Hounsfield units (HU). RESULTS All lungs endured 6 h of EVLP. Oxygenation was better in FCV compared to VCV (p = 0.01) and the decrease in lung compliance was less in FCV (p = 0.03). W/D ratio, pathology and BAL samples did not differ between both groups (p = 0.16, p = 0.55 and p = 0.62). Overall, CT densities tended to be less pronounced in FCV (p = 0.05). Distribution of CT densities revealed a higher proportion of well-aerated lung parts in FCV compared to VCV (p = 0.01). CONCLUSIONS FCV in pulmonary grafts mounted on EVLP is feasible and leads to improved oxygenation and alveolar recruitment. This ventilation strategy might prolong EVLP over time, with less risk for volutrauma and atelectrauma.
Collapse
Affiliation(s)
- Sofie Ordies
- Unit of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michaela Orlitova
- Unit of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Tobias Heigl
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anke Van Herck
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Janne Kaes
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Berta Saez
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Laurens Ceulemans
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | | | - Geert M Verleden
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn E Verleden
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Unit of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium. .,Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Leuven Lung Transplant Group, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
van der Mark SC, Hoek RAS, Hellemons ME. Developments in lung transplantation over the past decade. Eur Respir Rev 2020; 29:190132. [PMID: 32699023 PMCID: PMC9489139 DOI: 10.1183/16000617.0132-2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
With an improved median survival of 6.2 years, lung transplantation has become an increasingly acceptable treatment option for end-stage lung disease. Besides survival benefit, improvement of quality of life is achieved in the vast majority of patients. Many developments have taken place in the field of lung transplantation over the past decade. Broadened indication criteria and bridging techniques for patients awaiting lung transplantation have led to increased waiting lists and changes in allocation schemes worldwide. Moreover, the use of previously unacceptable donor lungs for lung transplantation has increased, with donations from donors after cardiac death, donors with increasing age and donors with positive smoking status extending the donor pool substantially. Use of ex vivo lung perfusion further increased the number of lungs suitable for lung transplantation. Nonetheless, the use of these previously unacceptable lungs did not have detrimental effects on survival and long-term graft outcomes, and has decreased waiting list mortality. To further improve long-term outcomes, strategies have been proposed to modify chronic lung allograft dysfunction progression and minimise toxic immunosuppressive effects. This review summarises the developments in clinical lung transplantation over the past decade.
Collapse
Affiliation(s)
- Sophie C van der Mark
- Dept of Pulmonary Medicine, Division of Interstitial Lung Disease, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Authors contributed equally
| | - Rogier A S Hoek
- Dept of Pulmonary Medicine, Division of Lung Transplantation, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Authors contributed equally
| | - Merel E Hellemons
- Dept of Pulmonary Medicine, Division of Interstitial Lung Disease, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
- Dept of Pulmonary Medicine, Division of Lung Transplantation, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Haywood N, Byler MR, Zhang A, Roeser ME, Kron IL, Laubach VE. Isolated Lung Perfusion in the Management of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21186820. [PMID: 32957547 PMCID: PMC7555278 DOI: 10.3390/ijms21186820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS. Isolated machine lung perfusion is a promising surgical platform that has been associated with the rehabilitation of injured lungs and the induction of molecular and cellular changes in the lung, including upregulation of anti-inflammatory and regenerative pathways. Initially implemented in an ex vivo fashion to evaluate marginal donor lungs prior to transplantation, recent investigations of isolated lung perfusion have shifted in vivo and are focused on the management of ARDS. This review presents current tenants of ARDS management and isolated lung perfusion, with a focus on how ex vivo lung perfusion (EVLP) has paved the way for current investigations utilizing in vivo lung perfusion (IVLP) in the treatment of severe ARDS.
Collapse
|
19
|
Mengel M, Loupy A, Haas M, Roufosse C, Naesens M, Akalin E, Clahsen‐van Groningen MC, Dagobert J, Demetris AJ, Duong van Huyen J, Gueguen J, Issa F, Robin B, Rosales I, Von der Thüsen JH, Sanchez‐Fueyo A, Smith RN, Wood K, Adam B, Colvin RB. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant 2020; 20:2305-2317. [PMID: 32428337 PMCID: PMC7496585 DOI: 10.1111/ajt.16059] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
This meeting report from the XV Banff conference describes the creation of a multiorgan transplant gene panel by the Banff Molecular Diagnostics Working Group (MDWG). This Banff Human Organ Transplant (B-HOT) panel is the culmination of previous work by the MDWG to identify a broadly useful gene panel based on whole transcriptome technology. A data-driven process distilled a gene list from peer-reviewed comprehensive microarray studies that discovered and validated their use in kidney, liver, heart, and lung transplant biopsies. These were supplemented by genes that define relevant cellular pathways and cell types plus 12 reference genes used for normalization. The 770 gene B-HOT panel includes the most pertinent genes related to rejection, tolerance, viral infections, and innate and adaptive immune responses. This commercially available panel uses the NanoString platform, which can quantitate transcripts from formalin-fixed paraffin-embedded samples. The B-HOT panel will facilitate multicenter collaborative clinical research using archival samples and permit the development of an open source large database of standardized analyses, thereby expediting clinical validation studies. The MDWG believes that a pathogenesis and pathway based molecular approach will be valuable for investigators and promote therapeutic decision-making and clinical trials.
Collapse
Affiliation(s)
- Michael Mengel
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Alexandre Loupy
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Mark Haas
- Department of Pathology and Laboratory MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Candice Roufosse
- Department of Immunology and InflammationImperial College London and North West London PathologyLondonUK
| | - Maarten Naesens
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium,Department of NephrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Enver Akalin
- Montefiore‐Einstein Center for TransplantationMontefiore Medical CenterBronxNew YorkUSA
| | | | - Jessy Dagobert
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Anthony J. Demetris
- Department of PathologyUniversity of Pittsburgh Medical CenterMontefiore, PittsburghPennsylvaniaUSA
| | - Jean‐Paul Duong van Huyen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Juliette Gueguen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Fadi Issa
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Blaise Robin
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Ivy Rosales
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rex N. Smith
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn Wood
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Benjamin Adam
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Robert B. Colvin
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
20
|
Ayyat KS, Okamoto T, Niikawa H, Sakanoue I, Dugar S, Latifi SQ, Lebovitz DJ, Moghekar A, McCurry KR. A CLUE for better assessment of donor lungs: Novel technique in clinical ex vivo lung perfusion. J Heart Lung Transplant 2020; 39:1220-1227. [PMID: 32773324 DOI: 10.1016/j.healun.2020.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The direCt Lung Ultrasound Evaluation (CLUE) technique was proven to be an accurate method for monitoring extravascular lung water in donor lungs during ex vivo lung perfusion (EVLP) in an experimental model. The aim of this study was to examine the application of CLUE in the clinical setting. METHODS Lungs were evaluated using acellular EVLP protocol. Ultrasound images were obtained directly from the lung surface. Images were graded according to the percentage of B-lines seen on ultrasound. CLUE scores were calculated at the beginning and end of EVLP for the whole lung, each side, and lobe based on the number (No.) of images in each grade and the total No. of images taken and evaluated retrospectively. RESULTS A total of 23 EVLP cases were performed resulting in 13 lung transplants (LTxs) with no hospital mortality. Primary graft dysfunction (PGD) occurred in only 1 recipient (PGD3, no PGD2). Significant differences were found between suitable and non-suitable lungs in CLUE scores (1.03 vs 1.85, p < 0.001), unlike the partial pressure of oxygen/fraction of inspired oxygen ratio. CLUE had the highest area under the receiver operating characteristic curve (0.98) compared with other evaluation parameters. The initial CLUE score of standard donor lungs was significantly better than marginal lungs. The final CLUE score in proned lungs showed improvement when compared with initial CLUE score, especially in the upper lobes. CONCLUSIONS The CLUE technique shows the highest accuracy in evaluating donor lungs for LTx suitability compared with other parameters used in EVLP. CLUE can optimize the outcomes of LTx by guiding the decision making through the whole process of clinical EVLP.
Collapse
Affiliation(s)
- Kamal S Ayyat
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Cardiothoracic Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Toshihiro Okamoto
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Transplant Center
| | - Hiromichi Niikawa
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Ichiro Sakanoue
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Samir Q Latifi
- Department of Pediatric Critical Care, Cleveland Clinic, Cleveland, Ohio; Lifebanc, Cleveland, Ohio
| | - Daniel J Lebovitz
- Lifebanc, Cleveland, Ohio; Department of Critical Care Medicine, Akron Children's Hospital, Akron, Ohio
| | | | - Kenneth R McCurry
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Transplant Center.
| |
Collapse
|
21
|
Wang X, Parapanov R, Debonneville A, Wang Y, Abdelnour-Berchtold E, Gonzalez M, Gronchi F, Perentes JY, Ris HB, Eckert P, Piquilloud L, Lugrin J, Letovanec I, Krueger T, Liaudet L. Treatment with 3-aminobenzamide during ex vivo lung perfusion of damaged rat lungs reduces graft injury and dysfunction after transplantation. Am J Transplant 2020; 20:967-976. [PMID: 31710417 DOI: 10.1111/ajt.15695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023]
Abstract
Ex vivo lung perfusion (EVLP) with pharmacological reconditioning may increase donor lung utilization for transplantation (LTx). 3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribose) polymerase (PARP), reduces ex vivo lung injury in rat lungs damaged by warm ischemia (WI). Here we determined the effects of 3-AB reconditioning on graft outcome after LTx. Three groups of donor lungs were studied: Control (Ctrl): 1 hour WI + 3 hours cold ischemia (CI) + LTx; EVLP: 1 hour WI + 3 hours EVLP + LTx; EVLP + 3-AB: 1 hour WI + 3 hours EVLP + 3-AB (1 mg. mL-1 ) + LTx. Two hours after LTx, we determined lung graft compliance, edema, histology, neutrophil counts in bronchoalveolar lavage (BAL), mRNA levels of adhesion molecules within the graft, as well as concentrations of interleukin-6 and 10 (IL-6, IL-10) in BAL and plasma. 3-AB reconditioning during EVLP improved compliance and reduced lung edema, neutrophil infiltration, and the expression of adhesion molecules within the transplanted lungs. 3-AB also attenuated the IL-6/IL-10 ratio in BAL and plasma, supporting an improved balance between pro- and anti-inflammatory mediators. Thus, 3-AB reconditioning during EVLP of rat lung grafts damaged by WI markedly reduces inflammation, edema, and physiological deterioration after LTx, supporting the use of PARP inhibitors for the rehabilitation of damaged lungs during EVLP.
Collapse
Affiliation(s)
- Xingyu Wang
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Roumen Parapanov
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Adult Intensive Care Medicine, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Yabo Wang
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Etienne Abdelnour-Berchtold
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michel Gonzalez
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Fabrizio Gronchi
- Service of Anesthesiology, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jean-Yannis Perentes
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Hans-Beat Ris
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Eckert
- Service of Adult Intensive Care Medicine, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Lise Piquilloud
- Service of Adult Intensive Care Medicine, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Adult Intensive Care Medicine, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Faculty of Biology and Medicine, The University Institute of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, Faculty of Biology and Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Moving the Margins: Updates on the Renaissance in Machine Perfusion for Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Wong A, Zamel R, Yeung J, Bader GD, Dos Santos CC, Bai X, Wang Y, Keshavjee S, Liu M. Potential therapeutic targets for lung repair during human ex vivo lung perfusion. Eur Respir J 2020; 55:13993003.02222-2019. [DOI: 10.1183/13993003.02222-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
IntroductionThe ex vivo lung perfusion (EVLP) technique has been developed to assess the function of marginal donor lungs and has significantly increased donor lung utilisation. EVLP has also been explored as a platform for donor lung repair through injury-specific treatments such as antibiotics or fibrinolytics. We hypothesised that actively expressed pathways shared between transplantation and EVLP may reveal common mechanisms of injury and potential therapeutic targets for lung repair prior to transplantation.Materials and methodsRetrospective transcriptomics analyses were performed with peripheral tissue biopsies from “donation after brain death” lungs, with 46 pre-/post-transplant pairs and 49 pre-/post-EVLP pairs. Pathway analysis was used to identify and compare the responses of donor lungs to transplantation and to EVLP.Results22 pathways were enriched predominantly in transplantation, including upregulation of lymphocyte activation and cell death and downregulation of metabolism. Eight pathways were enriched predominantly in EVLP, including downregulation of leukocyte functions and upregulation of vascular processes. 27 pathways were commonly enriched, including activation of innate inflammation, cell death, heat stress and downregulation of metabolism and protein synthesis. Of the inflammatory clusters, Toll-like receptor/innate immune signal transduction adaptor signalling had the greatest number of nodes and was central to inflammation. These mechanisms have been previously speculated as major mechanisms of acute lung injury in animal models.ConclusionEVLP and transplantation share common molecular features of injury including innate inflammation and cell death. Blocking these pathways during EVLP may allow for lung repair prior to transplantation.
Collapse
|
24
|
Katsis J, Garrity E. The Use of Gene Expression Profiling in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Beller JP, Byler MR, Money DT, Chancellor WZ, Zhang A, Zhao Y, Stoler MH, Narahari AK, Shannon A, Mehaffey JH, Tribble CG, Laubach VE, Kron IL, Roeser ME. Reduced-flow ex vivo lung perfusion to rehabilitate lungs donated after circulatory death. J Heart Lung Transplant 2019; 39:74-82. [PMID: 31761511 DOI: 10.1016/j.healun.2019.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Current ex vivo lung perfusion (EVLP) protocols aim to achieve perfusion flows of 40% of cardiac output or more. We hypothesized that a lower target flow rate during EVLP would improve graft function and decrease inflammation of donation after circulatory death (DCD) lungs. METHODS A porcine DCD and EVLP model was utilized. Two groups (n = 4 per group) of DCD lungs were randomized to target EVLP flows of 40% (high-flow) or 20% (low-flow) predicted cardiac output based on 100 ml/min/kg. At the completion of 4 hours of normothermic EVLP using Steen solution, left lung transplantation was performed, and lungs were monitored during 4 hours of reperfusion. RESULTS After transplant, left lung-specific pulmonary vein partial pressure of oxygen was significantly higher in the low-flow group at 3 and 4 hours of reperfusion (3-hour: 496.0 ± 87.7 mm Hg vs. 252.7 ± 166.0 mm Hg, p = 0.017; 4-hour: 429.7 ± 93.6 mm Hg vs. 231.5 ± 178 mm Hg, p = 0.048). Compliance was significantly improved at 1 hour of reperfusion (20.8 ± 9.4 ml/cm H2O vs. 10.2 ± 3.5 ml/cm H2O, p = 0.022) and throughout all subsequent time points in the low-flow group. After reperfusion, lung wet-to-dry weight ratio (7.1 ± 0.7 vs. 8.8 ± 1.1, p = 0.040) and interleukin-1β expression (927 ± 300 pg/ng protein vs. 2,070 ± 874 pg/ng protein, p = 0.048) were significantly reduced in the low-flow group. CONCLUSIONS EVLP of DCD lungs with low-flow targets of 20% predicted cardiac output improves lung function, reduces edema, and attenuates inflammation after transplant. Therefore, EVLP for lung rehabilitation should use reduced flow rates of 20% predicted cardiac output.
Collapse
Affiliation(s)
- Jared P Beller
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew R Byler
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin T Money
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Aimee Zhang
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Yunge Zhao
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark H Stoler
- Departments of Pathology, University of Virginia, Charlottesville, Virginia
| | | | - Alexander Shannon
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Curtis G Tribble
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Departments of Surgery, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Arizona Department of Health Sciences, Tuscon, Arizona
| | - Mark E Roeser
- Departments of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
26
|
Ordies S, Frick AE, Claes S, Schols D, Verleden SE, Van Raemdonck DE, Neyrinck AP, Martens A, Verschakelen JA, Verbeken EK, Vanaudenaerde BM, Vos R, Verleden GM. Prone Positioning During Ex Vivo Lung Perfusion Influences Regional Edema Accumulation. J Surg Res 2019; 239:300-308. [DOI: 10.1016/j.jss.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/21/2018] [Accepted: 02/01/2019] [Indexed: 01/31/2023]
|
27
|
Snell G, Hiho S, Levvey B, Sullivan L, Westall G. Consequences of donor-derived passengers (pathogens, cells, biological molecules and proteins) on clinical outcomes. J Heart Lung Transplant 2019; 38:902-906. [PMID: 31307786 DOI: 10.1016/j.healun.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
It is recognized that donor factors contribute to lung transplant outcomes. Recent observations and studies have started to elucidate potential mechanisms behind explaining these observations. This perspective piece summarizes evolving lung transplant literature on the subject, focusing on donor "passenger" organisms, cells, hormones, and proteins transferred to the recipient. Many extrinsic and intrinsic donor features or properties have important consequences for subsequent allograft function in the recipient. Potentially, a better understanding of these features may provide useful novel therapeutic targets to enhance allograft outcomes.
Collapse
Affiliation(s)
- Gregory Snell
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.
| | - Steven Hiho
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Lucy Sullivan
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Dromparis P, Aboelnazar NS, Wagner S, Himmat S, White CW, Hatami S, Luc JGY, Rotich S, Freed DH, Nagendran J, Mengel M, Adam BA. Ex vivo perfusion induces a time- and perfusate-dependent molecular repair response in explanted porcine lungs. Am J Transplant 2019; 19:1024-1036. [PMID: 30230229 DOI: 10.1111/ajt.15123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023]
Abstract
Ex vivo lung perfusion (EVLP) shows promise in ameliorating pretransplant acute lung injury (ALI) and expanding the donor organ pool, but the mechanisms of ex vivo repair remain poorly understood. We aimed to assess the utility of gene expression for characterizing ALI during EVLP. One hundred sixty-nine porcine lung samples were collected in vivo (n = 25), after 0 (n = 11) and 12 (n = 11) hours of cold static preservation (CSP), and after 0 (n = 57), 6 (n = 8), and 12 (n = 57) hours of EVLP, utilizing various ventilation and perfusate strategies. The expression of 53 previously described ALI-related genes was measured and correlated with function and histology. Twenty-eight genes were significantly upregulated and 6 genes downregulated after 12 hours of EVLP. Aggregate gene sets demonstrated differential expression with EVLP (P < .001) but not CSP. Upregulated 28-gene set expression peaked after 6 hours of EVLP, whereas downregulated 6-gene set expression continued to decline after 12 hours. Cellular perfusates demonstrated a greater reduction in downregulated 6-gene set expression vs acellular perfusate (P < .038). Gene set expression correlated with relevant functional and histologic parameters, including P/F ratio (P < .001) and interstitial inflammation (P < .005). Further studies with posttransplant results are warranted to evaluate the clinical significance of this novel molecular approach for assessing organ quality during EVLP.
Collapse
Affiliation(s)
- Peter Dromparis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nader S Aboelnazar
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Siegfried Wagner
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sayed Himmat
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher W White
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sanaz Hatami
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica G Y Luc
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Silas Rotich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Iida S, Miyairi S, Su CA, Abe T, Abe R, Tanabe K, Dvorina N, Baldwin WM, Fairchild RL. Peritransplant VLA-4 blockade inhibits endogenous memory CD8 T cell infiltration into high-risk cardiac allografts and CTLA-4Ig resistant rejection. Am J Transplant 2019; 19:998-1010. [PMID: 30372587 PMCID: PMC6433496 DOI: 10.1111/ajt.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023]
Abstract
Recipient endogenous memory CD8 T cells expressing reactivity to donor class I MHC infiltrate MHC-mismatched cardiac allografts within 24 hours after reperfusion and express effector functions mediating graft injury. The current study tested the efficacy of Very Late Antigen-4 (VLA-4) blockade to inhibit endogenous memory CD8 T cell infiltration into cardiac allografts and attenuate early posttransplant inflammation. Peritransplant anti-VLA-4 mAb given to C57BL6 (H-2b ) recipients of AJ (H-2a ) heart allografts completely inhibited endogenous memory CD4 and CD8 T cell infiltration with significant decrease in macrophage, but not neutrophil, infiltration into allografts subjected to either minimal or prolonged cold ischemic storage (CIS) prior to transplant, reduced intra-allograft IFN-γ-induced gene expression and prolonged survival of allografts subjected to prolonged CIS in CTLA-4Ig treated recipients. Anti-VLA-4 mAb also inhibited priming of donor-specific T cells producing IFN-γ until at least day 7 posttransplant. Peritransplant anti-VLA plus anti-CD154 mAb treatment similarly prolonged survival of allografts subjected to minimal or increased CIS prior to transplant. Overall, these data indicate that peritransplant anti-VLA-4 mAb inhibits early infiltration memory CD8 T cell infiltration into allografts with a marked reduction in early graft inflammation suggesting an effective strategy to attenuate negative effects of heterologous alloimmunity in recipients of higher risk grafts.
Collapse
Affiliation(s)
- Shoichi Iida
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles A. Su
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toyofumi Abe
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Osaka University School of Medicine, Osaka, Japan
| | - Ryo Abe
- Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Nina Dvorina
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Robert L. Fairchild
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
30
|
Huang L, Yang C, Liu M. Intracellular signal transduction pathways as potential drug targets for ischemia-reperfusion injury in lung transplantation. J Thorac Dis 2018; 10:S3965-S3969. [PMID: 30631528 DOI: 10.21037/jtd.2018.09.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, Departments of Surgery, Medicine and Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Chengliang Yang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, Departments of Surgery, Medicine and Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, Departments of Surgery, Medicine and Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Abstract
Lung transplantation can improve quality of life and prolong survival for individuals with end-stage lung disease, and many advances in the realms of both basic science and clinical research aspects of lung transplantation have emerged over the past few decades. However, many challenges must yet be overcome to increase post-transplant survival. These include successfully bridging patients to transplant, expanding the lung donor pool, inducing tolerance, and preventing a myriad of post-transplant complications that include primary graft dysfunction, forms of cellular and antibody-mediated rejection, chronic lung allograft dysfunction, and infections. The goal of this manuscript is to review salient recent and evolving advances in the field of lung transplantation.
Collapse
Affiliation(s)
- Keith C Meyer
- UW Lung Transplant & Advanced Pulmonary Disease Program, Section of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
32
|
Hsin M, Au T. Ex vivo lung perfusion: a potential platform for molecular diagnosis and ex vivo organ repair. J Thorac Dis 2018; 10:S1871-S1883. [PMID: 30026974 DOI: 10.21037/jtd.2018.04.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung transplantation is a proven treatment for selected patients with end-stage lung disease. However, the number of patients on the transplant waiting list far exceeds the number of available donor lungs, resulting in waiting list morbidity and mortality. The problem is further exacerbated by the low utilisation rate of available donor lungs, for fear of selecting a damaged lung and the resultant primary graft dysfunction. In the past decade, ex vivo lung perfusion (EVLP) has become part of standard lung transplant clinical practice in Canada and Europe, and it has been shown to improve the usage of available donor lungs by allowing physiological and radiologic evaluation of explanted donor lungs that are considered "marginal". This allows clinicians a second opportunity to decide whether to proceed to transplantation, instead of declining an organ that appears questionable by standard clinical criteria. However there has been much research activity looking at EVLP as a platform for (I) molecular diagnosis, thereby further improving the diagnostic accuracy regarding quality of the donor lung; (II) organ repair, thereby allowing injured donor lungs to become clinically useable. This manuscript summarises some of the preclinical and clinical research from the Toronto group focusing on these promising aspects of EVLP which may further increase the number of useable donor lungs in lung transplantation.
Collapse
Affiliation(s)
- Michael Hsin
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China
| | - Tim Au
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
33
|
Lonati C, Bassani GA, Brambilla D, Leonardi P, Carlin A, Faversani A, Gatti S, Valenza F. Influence of
ex vivo
perfusion on the biomolecular profile of rat lungs. FASEB J 2018; 32:5532-5549. [DOI: 10.1096/fj.201701255r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Caterina Lonati
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Giulia A. Bassani
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Daniela Brambilla
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Patrizia Leonardi
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| | - Andrea Carlin
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| | - Alice Faversani
- Division of PathologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of BiomedicalSurgical, and Dental Sciences, University of Milan Milan Italy
| | - Stefano Gatti
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Franco Valenza
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| |
Collapse
|
34
|
Advances in ex-vivo donor lung organ care. THE LANCET RESPIRATORY MEDICINE 2018; 6:319-320. [PMID: 29650409 DOI: 10.1016/s2213-2600(18)30144-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022]
|