1
|
Mennini M, Piccirillo M, Furio S, Valitutti F, Ferretti A, Strisciuglio C, De Filippo M, Parisi P, Peroni DG, Di Nardo G, Ferrari F. Probiotics and other adjuvants in allergen-specific immunotherapy for food allergy: a comprehensive review. FRONTIERS IN ALLERGY 2024; 5:1473352. [PMID: 39450374 PMCID: PMC11499231 DOI: 10.3389/falgy.2024.1473352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
This review delves into the potential of manipulating the microbiome to enhance oral tolerance in food allergy, focusing on food allergen-specific immunotherapy (FA-AIT) and the use of adjuvants, with a significant emphasis on probiotics. FA-AIT, including oral (OIT), sublingual (SLIT), and epicutaneous (EPIT) immunotherapy, has shown efficacy in desensitizing patients and achieving sustained unresponsiveness (SU). However, the long-term effectiveness and safety of FA-AIT are still under investigation. Probiotics, particularly strains of Lactobacillus, play a crucial role in enhancing immune tolerance by promoting regulatory T cells (Tregs) and modulating cytokine profiles. These probiotics can induce semi-mature dendritic cells, enhance CD40 expression, inhibit IL-4 and IL-5, and promote IL-10 and TGF-β, thus contributing to mucosal defense and immunological tolerance. Clinical trials combining probiotics with FA-AIT have demonstrated improved desensitization rates and immune tolerance in food-allergic patients. For example, the combination of Lactobacillus rhamnosus with peanut OIT resulted in a significantly higher rate of SU compared to the placebo group, along with notable immune changes such as reduced peanut-specific IgE and increased IgG4 levels. The review also explores other adjuvants in FA-AIT, such as biologic drugs, which target specific immune pathways to improve treatment outcomes. Additionally, nanoparticles and herbal therapies like food allergy herbal formula 2 (FAHF-2) are discussed for their potential to enhance allergen delivery and immunogenicity, reduce adverse events, and improve desensitization. In conclusion, integrating probiotics and other adjuvants into FA-AIT protocols could significantly enhance the safety and efficacy of FA-AIT, leading to better patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maurizio Mennini
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Marisa Piccirillo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silvia Furio
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesco Valitutti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Ferretti
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria De Filippo
- Department of Maternal Infantile and Urological Sciences, AOU Policlinico Umberto I, Rome, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Pasquale Parisi
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Diego Giampietro Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Di Nardo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Bao J, Qiu Y, Xu X, Fu X, Song J, Wang L, Huang L, Zhang W. Towards an optimized model of food allergy in zebrafish. Mol Immunol 2024; 173:110-116. [PMID: 39106608 DOI: 10.1016/j.molimm.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND The prevalence of food allergies is on the rise, posing a significant challenge to public health. Rodents serve as the predominant animal model in food allergy research; yet, the application of rodent models proves to be a laborious and time-consuming endeavor. It is imperative to develop novel in vivo models. METHODS Ovalbumin (OVA) was administered as the allergen, following the recommended dosage used in other species. During the sensitization phase, a dosage of 0.25 mg per 10 tails per 1 L was administered twice daily, and during the challenge phase, the dosage was increased to 3 times the initial level. The study explored two dimensions of sensitization: the mode of exposure, which can be either continuous or intermittent, and the duration of exposure, which includes 3 days, 5 days, and 7 days. We examined midgut pathological changes, immunoglobulins contents, and mRNA expressions associated to T helper cells (Th) 2 cytokines following exposure. RESULTS A significant 109.3 % increase in the number of eosinophils was observed in the midgut histopathology following intermittent 5-day OVA exposure, which emerged as the most effective model. OVA exposure increased concentrations of immunoglobulin M (IgM) (105.2 %), IgZ (312.1 %), and IgD (304.3 %) in this model. The mRNA expressions of Th2-related interleukin (IL)-4 and IL-13 were also elevated by 132.8 % and 421.0 %, respectively. CONCLUSION The intermittent 5-day OVA exposure was suggested to be the best constructed zebrafish food allergy model, which may be a potential tool for research into food allergies.
Collapse
Affiliation(s)
- Jiali Bao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Yushu Qiu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xinyi Xu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao Fu
- the Departments of Radiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lisu Huang
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Murayama Y, Tabuchi M, Utsumi D, Naruse K, Tokuyama K, Ikedo A, Morimasa E, Kato S, Matsumoto K. Role of transient receptor potential vanilloid 4 channels in an ovalbumin-induced murine food allergic model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6061-6074. [PMID: 38396155 DOI: 10.1007/s00210-024-02969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
The prevalence of food allergy (FA) has increased worldwide but an effective therapeutic strategy has not been established. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive nonselective cation channel, is mainly expressed in the epithelium of various organs. The present study investigated the role of TRPV4 in the pathogenesis of an ovalbumin (OVA)-induced FA model in mice. Wild-type (WT) and TRPV4-deficient (TRPV4KO) mice were sensitized and challenged by OVA to establish FA model. Intestinal tissue samples were processed for biochemical, molecular, and image analyses. Intestinal permeability and antigen uptake assay were conducted using FITC-dextran and OVA-FITC, respectively. TRPV4 was expressed in the colonic epithelium in normal and OVA-treated WT mice. Repeated oral administration of OVA to mice induced systemic allergic symptoms, diarrhea, upregulation of T helper 2 cytokines, OVA-specific immunoglobulin, and FA-related inflammatory cells. These responses were significantly augmented in TRPV4KO mice compared with WT mice. After the induction of FA, the intestinal permeability was significantly increased in TRPV4KO mice compared with WT mice. The expressions of the tight junction protein occludin and adherence junction protein E-cadherin in the colon were significantly lower in TRPV4KO mice compared with WT mice under normal and FA conditions. In addition, the uptake of OVA by CD11c-positive cells was significantly increased in TRPV4KO mice compared with WT mice under FA conditions. These results suggest that epithelial TRPV4 protects against OVA-induced FA symptoms by suppressing the penetration of allergens by maintaining epithelial barrier functions.
Collapse
Affiliation(s)
- Yuki Murayama
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayumi Tabuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kei Naruse
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kouga Tokuyama
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayana Ikedo
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Emina Morimasa
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe, Kyoto, 610-0395, Japan.
| |
Collapse
|
4
|
Kato S, Onishi S, Sasai M, Yasuda H, Saeki K, Matsumoto K, Yokomizo T. Deficiency of leukotriene B4 receptor type 1 ameliorates ovalbumin-induced allergic enteritis in mice. Clin Exp Pharmacol Physiol 2023. [PMID: 37406678 DOI: 10.1111/1440-1681.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Leukotriene B4 receptor type 1 (BLT1), a high-affinity receptor for leukotriene B4 (LTB4), plays an important role in inflammatory responses, including allergic airway inflammation. In this study, we examined the effect of genetic BLT1 deletion (BLT1KO) on ovalbumin (OVA)-induced allergic enteritis in mice to determine the pathogenic role of LTB4/BLT1 in allergic enteritis, a gastrointestinal form of food allergy. Repeated oral OVA challenges after sensitization with OVA and aluminium potassium sulphate induced allergic enteritis, characterized by systemic allergic symptoms (scratching, immobility and swelling), diarrhoea, colonic oedema and colonic goblet cell hyperplasia, accompanied by increased colonic peroxidase activity, colonic inflammatory cytokine expression and increased serum OVA-specific IgE levels. The severity of enteritis was significantly attenuated in BLT1KO mice compared with wild-type (WT) mice, without an increase in serum OVA-specific IgE levels. The accumulation of neutrophils, eosinophils, M2-macrophages, dendritic cells, CD4+ T cells and mast cells was observed in the colonic mucosa of allergic enteritis, and such accumulation was significantly lower in BLT1KO mice than in WT mice. BLT1 expression was upregulated and colocalized mostly in neutrophils and partly in eosinophils and dendritic cells in the colonic mucosa of allergic enteritis. These findings indicate that BLT1 deficiency ameliorates OVA-induced allergic enteritis in mice and that LTB4/BLT1 contributes to neutrophil and eosinophil accumulation in the allergic colonic mucosa. Therefore, BLT1 is a promising drug target for treating food allergies.
Collapse
Affiliation(s)
- Shinichi Kato
- Division of Pathological Sciences, Laboratory of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suzuka Onishi
- Division of Pathological Sciences, Laboratory of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Misaki Sasai
- Division of Pathological Sciences, Laboratory of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Laboratory of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Laboratory of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
5
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
7
|
Evaluation of Toxicity and Efficacy of Inotodiol As an Anti-Inflammatory Agent Using Animal Model. Molecules 2022; 27:molecules27154704. [PMID: 35897881 PMCID: PMC9331631 DOI: 10.3390/molecules27154704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.
Collapse
|
8
|
Cao LH, He HJ, Zhao YY, Wang ZZ, Jia XY, Srivastava K, Miao MS, Li XM. Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. J Asthma Allergy 2022; 15:645-664. [PMID: 35603013 PMCID: PMC9122063 DOI: 10.2147/jaa.s348609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Food allergy-induced autism-like behavior has been increasing for decades, but the causal drivers of this association are unclear. We sought to test the association of gut microbiota and mammalian/mechanistic target of rapamycin (mTOR) signaling with cow’s milk allergy (CMA)-induced autism pathogenesis. Methods Mice were sensitized intragastrically with whey protein containing cholera toxin before sensitization on intraperitoneal injection with whey-containing alum, followed by intragastric allergen challenge to induce experimental CMA. The food allergic immune responses, ASD-like behavioral tests and changes in the mTOR signaling pathway and gut microbial community structure were performed. Results CMA mice showed autism-like behavioral abnormalities and several distinct biomarkers. These include increased levels of 5-hydroxymethylcytosine (5-hmC) in the hypothalamus; c-Fos were predominantly located in the region of the lateral orbital prefrontal cortex (PFC), but not ventral; decreased serotonin 1A in amygdala and PFC. CMA mice exhibited a specific microbiota signature characterized by coordinate changes in the abundance of taxa of several bacterial genera, including the Lactobacillus. Interestingly, the changes were accompanied by promoted mTOR signaling in the brain of CMA mice. Conclusion We found that disease-associated microbiota and mTOR activation may thus play a pathogenic role in the intestinal, immunological, and psychiatric Autism Spectrum Disorder (ASD)-like symptoms seen in CAM associated autism. However, this is only a preliminary study, and their mechanisms require further investigation.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- General Nutraceutical Technology, Elmsford, NY, 10523, USA
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
- Correspondence: Xiu-Min Li; Ming-San Miao, Tel +1 914-594-4197, Fax +1 371-65962546, Email ;
| |
Collapse
|
9
|
Viswanath DI, Liu HC, Capuani S, Vander Pol RS, Saunders SZ, Chua CYX, Grattoni A. Engineered implantable vaccine platform for continuous antigen-specific immunomodulation. Biomaterials 2022; 281:121374. [PMID: 35066287 PMCID: PMC8865051 DOI: 10.1016/j.biomaterials.2022.121374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 02/03/2023]
Abstract
Cancer vaccines harness the host immune system to generate antigen-specific antitumor immunity for long-term tumor elimination with durable immunomodulation. Commonly investigated strategies reintroduce ex vivo autologous dendritic cells (DCs) but have limited clinical adoption due to difficulty in manufacturing, delivery and low clinical efficacy. To combat this, we designed the "NanoLymph", an implantable subcutaneous device for antigen-specific antitumor immunomodulation. The NanoLymph consists of a dual-reservoir platform for sustained release of immune stimulants via a nanoporous membrane and hydrogel-encapsulated antigens for local immune cell recruitment and activation, respectively. Here, we present the development and characterization of the NanoLymph as well as efficacy validation for immunomodulation in an immunocompetent murine model. Specifically, we established the NanoLymph biocompatibility and mechanical stability. Further, we demonstrated minimally invasive transcutaneous refilling of the drug reservoir in vivo for prolonging drug release duration. Importantly, our study demonstrated that local elution of two drugs (GMCSF and Resiquimod) generates an immune stimulatory microenvironment capable of local DC recruitment and activation and generation of antigen-specific T lymphocytes within 14 days. In summary, the NanoLymph approach can achieve in situ immunomodulation, presenting a viable strategy for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; University of Chinese Academy of Science (UCAS), Shijingshan, 19 Yuquan Road, Beijing, 100049, China
| | | | | | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
10
|
Xiong S, Jia Y, Liu C. IgE-expressing long-lived plasma cells in persistent sensitization. Front Pediatr 2022; 10:979012. [PMID: 36545659 PMCID: PMC9760851 DOI: 10.3389/fped.2022.979012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Persistent allergies affect the quality of life of patients and increase economic burdens. Many clinical observations indicate the presence of IgE+ long-lived plasma cells (LLPCs), which account for the persistent secretion of specific IgE; however, the characteristics of the IgE+ LLPCs have yet to be identified clearly. In this review, we summarized the generation of IgE+ PCs, discussed the prosurvival factors in the microenvironment, and reviewed the unique IgE-BCR signaling, which may bring insights into understanding the survival mechanisms of IgE+ LLPCs.
Collapse
Affiliation(s)
- Shiqiu Xiong
- Department of Allergy, Center for Asthma Prevention and Lung Function Laboratory, Children's Hospital of Capital Institute of Pediatrics, Beijing, China.,Department of Pediatrics, Graduate School of Peking Union Medical College, Beijing, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuanhe Liu
- Department of Allergy, Center for Asthma Prevention and Lung Function Laboratory, Children's Hospital of Capital Institute of Pediatrics, Beijing, China.,Department of Pediatrics, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Chen X, Miao M, Zhou M, Chen J, Li D, Zhang L, Sun A, Guan M, Wang Z, Liu P, Zhang S, Zha X, Fan X. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis 2021; 12:761. [PMID: 34341336 PMCID: PMC8329163 DOI: 10.1038/s41419-021-04055-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023]
Abstract
Angiogenesis is a key characteristic of asthma airway remodeling. By releasing cationic granule proteins, such as major basic protein (MBP), activated eosinophils play a prominent role in asthma, but the underlying mechanisms are still not fully understood. In this study, we demonstrated that fibroblast growth factor-binding protein 1 (FGFBP1) was dramatically upregulated in airway epithelial cell lines treated by poly-L-arginine (PLA), a mimic of MBP. Elevated FGFBP1 expression was also detected in asthma clinical samples, as well as in ovalbumin (OVA)-induced chronic asthma mouse models. PLA enhanced FGFBP1 expression through activation of the mechanistic target of rapamycin complex 1-signal transducer and activator of transcription 3 (mTORC1-STAT3) signaling pathway. STAT3 transactivated FGFBP1 by directly binding to the promoter of the FGFBP1 gene. Furthermore, we identified that FGFBP1 secreted by PLA-treated airway epithelial cells served as a proangiogenesis factor. Lastly, we found the mTORC1-STAT3-FGFBP1 signaling pathway was activated in an OVA-induced chronic asthma model with airway remodeling features. Rapamycin treatment alleviated respiratory symptoms and reduced angiogenesis in asthmatic mice. Therefore, activation of the mTORC1-STAT3-FGFBP1 pathway in the airway epithelium contributes to the progress of angiogenesis and should be targeted for the treatment of asthma.
Collapse
Affiliation(s)
- Xu Chen
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Hefei, China.,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Manli Miao
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Hefei, China.,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China
| | - Meng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jie Chen
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Hefei, China.,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China
| | - Dapeng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Ling Zhang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Hefei, China.,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China
| | - Anjiang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Minglong Guan
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Geriatric Institute, Hefei, China.,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China
| | - Zixi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Ping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China. .,Anhui Geriatric Institute, Hefei, China. .,Key Lab of Geriatric Molecular Medicine of Anhui Province, Hefei, China.
| |
Collapse
|
12
|
Wang L, Jia X, Yu Q, Shen S, Gao Y, Lin X, Zhang W. Piper nigrum extract attenuates food allergy by decreasing Th2 cell response and regulating the Th17/Treg balance. Phytother Res 2021; 35:3214-3225. [PMID: 33595153 DOI: 10.1002/ptr.7034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022]
Abstract
Piper nigrum is extensively utilized because of its antioxidation, antiallergic, antitumor, antiinflammatory, antidiarrhea, and gastrointestinal protection. We attempted to indicate whether the Piper nigrum extract (PNE) could alleviate ovalbumin (OVA)-induced food allergy, and to explore its potential mechanism. An OVA-induced food allergy mouse model was established, and different concentrations of PNE were administrated. Symptoms of food allergy, levels of immunoglobulin E (IgE), mucosal mast cell protease-1 (mMCP-1), and intestine pathological changes were assessed. Additionally, the expressions of T helper (Th) 2, Th17 and regulatory T (Treg)-associated cytokines and the proportion of Th17 and Treg cells in CD4+ T cells were measured. We found PNE attenuated symptoms of food allergy and decreased the levels of IgE and mMCP-1. In PNE group, the infiltration degree of inflammatory cells was ameliorated and the villi of small intestine were more complete. Moreover, the expressions of Th2 and Th17 cell-associated cytokines were down-regulated by PNE pretreatment, while the levels of Treg cell-associated cytokines were up-regulated. PNE decreased the number of Th17 cells, while increased the Tregs cells. PNE treatment dose-dependently improved the Th17/Treg balance. PNE plays a protective role in OVA-induced food allergy through inhibiting Th2 cell response and regulating the Th17/Treg balance.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sijia Shen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuyan Gao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Benedé S, Berin MC. Applications of Mouse Models to the Study of Food Allergy. Methods Mol Biol 2021; 2223:1-17. [PMID: 33226583 DOI: 10.1007/978-1-0716-1001-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Disease Course and Treatment Response of Eosinophilic Gastrointestinal Diseases in Children With Liver Transplantation: Long-Term Follow-Up. Am J Gastroenterol 2021; 116:188-197. [PMID: 33065587 DOI: 10.14309/ajg.0000000000000934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To describe the clinical and laboratory profile, natural course, treatment outcome, and risk factors of posttransplant esophageal and nonesophageal eosinophilic gastrointestinal disorders (EGIDs). METHODS All children (aged <18 years) who underwent liver transplantation, between 2011 and 2019, in a single transplant center with a follow-up period of 1 year or more posttransplant and with a history of posttransplant endoscopic evaluation were included in this study. RESULTS During the study period, 89 children met the inclusion criteria. Patients were followed for a median of 8.0 years. A total of 39 (44%) patients were diagnosed with EGID after transplantation. Of these, 29 (33%) had eosinophilic esophagitis (EoE), and 10 (11%) had eosinophilic gastritis, gastroenteritis or enterocolitis. In comparison with the non-EGID group, patients with EGID were younger at transplant (P ≤ 0.0001), transplanted more frequently due to biliary atresia (P ≤ 0.0001), and had higher rates of pretransplant allergy (P = 0.019). In the posttransplant period, they had higher rates of mammalian Target of Rapamycin inhibitor use (P = 0.006), Epstein-Barr virus viremia (P = 0.03), post-transplant lymphoproliferative disease (P = 0.005), and allergen sensitization (P ≤ 0.0001). In regression analysis, young age at transplant, age at diagnosis, pretransplant atopic dermatitis, and post-transplant lymphoproliferative disease were associated with an increased risk of EGID or EoE. Laboratory abnormalities such as anemia (P = 0.007), thrombocytosis (P = 0.012), and hypoalbuminemia (P = 0.031) were more commonly observed in the eosinophilic gastritis, gastroenteritis or enterocolitis group than in the EoE group. Following treatment, most patients had symptomatic resolution at 3 months and histologic resolution at 6 months postdiagnosis. Among the patients who had 5 years of follow-up, none recurred. DISCUSSION EGID is a common posttransplant diagnosis, which seems to affect patients who are transplanted earlier and who have pretransplant atopy. Posttransplant EGID is responsive to treatment, but as histologic remission occurs after symptomatic resolution, the decision to perform control endoscopy should be delayed.
Collapse
|
15
|
Li Q, Cheng H, Liu Y, Wang X, He F, Tang L. Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease. Cell Death Dis 2020; 11:918. [PMID: 33106485 PMCID: PMC7589503 DOI: 10.1038/s41419-020-03114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Damage to intestinal epithelial cells and the induction of cellular apoptosis are characteristics of inflammatory bowel disease. The C-type lectin receptor family member LSECtin promotes apoptotic cell clearance by macrophages and induces the production of anti-inflammatory/tissue growth factors, which direct intestinal repair in experimental colitis. However, the mechanisms by which the phagocytosis of apoptotic cells triggers the pro-repair function of macrophages remain largely undefined. Here, using immunoprecipitation in combination with mass spectrometry to identify LSECtin-interacting proteins, we found that LSECtin interacted with mTOR, exhibiting a role in activating mTORC1. Mechanistically, apoptotic cells enhance the interaction between LSECtin and mTOR, and increase the activation of mTORC1 induced by LSECtin in macrophages. Elevated mTORC1 signaling triggers macrophages to produce anti-inflammatory/tissue growth factors that contribute to the proliferation of epithelial cells and promote the reestablishment of tissue homeostasis. Collectively, our findings suggest that LSECtin-dependent apoptotic cell clearance by macrophages activates mTORC1, and thus contributes to intestinal regeneration and the remission of colitis.
Collapse
Affiliation(s)
- Qian Li
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Hanxing Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Yuanping Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Xiaowen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Fuchu He
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
- Department of Biochemistry and Molecular Biology, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
16
|
Li W, Wu Y, Zhao Y, Li Z, Chen H, Dong L, Liu H, Zhang M, Wu Y, Zhou J, Xiong J, Hu Y, Hua W, Zhang B, Qiu M, Zhang QL, Wei C, Wen M, Han J, Zhou X, Qiu W, Yan F, Huang H, Ying S, Choi AMK, Shen H, Chen Z. MTOR suppresses autophagy-mediated production of IL25 in allergic airway inflammation. Thorax 2020; 75:1047-1057. [PMID: 33077617 DOI: 10.1136/thoraxjnl-2019-213771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Airway epithelial cells are recognised as an essential controller for the initiation and perpetuation of asthmatic inflammation, yet the detailed mechanisms remain largely unknown. This study aims to investigate the roles and mechanisms of the mechanistic target of rapamycin (MTOR)-autophagy axis in airway epithelial injury in asthma. METHODS We examined the MTOR-autophagy signalling in airway epithelium from asthmatic patients or allergic mice induced by ovalbumin or house dust mites, or in human bronchial epithelial (HBE) cells. Furthermore, mice with specific MTOR knockdown in airway epithelium and autophagy-related lc3b -/- mice were used for allergic models. RESULTS MTOR activity was decreased, while autophagy was elevated, in airway epithelium from asthmatic patients or allergic mice, or in HBE cells treated with IL33 or IL13. These changes were associated with upstream tuberous sclerosis protein 2 signalling. Specific MTOR knockdown in mouse bronchial epithelium augmented, while LC3B deletion diminished allergen-induced airway inflammation and mucus hyperproduction. The worsened inflammation caused by MTOR deficiency was also ameliorated in lc3b -/- mice. Mechanistically, autophagy was induced later than the emergence of allergen-initiated inflammation, particularly IL33 expression. MTOR deficiency increased, while knocking out of LC3B abolished the production of IL25 and the eventual airway inflammation on allergen challenge. Blocking IL25 markedly attenuated the exacerbated airway inflammation in MTOR-deficiency mice. CONCLUSION Collectively, these results demonstrate that allergen-initiated inflammation suppresses MTOR and induces autophagy in airway epithelial cells, which results in the production of certain proallergic cytokines such as IL25, further promoting the type 2 response and eventually perpetuating airway inflammation in asthma.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiwen Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiesen Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Xiong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Hu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Hua
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minzhi Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Qing-Ling Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Chunhua Wei
- Department of Respiratory Medicine, Weifang V E Hospital, Weifang, China
| | - Mingchun Wen
- Department of Respiratory Medicine, Weifang V E Hospital, Weifang, China
| | - Jing Han
- Department of Respiratory Medicine, Weifang V E Hospital, Weifang, China
| | - Xiaobo Zhou
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaqiong Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Kehar M, Grunebaum E, Jimenez-Rivera C, Mozer-Glassberg Y, Jamal A, Ng VL, Avitzur Y. Conversion from tacrolimus to sirolimus as a treatment modality in de novo allergies and immune-mediated disorders in pediatric liver transplant recipients. Pediatr Transplant 2020; 24:e13737. [PMID: 32428390 DOI: 10.1111/petr.13737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
Abstract
De novo PTAID may develop in pediatric solid organ transplant recipients, have a diverse spectrum, and are occasionally treatment resistant. Previous reports showed resolution of immune cytopenias in solid organ transplant recipients following replacement of the calcineurin inhibitor tacrolimus with the mTOR inhibitor sirolimus. Herein we describe a retrospective review (2000-2017) of subjects who developed PTAID in whom immunosuppression was changed to sirolimus. Eight recipients (6 males) of either liver (n = 7) or multivisceral transplant (n = 1) suffered from severe, treatment-resistant PTAID and were switched from tacrolimus to sirolimus. The median age at transplant was 1 year (range 0.5-2.4 years). Six (75%) recipients developed de novo allergy and 2 immune-mediated diseases. The median age at presentation of PTAID was 2.7 (1.4-9) years at a median of 1.3 (0.25-8) years after transplantation. The median time from PTAID presentation to conversion to sirolimus was 1.8 (0.45-10) years. Complete resolution of symptoms was seen in 4 (50%) patients after a median of 12 (range 4-24) months including 2 patients with immune-mediated disease, 1 eczema, and 1 with eosinophilic colitis. One patient with multiple food allergies had a partial response and 3 (38%) had no response. None of the 8 recipients developed sirolimus-attributed adverse events or acute rejection during a median follow-up of 5 (0.6-8) years after the conversion. Immunosuppression conversion from tacrolimus to sirolimus can be an effective therapy in patients suffering severe or treatment-resistant PTAID, suggesting a potential role for tacrolimus in the pathogenesis of PTAID.
Collapse
Affiliation(s)
- Mohit Kehar
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Queens University, Kingston, ON, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Carolina Jimenez-Rivera
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yael Mozer-Glassberg
- Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Alisha Jamal
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vicky Lee Ng
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Nguyen TMN, Le HS, Le BV, Kim YH, Hwang I. Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. Int Immunopharmacol 2020; 81:106244. [PMID: 32035309 DOI: 10.1016/j.intimp.2020.106244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Inotodiol is a lanostane triterpenoid found only in Chaga mushroom. In the previous study investigating anti-allergic effects of fractionated Chaga mushroom extracts, we have found evidence that purified inotodiol holds an activity to suppress the mast cell function in vivo. To address the therapeutic relevance of the finding, in this study, we investigated whether inotodiol could also alleviate allergy symptoms observed in a chicken ovalbumin (cOVA)-induced mouse model of food allergy. Like the crude 70% ethanol extract of Chaga mushroom (320 mg/kg), oral administration of inotodiol (20 mg/kg), regardless of whether that was for preventive or treatment purpose, resulted in a significant improvement in allergic symptoms and inflammatory lesions in the small intestine appearing after repeated oral challenge with cOVA. Despite the results that inotodiol (20 mg/kg) and the Chaga mushroom extract (320 mg/kg) took effect to a similar extent, immunological mechanisms underlying those effects were found to be distinct from each other. That is, the results obtained from several in vivo assays, including mast cell-mediated passive systemic anaphylaxis, activation/proliferation of adoptively transferred antigen-specific T cells and immunoglobulin (IgG1, IgE, IgA) production by antigen-specific B cells, illustrated that inotodiol selectively inhibited the mast cell function without having any noticeable effect on other immune responses while the crude Chaga mushroom extract indiscriminately suppressed diverse immune responses. The strong anti-allergic activity of inotodiol, along with its remarkable selectivity to mast cell, makes it an excellent therapeutic candidate for food allergy with both high efficacy and outstanding safety.
Collapse
Affiliation(s)
- Thi Minh Nguyet Nguyen
- Immunology and Immunopharmacology Laboratory, College of Pharmacy and Pharmaceutical Science, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hong Son Le
- Immunology and Immunopharmacology Laboratory, College of Pharmacy and Pharmaceutical Science, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ba Vinh Le
- Natural Products Laboratory, College of Pharmacy and Pharmaceutical Science, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young Ho Kim
- Natural Products Laboratory, College of Pharmacy and Pharmaceutical Science, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Inkyu Hwang
- Immunology and Immunopharmacology Laboratory, College of Pharmacy and Pharmaceutical Science, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
19
|
Hong J, Xiao X, Gao Q, Li S, Jiang B, Sun X, Ran P, Yang P. Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells. Int J Nanomedicine 2019; 14:7053-7064. [PMID: 31564865 PMCID: PMC6722440 DOI: 10.2147/ijn.s215415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Food allergy (FA) is a significant public health problem. The therapeutic efficacy for FA is unsatisfactory currently. The breakdown of intestinal immune tolerance is associated with the pathogenesis of FA. Therefore, it is of great significance to develop novel therapeutic methods to restore immune tolerance in treating FA. METHODS We proposed an oral administration strategy to treat FA by co-delivering food allergen epitope fragment (peptide: IK) and adjuvant R848 (TLR7 ligand) in the mPEG-PDLLA nanoparticles (PPLA-IK/R848 NPs). The generation of tolerogenic dendritic cells (DCs) and regulatory T cells (Tregs) induced by PPLA-IK/R848 NPs were evaluated in vitro and in vivo. The therapeutic effects of PPLA-IK/R848 NPs were also assessed in an OVA-induced FA model. RESULTS PPLA-IK/R848 NPs could efficiently deliver IK to DCs to drive DCs into the tolerogenic phenotypes and promote the differentiation of Tregs in vitro and in vivo, significantly inhibited FA responses through the recovery of intestinal immune tolerance. CONCLUSION Oral administration of PPLA-IK/R848 NPs could efficiently deliver IK and R848 to intestinal DCs and stimulate DCs into allergen tolerogenic phenotype. These tolerogenic DCs could promote the differentiation of Tregs, which significantly protected mice from food allergic responses. This study provided an efficient formulation to alleviate FA through the recovery of immune tolerance.
Collapse
Affiliation(s)
- Jingyi Hong
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Xiaojun Xiao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Qichan Gao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Shanshan Li
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Bei Jiang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Xizhuo Sun
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
20
|
Xia Z, Zhang Y, Li C, Xu Y, Dong J, Wang L, He Q, Zou X, Wu H, Han J, Cai M, Du Y, Wei L, Shang J. Traditional Tibetan medicine Anzhijinhua San attenuates ovalbumin-induced diarrhea by regulating the serotonin signaling system in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:484-494. [PMID: 30738115 DOI: 10.1016/j.jep.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/02/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan medicine has been practiced for 3800 years. Anzhijinhua San (AZJHS), which is a traditional Tibetan medicine, has been effective in the treatment of indigestion, anorexia and cold diarrhea. However, the effects of AZJHS on allergic diarrhea have not been reported. AIM OF THE STUDY The aim of the present study was to elucidate the effect of AZJHS on experimental ovalbumin-induced diarrhea and elucidate its possible mechanism. MATERIALS AND METHODS Female BALB/c mice were sensitized by intraperitoneal injection with 50 μg ovalbumin (OVA) and 1 mg alum in saline twice during a 2-week period. From day 28, mice were orally challenged with OVA (50 mg) every other day for a total of ten times. AZJHS (46.8 and 468.0 mg/kg) was orally administered every other day from day 0-46. Food allergy symptoms were evaluated. OVA- specific IgE, 5-HT and its metabolites in serum were determined. Immunohistochemical and histopathology were performed in gastrointestinal tract tissues. 5-HT-related gene expression was assayed in the colon. RESULTS Severe symptoms of allergic diarrhea were observed in the model group (diarrhea, anaphylactic response, and rectal temperature). AZJHS (46.8 and 468.0 mg/kg) significantly reduced mouse diarrhea and significantly prevented the increases in OVA-specific IgE levels (P < 0.05), which challenge with OVA. AZJHS (46.8 and 468.0 mg/kg) significantly prevented the increases in 5-HT-positive cells. The nuclei of EC cells in the AZJHS (46.8 and 468.0 mg/kg) group increased in size and the secretory granules were fewer in number compared with those in the model group. AZJHS (46.8 and 468.0 mg/kg) significantly increased the relative fold changes of 5-HTP and 5-HT compared with the model group. The mRNA expression of the serotonin transporter (Sert) and serotonin receptor 3A (Htr3a) was significantly decreased after the 10th challenge with OVA, and AZJHS (46.8 and 468.0 mg/kg) significantly increased these levels. CONCLUSIONS We demonstrated that the administration of AZJHS attenuated OVA-induced diarrhea by regulating the serotonin pathway. These results indicated that AZJHS may be a potential candidate as an anti-allergic diarrhea agent.
Collapse
Affiliation(s)
- Zhenjiang Xia
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yifan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Cen Li
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jinjin Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lulu Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Qiangqiang He
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Zou
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huali Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Minxuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Yuzhi Du
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Lixin Wei
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
21
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
22
|
Zhang YF, Liu QM, Gao YY, Liu B, Liu H, Cao MJ, Yang XW, Liu GM. Attenuation of allergic responses following treatment with resveratrol in anaphylactic models and IgE-mediated mast cells. Food Funct 2019; 10:2030-2039. [PMID: 30907398 DOI: 10.1039/c9fo00077a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resveratrol exists widely in plant species and has a variety of anti-oxidant, anti-inflammatory, and immunomodulatory properties. However, there have been few reports regarding its anti-food allergic activity. In this study, we demonstrated that resveratrol (isolated from Abies georgei) could decrease the release of β-hexosaminidase and histamine in rat basophilic leukemia-2H3 cells. Resveratrol was not only found to suppress the development of diarrhea, up-regulate the rectal temperature of ovalbumin-allergic mice, and decrease the serum level of specific immunoglobulin E, mouse mast cell protease-1 and histamine, but also found to decrease the population of dendritic cells, B cells and mast cells of ovalbumin -allergic mice in the spleen or mesenteric lymph node. Furthermore, resveratrol inhibited the release of β-hexosaminidase and histamine in bone marrow-derived cells and alleviated mast cell-mediated passive cutaneous anaphylaxis reactions. These findings indicated that resveratrol isolated from Abies georgei might have the potential to alleviate food hypersensitivity or allergic disease.
Collapse
Affiliation(s)
- Ya-Fen Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Daxue Road, Xiamen, 361005, Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| |
Collapse
|
23
|
Schwarzer M, Hermanova P, Srutkova D, Golias J, Hudcovic T, Zwicker C, Sinkora M, Akgün J, Wiedermann U, Tuckova L, Kozakova H, Schabussova I. Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy. Front Immunol 2019; 10:205. [PMID: 30809227 PMCID: PMC6379318 DOI: 10.3389/fimmu.2019.00205] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Mucosal mast cells (MC) are key players in IgE-mediated food allergy (FA). The evidence on the interaction between gut microbiota, MC and susceptibility to FA is contradictory. Objective: We tested the hypothesis that commensal bacteria are essential for MC migration to the gut and their maturation impacting the susceptibility to FA. Methods: The development and severity of FA symptoms was studied in sensitized germ-free (GF), conventional (CV), and mice mono-colonized with L. plantarum WCFS1 or co-housed with CV mice. MC were phenotypically and functionally characterized. Results: Systemic sensitization and oral challenge of GF mice with ovalbumin led to increased levels of specific IgE in serum compared to CV mice. Remarkably, despite the high levels of sensitization, GF mice did not develop diarrhea or anaphylactic hypothermia, common symptoms of FA. In the gut, GF mice expressed low levels of the MC tissue-homing markers CXCL1 and CXCL2, and harbored fewer MC which exhibited lower levels of MC protease-1 after challenge. Additionally, MC in GF mice were less mature as confirmed by flow-cytometry and their functionality was impaired as shown by reduced edema formation after injection of degranulation-provoking compound 48/80. Co-housing of GF mice with CV mice fully restored their susceptibility to develop FA. However, this did not occur when mice were mono-colonized with L. plantarum. Conclusion: Our results demonstrate that microbiota-induced maturation and gut-homing of MC is a critical step for the development of symptoms of experimental FA. This new mechanistic insight into microbiota-MC-FA axis can be exploited in the prevention and treatment of FA in humans.
Collapse
Affiliation(s)
- Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jaroslav Golias
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Christian Zwicker
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Johnnie Akgün
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludmila Tuckova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Zhang YF, Liu QM, Liu B, Shu ZD, Han J, Liu H, Cao MJ, Yang XW, Gu W, Liu GM. Dihydromyricetin inhibited ovalbumin-induced mice allergic responses by suppressing the activation of mast cells. Food Funct 2019; 10:7131-7141. [DOI: 10.1039/c9fo01557d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dihydromyricetin (DMY) is a natural flavonoid compound derived from Lysionotus pauciflorus Maxim and has been found to possess therapeutic potential for allergic disease induced by food allergens.
Collapse
|
25
|
Johnson-Weaver BT, Staats HF, Burks AW, Kulis MD. Adjuvanted Immunotherapy Approaches for Peanut Allergy. Front Immunol 2018; 9:2156. [PMID: 30319619 PMCID: PMC6167456 DOI: 10.3389/fimmu.2018.02156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022] Open
Abstract
Food allergies are a growing public health concern with an estimated 8% of US children affected. Peanut allergies are also on the rise and often do not spontaneously resolve, leaving individuals at-risk for potentially life-threatening anaphylaxis throughout their lifetime. Currently, two forms of peanut immunotherapy, oral immunotherapy (OIT) and epicutaneous immunotherapy (EPIT), are in Phase III clinical trials and have shown promise to induce desensitization in many subjects. However, there are several limitations with OIT and EPIT, such as allergic side effects, daily dosing requirements, and the infrequent outcome of long-term tolerance. Next-generation therapies for peanut allergy should aim to overcome these limitations, which may be achievable with adjuvanted immunotherapy. An adjuvant can be defined as anything that enhances, accelerates, or modifies an immune response to a particular antigen. Adjuvants may allow for lower doses of antigen to be given leading to decreased side effects; may only need to be administered every few weeks or months rather than daily exposures; and may induce a long-lasting protective effect. In this review article, we highlight examples of adjuvants and formulations that have shown pre-clinical efficacy in treating peanut allergy.
Collapse
Affiliation(s)
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - A Wesley Burks
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| | - Michael D Kulis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Pereira E Silva A, Soares JRA, Mattos EBDA, Josetti C, Guimarães IM, Campos SMN, Teixeira GAPB. A histomorphometric classification system for normal and inflamed mouse duodenum-Quali-quantitative approach. Int J Exp Pathol 2018; 99:189-198. [PMID: 30175413 DOI: 10.1111/iep.12286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Gut-associated intestinal lymphoid tissue, the largest secondary lymphoid organ in the human body, constantly samples antigens from the gut lumen, presenting as a default response the activation of TCD4+ FOXP3+ regulatory T cells that secrete a profile of anti-inflammatory cytokines maintaining gut homeostasis denominated from an immunological perspective as mucosal tolerance. However, when antigens are sampled in an inflammatory setting, the immune response may either be protective, in the case of harmful pathogens, or cause further inflammatory reactions as in food allergy, inflammatory bowel diseases, coeliac disease or food protein-induced enterocolitis syndrome. Therefore, there is a need for accurate and consistent experimental models. However, a drawback in comparing these models is the lack of a classification system similar to that which is already used for humans. Thus, the aim of this work was to propose a classification system of the small intestinal histomorphology in experimental mice. To do this we used a mouse antigen-specific gut inflammation model developed by our research group. Duodenum sections stained with haematoxylin-eosin and Alcian blue were scanned using the APERIO scanning system and analysed with the ImageScope® software. The evaluated parameters were villus area, villus height and width, enterocyte count, mononuclear intra-epithelial leucocyte and goblet cell counts, and architectural and cellular ratios. Food-sensitized animals challenged with a diet containing the corresponding food allergen presented, as for humans, time-dependent shortened and widened villi accompanied by leucocyte infiltrate and loss of goblet cells. With these data, we were able to establish a classification system for experimental intestinal inflammation in mice thus permitting better comparisons among and between experiments than has been possible previously.
Collapse
Affiliation(s)
- Airton Pereira E Silva
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - João R A Soares
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Erika Bertozzi de Aquino Mattos
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Claudia Josetti
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Isabelle M Guimarães
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Sylvia M N Campos
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Department of Nutrition, VP Graduation Program, São Paulo, Brazil
| | - Gerlinde A P B Teixeira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Virkud YV, Wang J, Shreffler WG. Enhancing the Safety and Efficacy of Food Allergy Immunotherapy: a Review of Adjunctive Therapies. Clin Rev Allergy Immunol 2018; 55:172-189. [DOI: 10.1007/s12016-018-8694-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Tordesillas L, Berin MC, Sampson HA. Immunology of Food Allergy. Immunity 2017; 47:32-50. [DOI: 10.1016/j.immuni.2017.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/29/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
|
29
|
Whelan KA, Merves JF, Giroux V, Tanaka K, Guo A, Chandramouleeswaran PM, Benitez AJ, Dods K, Que J, Masterson JC, Fernando SD, Godwin BC, Klein-Szanto AJ, Chikwava K, Ruchelli ED, Hamilton KE, Muir AB, Wang ML, Furuta GT, Falk GW, Spergel JM, Nakagawa H. Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut 2017; 66:1197-1207. [PMID: 26884425 PMCID: PMC4987278 DOI: 10.1136/gutjnl-2015-310341] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The influence of eosinophilic oesophagitis (EoE)-associated inflammation upon oesophageal epithelial biology remains poorly understood. We investigated the functional role of autophagy in oesophageal epithelial cells (keratinocytes) exposed to the inflammatory EoE milieu. DESIGN Functional consequences of genetic or pharmacological autophagy inhibition were assessed in endoscopic oesophageal biopsies, human oesophageal keratinocytes, single cell-derived ex vivo murine oesophageal organoids as well as a murine model recapitulating EoE-like inflammation and basal cell hyperplasia. Gene expression, morphological and functional characterisation of autophagy and oxidative stress were performed by transmission electron microscopy, immunostaining, immunoblotting, live cell imaging and flow cytometry. RESULTS EoE-relevant inflammatory conditions promoted autophagy and basal cell hyperplasia in three independent murine EoE models and oesophageal organoids. Inhibition of autophagic flux via chloroquine treatment augmented basal cell hyperplasia in these model systems. Oesophageal keratinocytes stimulated with EoE-relevant cytokines, including tumour necrosis factor-α and interleukin-13 exhibited activation of autophagic flux in a reactive oxygen species-dependent manner. Autophagy inhibition via chloroquine treatment or depletion of Beclin-1 or ATG-7, augmented oxidative stress induced by EoE-relevant stimuli in murine EoE, oesophageal organoids and human oesophageal keratinocytes. Oesophageal epithelia of paediatric EoE patients with active inflammation displayed increased autophagic vesicle content compared with normal and EoE remission subjects. Functional flow cytometric analysis revealed autophagic flux in human oesophageal biopsies. CONCLUSIONS Our findings reveal for the first time that autophagy may function as a cytoprotective mechanism to maintain epithelial redox balance and homeostasis under EoE inflammation-associated stress, providing mechanistic insights into the role of autophagy in EoE pathogenesis.
Collapse
Affiliation(s)
- Kelly A. Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Jamie F. Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Andy Guo
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Prasanna M. Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Alain J. Benitez
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jianwen Que
- Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanne C. Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Shahan D. Fernando
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Bridget C. Godwin
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kudakwashe Chikwava
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Eduardo D. Ruchelli
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Kathryn E. Hamilton
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glenn T. Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Gary W. Falk
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan M. Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Xu SS, Liu QM, Xiao AF, Maleki SJ, Alcocer M, Gao YY, Cao MJ, Liu GM. Eucheuma cottonii Sulfated Oligosaccharides Decrease Food Allergic Responses in Animal Models by Up-regulating Regulatory T (Treg) Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3212-3222. [PMID: 28359154 DOI: 10.1021/acs.jafc.7b00389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, the anti-food allergy activity of Eucheuma cottonii sulfated oligosaccharide (ESO) was investigated. ESO was obtained by enzymatic degradation and purified by column chromatography. RBL-2H3 cells and BALB/c mouse model were used to test the anti-food allergy activity of ESO. The effects of ESO on the regulatory T (Treg) cells and bone marrow-derived mast cells (BMMCs) were investigated by flow cytometry. The results of in vivo assay showed that ESO decreased the levels of mast cell protease-1 and histamine and inhibited the levels of specific IgE by 77.7%. In addition, the production of interleukin (IL)-4 and IL-13 was diminished in the ESO groups compared to the non-ESO-treated group. Furthermore, ESO could up-regulate Treg cells by 22.2-97.1%. In conclusion, ESO decreased the allergy response in mice by reducing basophil degranulation, up-regulating Treg cells via Forkhead box protein 3 (Foxp3), and releasing IL-10. ESO may have preventive and therapeutic potential in allergic disease.
Collapse
Affiliation(s)
- Sha-Sha Xu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| | - An-Feng Xiao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| | - Soheila J Maleki
- Southern Regional Research Center, U.S. Department of Agriculture, Agriculture Research Service , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Marcos Alcocer
- School of Biosciences, The University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, People's Republic of China
| |
Collapse
|
31
|
Ren W, Yin J, Xiao H, Chen S, Liu G, Tan B, Li N, Peng Y, Li T, Zeng B, Li W, Wei H, Yin Z, Wu G, Hardwidge PR, Yin Y. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Front Immunol 2017; 7:685. [PMID: 28138329 PMCID: PMC5237640 DOI: 10.3389/fimmu.2016.00685] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Intestinal microbiota has critical importance in pathogenesis of intestinal infection; however, the role of intestinal microbiota in intestinal immunity during enterotoxigenic Escherichia coli (ETEC) infection is poorly understood. The present study tested the hypothesis that the intestinal microbiota is associated with intestinal interleukin-17 (IL-17) expression in response to ETEC infection. Here, we found ETEC infection induced expression of intestinal IL-17 and dysbiosis of intestinal microbiota, increasing abundance of γ-aminobutyric acid (GABA)-producing Lactococcus lactis subsp. lactis. Antibiotics treatment in mice lowered the expression of intestinal IL-17 during ETEC infection, while GABA or L. lactis subsp. lactis administration restored the expression of intestinal IL-17. L. lactis subsp. lactis administration also promoted expression of intestinal IL-17 in germ-free mice during ETEC infection. GABA enhanced intestinal IL-17 expression in the context of ETEC infection through activating mechanistic target of rapamycin complex 1 (mTORC1)-ribosomal protein S6 kinase 1 (S6K1) signaling. GABA-mTORC1 signaling also affected intestinal IL-17 expression in response to Citrobacter rodentium infection and in drug-induced model of intestinal inflammation. These findings highlight the importance of intestinal GABA signaling in intestinal IL-17 expression during intestinal infection and indicate the potential of intestinal microbiota-GABA signaling in IL-17-associated intestinal diseases.
Collapse
Affiliation(s)
- Wenkai Ren
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Hao Xiao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Shuai Chen
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Gang Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage and Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing, China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Philip R. Hardwidge
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Wu J, de Theije CGM, da Silva SL, Abbring S, van der Horst H, Broersen LM, Willemsen L, Kas M, Garssen J, Kraneveld AD. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain Behav Immun 2017; 59:273-287. [PMID: 27640900 DOI: 10.1016/j.bbi.2016.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Jiangbo Wu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Hilma van der Horst
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Linette Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martien Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
33
|
Liu QM, Yang Y, Maleki SJ, Alcocer M, Xu SS, Shi CL, Cao MJ, Liu GM. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4536-4544. [PMID: 27186807 DOI: 10.1021/acs.jafc.6b01086] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients.
Collapse
Affiliation(s)
- Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Soheila J Maleki
- U.S. Department of Agriculture, Agriculture Research Service , Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Marcos Alcocer
- School of Biosciences, Sutton Bonington Campus, University of Nottingham , Loughborough, LE125RD, United Kingdom
| | - Sha-Sha Xu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Chao-Lan Shi
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| |
Collapse
|
34
|
Yoshino S, Mizutani N. Intranasal exposure to monoclonal antibody Fab fragments to Japanese cedar pollen Cry j1 suppresses Japanese cedar pollen-induced allergic rhinitis. Br J Pharmacol 2016; 173:1629-38. [PMID: 26895546 PMCID: PMC4842921 DOI: 10.1111/bph.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/27/2016] [Accepted: 02/14/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Fab fragments (Fabs) of antibodies have the ability to bind to specific allergens but lack the Fc portion that exerts effector functions via binding to receptors including FcεR1 on mast cells. In the present study, we investigated whether intranasal administration of the effector function-lacking Fabs of a monoclonal antibody IgG1 (mAb, P1-8) to the major allergen Cry j1 of Japanese cedar pollen (JCP) suppressed JCP-induced allergic rhinitis in mice. EXPERIMENTAL APPROACH Balb/c mice sensitized with JCP on days 0 and 14 were challenged intranasally with the pollen on days 28, 29, 30 and 35. Fabs prepared by the digestion of P1-8 with papain were also administered intranasally 15 min before each JCP challenge. KEY RESULTS Intranasal administration of P1-8 Fabs was followed by marked suppression of sneezing and nasal rubbing in mice with JCP-induced allergic rhinitis. The suppression of these allergic symptoms by P1-8 Fabs was associated with decreases in mast cells and eosinophils and decreased hyperplasia of goblet cells in the nasal mucosa. CONCLUSIONS AND IMPLICATIONS These results demonstrated that intranasal exposure to P1-8 Fabs was effective in suppressing JCP-induced allergic rhinitis in mice, suggesting that allergen-specific mAb Fabs might be used as a tool to regulate allergic pollinosis.
Collapse
Affiliation(s)
- S Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - N Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
35
|
Benedé S, Blázquez AB, Chiang D, Tordesillas L, Berin MC. The rise of food allergy: Environmental factors and emerging treatments. EBioMedicine 2016; 7:27-34. [PMID: 27322456 PMCID: PMC4909486 DOI: 10.1016/j.ebiom.2016.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
Food allergy has rapidly increased in prevalence, suggesting an important role for environmental factors in disease susceptibility. The immune response of food allergy is characterized by IgE production, and new findings from mouse and human studies indicate an important role of the cytokine IL-9, which is derived from both T cells and mast cells, in disease manifestations. Emerging evidence suggests that route of exposure to food, particularly peanut, is important. Exposure through the skin promotes sensitization while early exposure through the gastrointestinal tract promotes tolerance. Evidence from mouse studies indicate a role of the microbiome in development of food allergy, which is supported by correlative human studies showing a dysbiosis in food allergy. There is no approved treatment for food allergy, but emerging therapies are focused on allergen immunotherapy to provide desensitization, while pre-clinical studies are focused on using adjuvants or novel delivery approaches to improve efficacy and safety of immunotherapy. Emerging evidence suggests that route of exposure to food allergens in early life determines sensitization versus tolerance. The microbiota and dietary factors appear to play a key role in susceptibility to food allergy. Immunotherapy applied via different routes is currently the most promising form of experimental treatment for food allergy.
Collapse
Affiliation(s)
- Sara Benedé
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Belen Blázquez
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Chiang
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leticia Tordesillas
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Yamaki K, Yoshino S. IgA directly inhibits antigen-dependent B cell activation following distinctive distribution of the antigen in mice. Immunopharmacol Immunotoxicol 2016; 38:131-44. [PMID: 26954390 DOI: 10.3109/08923973.2016.1142559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Serum IgA suppresses immune responses when exposed to antigens recognized by the antibody; however, the underlying mechanism remains unclear. OBJECTIVE We herein clarified the relationships between changes in antigen distribution and antigen-dependent B cell activation in the presence or absence of IgA against the antigen in mice. MATERIALS AND METHODS DBA/1J and HR-1 mice were intravenously injected with ovalbumin (OVA) and anti-OVA monoclonal IgA OA-4. The distribution of the antigen and B cell responses were measured. RESULTS B cell activation by injected OVA, namely, increases in anti-OVA IgG production and the populations of B220(+)GL7(+) and B220(+)CD69(high) splenocytes, was diminished by the co-injection of OA-4. Co-injected OA-4 increased OVA in the serum as well as in the bile and gut. This was coincident with its decrease in the urine due to the inhibition of OVA monomer secretion through the formation of immune complexes. The apparent similarities in the association between fluorescein isothiocyanate (FITC)-OVA and splenic B cells in the presence and absence of OA-4 in vivo appeared to be attributed to compensation between the two effects of OA-4; an increase in serum OVA in vivo and inhibition of the association between OVA and B cells, as suggested by in vitro experiments. DISCUSSION Based on these results, the stimulation of B cells by OVA may be directly reduced, at least partly, by the neutralization of OVA by OA-4. CONCLUSION IgA may be an effective drug for the treatment of immune disorders due to its ability to blunt antigen-specific B cell activation.
Collapse
Affiliation(s)
- Kouya Yamaki
- a Department of Pharmacology , Kobe Pharmaceutical University , Kobe , Japan
| | - Shin Yoshino
- a Department of Pharmacology , Kobe Pharmaceutical University , Kobe , Japan
| |
Collapse
|
37
|
Liu T, Navarro S, Lopata AL. Current advances of murine models for food allergy. Mol Immunol 2016; 70:104-17. [DOI: 10.1016/j.molimm.2015.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/21/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
38
|
Yamaki K, Yoshino S. A new, rapid in vivo method to evaluate allergic responses through distinctive distribution of a fluorescent-labeled immune complex: Potential to investigate anti-allergic effects of compounds administered either systemically or topically to the skin. J Immunol Methods 2016; 428:58-68. [DOI: 10.1016/j.jim.2015.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 02/02/2023]
|
39
|
Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015; 70:1091-102. [PMID: 25966668 DOI: 10.1111/all.12650] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. METHODS The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. RESULTS Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. CONCLUSIONS Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease.
Collapse
Affiliation(s)
| | - S. Han
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - S. Lee
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - F. M. Mian
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Buck
- Division of Abbott Laboratories; Abbott Nutrition; Columbus OH USA
| | - P. Forsythe
- Department of Medicine; McMaster University; Hamilton ON Canada
- Firestone Institute for Respiratory Research; McMaster University; Hamilton ON Canada
| |
Collapse
|
40
|
Hua W, Liu H, Xia LX, Tian BP, Huang HQ, Chen ZY, Ju ZY, Li W, Chen ZH, Shen HH. Rapamycin inhibition of eosinophil differentiation attenuates allergic airway inflammation in mice. Respirology 2015; 20:1055-65. [PMID: 26053964 DOI: 10.1111/resp.12554] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/22/2015] [Accepted: 03/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The mammalian target of rapamycin (mTOR) signalling pathway regulates immune responses, and promotes cell growth and differentiation. Inhibition of mTOR with rapamycin modulates allergic asthma, while the underlying molecular mechanisms remain elusive. Here, we demonstrate that rapamycin, effectively inhibits eosinophil differentiation, contributing to its overall protective role in allergic airway inflammation. METHODS Rapamycin was administered in a mouse model of ovalbumin-induced allergic airway inflammation, and the eosinophil differentiation was analysed in vivo and in vitro. RESULTS Rapamycin significantly attenuated allergic airway inflammation and markedly decreased the amount of eosinophils in local airways, peripheral blood and bone marrow, independently of levels of interleukin-5 (IL-5). In vitro colony forming unit assay and liquid culture demonstrated that rapamycin directly inhibited IL-5-induced eosinophil differentiation. In addition, rapamycin reduced the production of IL-6 and IL-13 by eosinophils. Rapamycin was also capable of reducing the eosinophil levels in IL-5 transgenic NJ.1638 mice, again regardless of the constitutive high levels of IL-5. Interestingly, rapamycin inhibition of eosinophil differentiation in turn resulted in an accumulation of eosinophil lineage-committed progenitors in bone marrow. CONCLUSIONS Altogether these results clearly demonstrate a direct inhibitory role of rapamycin in eosinophil differentiation and function, and reemphasize the importance of rapamycin and possibly, mTOR, in allergic airway disease.
Collapse
Affiliation(s)
- Wen Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Xia Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bao-Ping Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Qiong Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Yang Chen
- Institute of Aging Research, Hangzhou Normal University College of Medicine, Hangzhou, Zhejiang, China
| | - Zhen-Yu Ju
- Institute of Aging Research, Hangzhou Normal University College of Medicine, Hangzhou, Zhejiang, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
IgA attenuates anaphylaxis and subsequent immune responses in mice: possible application of IgA to vaccines. Immunol Res 2014; 58:106-17. [PMID: 24366664 DOI: 10.1007/s12026-013-8478-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Administration of the influenza vaccination to patients with an egg allergy is major health concern. Contaminating egg antigens occasionally induce severe anaphylactic shock in these patients following administration of the vaccination; therefore, the development of a safer vaccination is needed. In the present study, we investigated whether a mixture of four newly and previously generated anti-ovalbumin (OVA) IgA monoclonal antibodies (mAbs) could inhibit both anaphylactic shock upon a subcutaneous OVA challenge and subsequent further sensitization against OVA in passively anti-OVA IgE-sensitized mice and actively sensitized mice with an injection of OVA. The prevention of anaphylaxis by anti-OVA IgA mAbs was suggested to be mediated through the inhibition of OVA binding to allergenic antibodies such as anti-OVA IgE on mast cells and deceleration of the rate of OVA penetration from the injected site into the systemic circulation. Anti-OVA IgA mAbs inhibited further sensitization against OVA in mice actively sensitized with OVA, but did not affect sensitization against the unrelated antigen, phosphorylcholine-keyhole limpet hemocyanin co-injected with OVA. Our findings indicate that adding the anti-egg antigen IgA to the influenza vaccine should reduce not only the risk of inducing anaphylactic shock, but also undesired further sensitization against egg antigens following the vaccination without affecting the intended beneficial effect of the vaccine, namely the upregulation of immune responses to influenza viruses.
Collapse
|
42
|
Shin HS, Bae MJ, Jung SY, Shon DH. Preventive effects of skullcap (Scutellaria baicalensis) extract in a mouse model of food allergy. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:667-673. [PMID: 24637193 DOI: 10.1016/j.jep.2014.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Food allergy, which accompanies acute symptoms such as pruritus, vomiting, diarrhea, and lethal anaphylactic shock is an increasing clinical problem. Skullcap (Scutellaria baicalensis Georgi) has been widely used as a traditional herbal medicine to treat inflammation, cancer, and allergy, but its effects in treating food allergy are not yet known. MATERIALS AND METHODS To examine the effect of skullcap on food allergy, female BALB/c mice were sensitized with 20 μg OVA and 2mg alum by intraperitoneal injection on day 0. From day 17, mice were orally challenged with OVA (50 mg) in saline every 3 days, for a total of six times. To investigate the preventive effect, skullcap (25 mg/kg) was orally administered every day from day 17 to 34. RESULTS Food allergy symptoms were evaluated by the criteria for diarrhea, anaphylactic response, and rectal temperature. Severe symptoms of food allergy were observed in the sham group (diarrhea, 3 points; anaphylactic response, 2.6 points; rectal temperature, -8.36 °C. In contrast, the skullcap treatment group had a significantly suppressed OVA-induced anaphylactic response (1.3 points) and rectal temperature (-4.76°C). Moreover, both OVA-specific IgE, Th17 cytokine (IL-17), and Th2-related cytokines (IL-4, IL-5, IL-10, and IL-13), which increased with food allergy, were significantly inhibited by skullcap treatment. CONCLUSION We demonstrate that the administration of skullcap attenuates OVA-induced food allergy symptoms through regulating systemic immune responses of Th cells. These results indicate that skullcap may be a potential candidate as a preventive agent for food allergy.
Collapse
Affiliation(s)
- Hee Soon Shin
- Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seognam-si, Kyeonggi-do 463-746, Republic of Korea
| | - Min-Jung Bae
- Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seognam-si, Kyeonggi-do 463-746, Republic of Korea
| | - Sun Young Jung
- Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seognam-si, Kyeonggi-do 463-746, Republic of Korea
| | - Dong-Hwa Shon
- Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seognam-si, Kyeonggi-do 463-746, Republic of Korea.
| |
Collapse
|
43
|
Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 2014; 133:309-17. [PMID: 24636470 DOI: 10.1016/j.jaci.2013.12.1045] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Abstract
Food allergy is a rapidly growing public health concern because of its increasing prevalence and life-threatening potential. Animal models of food allergy have emerged as a tool for identifying mechanisms involved in the development of sensitization to normally harmless food allergens, as well as delineating the critical immune components of the effector phase of allergic reactions to food. However, the role animal models might play in understanding human diseases remains contentious. This review summarizes how animal models have provided insights into the etiology of human food allergy, experimental corroboration for epidemiologic findings that might facilitate prevention strategies, and validation for the utility of new therapies for food allergy. Improved understanding of food allergy from the study of animal models together with human studies is likely to contribute to the development of novel strategies to prevent and treat food allergy.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Paul J Bryce
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
44
|
Abstract
Food allergy is prevalent, affecting approximately 4-8% of children. There is no currently approved treatment for food allergy, and while strict allergen avoidance is recommended it is difficult to achieve and therefore accidental exposures and reactions are common. There is an urgent need for the development of therapeutic approaches that will improve the health and quality of life of children with food allergy. The majority of current clinical research focus is on specific food allergen immunotherapy through oral, sublingual, or epicutaneous routes. Pre-clinical research has focused on making improvements to the safety and efficacy of allergen immunotherapy through modifications of allergen structure and addition of immuno-modulatory factors. The number of novel therapeutics for food allergy reaching the level of clinical trials remains disappointingly low, and there is a need for an expansion of pre-clinical research to provide safe, practical and novel approaches to the treatment of food allergy.
Collapse
Affiliation(s)
- M Cecilia Berin
- Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
45
|
Yamaki K, Yoshino S. Remission of food allergy by the Janus kinase inhibitor ruxolitinib in mice. Int Immunopharmacol 2013; 18:217-24. [PMID: 24332884 DOI: 10.1016/j.intimp.2013.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
To clarify the role of Janus kinase (JAK) in and the efficacy of JAK inhibitors on food allergy, we investigated the effect of the clinically available JAK inhibitor ruxolitinib on mouse food allergy and the functions of cultured mast cells in vitro. Anaphylactic symptoms including diarrhea and decreases in body temperature pursuant to oral ovalbumin (OVA) challenges in food allergy mice were attenuated by the daily oral administration of ruxolitinib. This drug inhibited increases in mouse mast cell protease-1 concentrations in the serum and mast cell numbers in the intestines of these mice as well as degranulation, IL-13 production, and the spontaneous and IL-9-dependent survival of mouse bone marrow-derived mast cells in spite of the absence of an effect of ruxolitinib on passive systemic anaphylaxis. Anti-OVA IgG2a, IgE, and IgG1 serum levels and the release of IFN-γ, IL-4, IL-9, and IL-10 from the OVA-restimulated splenocytes of food allergy mice were also decreased by the treatment. Moreover, ruxolitinib administration to mice that had already exhibited anaphylactic responses to previous challenges reduced anaphylactic responses to further oral OVA challenges, which suggested that ruxolitinib has a therapeutic potential on food allergy. Our results showed that ruxolitinib remitted food allergy in mice mainly through immunosuppression and the prevention of mast cell hyperplasia, and partially through the inhibition of mast cell activation. We consider JAK inhibition to be a promising strategy for the prevention of food allergy, and ruxolitinib along with its derivatives inhibiting JAK as good candidates for therapeutic drugs to treat food allergy.
Collapse
Affiliation(s)
- Kouya Yamaki
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan.
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan.
| |
Collapse
|
46
|
Liu ZQ, Wu Y, Song JP, Liu X, Liu Z, Zheng PY, Yang PC. Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice. Allergy 2013; 68:1241-8. [PMID: 24033604 DOI: 10.1111/all.12218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. OBJECTIVE This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. METHODS The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. RESULTS A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. CONCLUSIONS CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice.
Collapse
Affiliation(s)
- Z.-Q. Liu
- Department of Gastroenterology; Second Hospital; Zhengzhou University; Zhengzhou; China
| | - Y. Wu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - J.-P. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing; China
| | - X. Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - Z. Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - P.-Y. Zheng
- Department of Gastroenterology; Second Hospital; Zhengzhou University; Zhengzhou; China
| | - P.-C. Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| |
Collapse
|
47
|
mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493:338-45. [PMID: 23325216 DOI: 10.1038/nature11861] [Citation(s) in RCA: 1211] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of 'when' rather than 'if'. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans.
Collapse
|