1
|
Fukutomi Y, Tanaka H, Sekiya K, Watai K, Hamada Y, Iwata M, Saito A, Okabe K, Sugiyama A, Fukushima T, Oshikawa C, Uetake H, Yoshisue H, Irie T, Kishikawa R. Uncovering a Severe Patient Group With Pollen-Related Extrarespiratory Allergic Symptoms: A Year-Long Diary Survey in Japan. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1495-1506.e7. [PMID: 38382879 DOI: 10.1016/j.jaip.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The most common symptoms of pollen allergy are rhinitis and conjunctivitis. However, in real-world clinical practice, we sometimes encounter patients with pollen allergy suffering from severe extrarespiratory symptoms including skin, gastrointestinal, or flu-like symptoms in relation to exposure to sensitized pollen. OBJECTIVE To elucidate the extrarespiratory symptoms in patients with pollen allergy. METHODS We performed a non-drug-focused prospective study of patients with pollen allergy (n = 384). During the 1-year observational period, they were asked to complete a weekly electronic diary consisting of visual analog scale (VAS) scores to assess all symptoms experienced in various organs over the past week. An association between seasonal pollen levels and seasonal increase in VAS scores was evaluated using a mixed-effects model for repeated measures. A k-means cluster analysis was performed to identify a group of patients experiencing stronger extrarespiratory symptoms. RESULTS In patients sensitized to grass or birch pollen, higher seasonal levels of these pollen grains were associated with higher VAS scores for headache, gastrointestinal symptoms, skin symptoms, and fatigue. A cluster analysis identified a group of severe pollen-allergic patients with higher extrarespiratory symptoms (n = 42). This group was characterized by a higher frequency of comorbid food allergy/atopic dermatitis, higher rate of IgE sensitization to pollens, and higher impaired activity and work productivity. CONCLUSIONS This 1-year survey identified a small but nonnegligible group of patients with pollen-related extrarespiratory symptoms. More attention should be paid to this patient group considering their impaired activity and work productivity.
Collapse
Affiliation(s)
- Yuma Fukutomi
- NHO Sagamihara National Hospital, Sagamihara, Japan.
| | | | | | | | - Yuto Hamada
- NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Maki Iwata
- NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Akemi Saito
- NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Koki Okabe
- NHO Fukuoka National Hospital, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lund G, Christensen LH, Ihlemann J, Andersen PS, Wambre E, Würtzen PA, Gupta S. T cells specific to multiple Bet v 1 peptides are highly cross-reactive toward the corresponding peptides from the homologous group of tree pollens. Front Immunol 2023; 14:1291666. [PMID: 38077382 PMCID: PMC10702988 DOI: 10.3389/fimmu.2023.1291666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background Allergens from Fagales trees frequently cause spring allergy in Europe, North America, and some parts of Asia. The definition of the birch homologous group, which includes birch (Bet v), oak (Que a), alder (Aln g), hazel (Cor a), hornbeam (Car b), beech (Fag s), and chestnut (Cas s), is based on high allergen sequence identity and extensive IgE cross-reactivity. Clinical effect was seen during the alder/hazel, birch, and oak pollen seasons after treatment with tree SLIT-tablets containing only birch allergen extract. Here, we characterize T-cell reactivity with respect to epitope specificities and cross-reactivity toward various Bet v 1 family members, (PR-10/group 1 major allergens). This cross-reactivity may be part of the immunological basis of clinical effect or cross-protection when exposed to birch homologous tree species. Method T-cell lines were generated from 29 birch-allergic individuals through stimulation of peripheral blood mononuclear cells (PBMCs) with birch/Bet v or oak/Que a allergen extracts. T-cell responses to allergen extracts, purified group 1 allergens, and overlapping 20-mer peptides (Bet v 1, Aln g 1, Cor a 1, and Que a 1) were investigated by T-cell proliferation and cytokine production. Cross-reactivity was evaluated based on Pearson's correlations of response strength and further investigated by flow cytometry using tetramer staining for homologous peptide pairs. Results T-cell reactivity toward extracts and group 1 allergens from across the birch homologous group was observed for birch/Bet v as well as oak/Que a T-cell lines. T-cell lines responded to multiple Bet v 1 homologous peptides from Aln g 1 and Cor a 1 and a subset of Que a 1 peptides. Significant Pearson's correlations between frequently recognized peptides derived from Bet v 1 and the corresponding peptides derived from alder, hazel, and oak strongly supported the T-cell cross-reactivity toward these allergens. Cross-reactivity between birch and birch homologous peptides was confirmed by pMHCII tetramer staining. Conclusion T cells from birch tree pollen allergic individuals respond to multiple trees within the birch homologous group in accordance with the level of sequence homology between Bet v 1 family members, (PR-10 allergens) from these allergen sources, confirming the basis for clinical cross-protection.
Collapse
Affiliation(s)
- Gitte Lund
- Global Research Hoersholm, ALK, Hoersholm, Denmark
| | | | | | | | - Erik Wambre
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | |
Collapse
|
3
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Barber D, Diaz‐Perales A, Escribese MM, Kleine‐Tebbe J, Matricardi PM, Ollert M, Santos AF, Sastre J. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy 2021; 76:3642-3658. [PMID: 34057744 DOI: 10.1111/all.14969] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Progressive knowledge of allergenic structures resulted in a broad availability of allergenic molecules for diagnosis. Component-resolved diagnosis allowed a better understanding of patient sensitization patterns, facilitating allergen immunotherapy decisions. In parallel to the discovery of allergenic molecules, there was a progressive development of a regulation framework that affected both in vitro diagnostics and Allergen Immunotherapy products. With a progressive understanding of underlying mechanisms associated to Allergen immunotherapy and an increasing experience of application of molecular diagnosis in daily life, we focus in analyzing the evidences of the value provided by molecular allergology in daily clinical practice, with a focus on Allergen Immunotherapy decisions.
Collapse
Affiliation(s)
- Domingo Barber
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | - Araceli Diaz‐Perales
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
- Center for Plant Biotechnology and Genomic Universidad Politécnica de Madrid Pozuelo de Alarcon Spain
| | - Maria M. Escribese
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | | | - Paolo M. Matricardi
- Department of Pediatric Pneumology and Immunology Charitè Medical University of Berlin Berlin Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Centre Odense University Hospital Odense Denmark
| | - Alexandra F. Santos
- Department of Women and Children's Health (Pediatric Allergy School of Life Course Sciences Faculty of Life Sciences and Medicine King's College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King's College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Children's Allergy Service Guy's and St Thomas' Hospital London UK
| | - Joaquin Sastre
- Fundación Jiménez Diaz AllergyDepartment Universidad Autonomade Madrid, CIBERES, Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
5
|
Hemmings O, Niazi U, Kwok M, Radulovic S, Du Toit G, Lack G, Santos AF. Combining Allergen Components Improves the Accuracy of Peanut Allergy Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:189-199. [PMID: 34492400 DOI: 10.1016/j.jaip.2021.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND IgE to peanut often occurs in the absence of peanut allergy. Detection of allergen component specific IgE (sIgE) has improved diagnosis and birthed molecular allergen component arrays, in which sensitization to multiple allergen components can be measured simultaneously. OBJECTIVE To improve the diagnostic utility of serology for peanut allergy, by mapping interactions of sIgE to multiple components and IgE functional characteristics. METHODS A cohort of 100 children was studied, with a 60-children cohort employed for external validation. Levels of total IgE, sIgE to peanut, and peanut components were measured using singleplex ImmunoCAP and multiplex immuno solid-phase allergen chip (ISAC). Peanut IgE specific activity, avidity, and diversity were determined. Diagnostic modeling was performed using a Bayesian hierarchical model. RESULTS Sensitization to the 112 allergens on ISAC (model 1) demonstrated the highest accuracy to diagnose peanut allergy (area under the curve [AUC] = 0.92). Sensitization to peanut components on ISAC (model 2) reported an AUC of 0.86 and on singleplex (model 3) an AUC of 0.92, which was greater than that of Ara h 2 sIgE alone (AUC = 0.90). Functional characteristics of peanut sIgE (model 4) reported an AUC of 0.89, which was greater than that of peanut sIgE (AUC = 0.75). Model 3 offered the highest predictive value and the second highest overall diagnostic accuracy. CONCLUSIONS sIgE to a combination of allergen components (Ara h 1, 2, 3, and 6) is highly predictive of peanut allergy and superior to individual markers. Combining the functional characteristics of IgE was superior to peanut sIgE levels alone. These models can be applied in real time during clinical consultations using online calculators.
Collapse
Affiliation(s)
- Oliver Hemmings
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom
| | - Matthew Kwok
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - George Du Toit
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
6
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
7
|
Skypala IJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann-Sommergruber K, Pastorello EA, Swoboda I, Bartra J, Ebo DG, Faber MA, Fernández-Rivas M, Gomez F, Konstantinopoulos AP, Luengo O, van Ree R, Scala E, Till SJ. Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology. Clin Transl Allergy 2021; 11:e12010. [PMID: 34025983 PMCID: PMC8129635 DOI: 10.1002/clt2.12010] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Discovered and described 40 years ago, non‐specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross‐reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non‐specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen‐food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4‐disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross‐reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly‐sensitised both to botanically un‐related nsLTP in foods, and non‐food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non‐Mediterranean populations and there needs to be more recognition of this. Conclusion Non‐specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world‐wide prevalence of clinical symptoms associated with sensitization to these complex allergens.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology Royal Brompton & Harefield NHS Foundation Trust Imperial College London UK
| | - Ricardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Milan Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU CEU Universities Madrid Spain.,RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Arazeli Diaz Perales
- Departamento de Biotecnología-Biología Vegetal Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid Madrid Spain
| | | | - Elide A Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section FH Campus Wien University of Applied Sciences Vienna Austria
| | - Joan Bartra
- Hospital Clinic de Barcelona IDIBAPS Universitat de Barcelona ARADyAL Barcelona Spain
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Margaretha A Faber
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Montserrat Fernández-Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC, ARADyAL Madrid Spain
| | - Francesca Gomez
- Allergy Unit IBIMA- Hospital Regional Universitario de Malaga Malaga and Spanish Network for Allergy - RETICS de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | | | - Olga Luengo
- Allergy Unit, Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology Amsterdam University Medical Centers location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico Dell'immacolata IRCCS FLMM Rome Italy
| | - Stephen J Till
- Peter Gorer Department of Immunobiology King's College London London UK.,Department of Allergy Guy's & St Thomas' NHS Foundation Trust London UK
| | | | | |
Collapse
|
8
|
Würtzen PA, Grønager PM, Lund G, Gupta S, Andersen PS, Biedermann T, Ipsen H. Simplified AIT for allergy to several tree pollens-Arguments from the immune outcome analyses following treatment with SQ tree SLIT-tablet. Clin Exp Allergy 2020; 51:284-295. [PMID: 33207015 PMCID: PMC7984359 DOI: 10.1111/cea.13788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The SQ tree SLIT-tablet (containing birch extract) proved clinically significant effects during the pollen season for birch as well as alder/hazel. Immune outcomes of this treatment for allergens from multiple birch homologous trees need further investigation. We hypothesize that birch pollen extract AIT modulates a highly cross-reactive immune response and that this may be the basis for the observed clinical cross-protection. METHODS Blood samples were collected from 397 birch allergic patients during SQ tree SLIT-tablet or placebo treatment (1:1) for up to 40 weeks. Serum IgE and IgG4 specific to birch, and birch homologous tree pollens from alder, hazel, hornbeam, beech and chestnut were measured by ImmunoCAP. IgE-Blocking Factor (IgE-BF) for alder, birch and hazel during treatment was measured by Advia Centaur and blocking effects for birch and all these birch homologous tree pollens were further investigated by basophil activation (BAT). Antibody readouts were investigated in patient subsets. T-cell responses (proliferation) to allergen extracts and peptide pools (group 1 allergens) were investigated in T-cell lines from 29 untreated birch pollen-allergic individuals. RESULTS Significant Pearson correlations between serum IgE towards birch, alder, hazel, hornbeam and beech were observed (r-values > .86). T-cell reactivity was observed throughout the birch homologous group. Almost identical kinetics for changes in IgE towards birch, alder and hazel were observed during treatment and similar species-specific changes were seen for serum-IgG4 . IgG4 reactivity towards birch and alder, hazel, hornbeam and beech correlated significantly at end-of-treatment (r-values > .72). Treatment resulted in similar IgE-BF kinetics for alder, birch, and hazel and blocking of BAT for multiple trees in most actively treated patients investigated. CONCLUSIONS Systematic analyses of T-cell and antibody cross-reactivities before and during birch pollen extract AIT provide the immunological basis for the observed clinical effect of SQ tree SLIT-tablet treatment of tree pollen allergy induced by multiple trees in the birch homologous group.
Collapse
Affiliation(s)
| | | | | | | | | | - Tilo Biedermann
- Department of Dermatology and Allergology, Technical University of Munich, Munich, Germany.,Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | |
Collapse
|
9
|
Hernández‐Ramírez G, Pazos‐Castro D, Gómez Torrijos E, Yuste Montalvo A, Romero‐Sahagun A, González‐Klein Z, Jimeno‐Nogales L, Escribese MM, Extremera Ortega A, Nuñez‐Borque E, Bustamante Orvay L, Esteban V, Feo Brito F, Barber D, Tome‐Amat J, Garrido‐Arandia M, Díaz‐Perales A. Group 1 allergens, transported by mold spores, induce asthma exacerbation in a mouse model. Allergy 2020; 75:2388-2391. [PMID: 32347969 DOI: 10.1111/all.14347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Diego Pazos‐Castro
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | | | - Alma Yuste Montalvo
- Departmento de Inmunología Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS‐FJD, UAM) Madrid Spain
| | - Alejandro Romero‐Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Zulema González‐Klein
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | | | - Maria M. Escribese
- IMMA Departamento de Ciencias Médicas Básicas Facultad de Medicina Universidad San Pablo CEUCEU Universities Madrid Spain
| | | | - Emilio Nuñez‐Borque
- Departmento de Inmunología Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS‐FJD, UAM) Madrid Spain
| | | | - Vanesa Esteban
- Departmento de Inmunología Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS‐FJD, UAM) Madrid Spain
| | | | - Domingo Barber
- IMMA Departamento de Ciencias Médicas Básicas Facultad de Medicina Universidad San Pablo CEUCEU Universities Madrid Spain
| | - Jaime Tome‐Amat
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - María Garrido‐Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Araceli Díaz‐Perales
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| |
Collapse
|
10
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
11
|
Ruiz‐Hornillos J, López‐Matas MA, Berges Jimeno P, Henríquez A, Blanco S, Seoane‐Rodríguez M, Mahíllo I, Carnés J. Profilin is a marker of severity in allergic respiratory diseases. Allergy 2020; 75:853-861. [PMID: 31804710 DOI: 10.1111/all.14140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The capacity of profilin to induce allergic symptoms in patients with respiratory allergy has been questioned. In this sense, the aim of this study was to investigate the correlation between profilin exposure and induction of symptoms in a prospective case-control study. METHODS The concentration of profilin as well as pollen levels in the air was measured. A diary score of symptoms was collected from allergic patients. Seventy-nine individuals were included in the study; fifty cases and 28 controls were positive or negative to profilin, respectively. Conjunctival and bronchial provocation tests were performed with purified profilin (Pho d 2) in a subgroup of cases and controls. RESULTS Profilin was detected in the environment on 133 days (maximum peak of 0.56 ng/m3 ). A positive correlation between profilin and pollen count of Olea and Poaceae was observed (ρ = 0.24; P < .001). Intensity of total, nasal and ocular symptoms was statistically higher in cases than in controls (P < .001). The risk of suffering symptoms, measured by the percentage of patients who presented any of the symptoms each day, was also higher in cases than in controls. The provocation test was positive in 95% of bronchial and 90% of conjunctival challenges in cases, and negative in all controls. CONCLUSIONS Profilin was detected in the environment and had the ability to induce a specific allergen response. Patients sensitized to this panallergen showed more symptoms and were more likely to have symptoms. Therefore, sensitization to profilin seems to be a marker of severity in patients with rhinoconjunctivitis and asthma mediated by pollen.
Collapse
Affiliation(s)
- Javier Ruiz‐Hornillos
- Allergy Unit. Hospital Universitario Infanta Elena. Valdemoro Madrid Spain
- Faculty of Medicine Universidad Francisco de Vitoria Madrid Spain
- Health Research Institute‐Fundación Jiménez Díaz University Hospital (IIS‐FJD) Madrid Spain
| | | | - Pilar Berges Jimeno
- Allergology Service Hospital Universitario Ramón y Cajal. Madrid Madrid Spain
| | - Aythamy Henríquez
- Allergy Unit. Hospital Universitario Infanta Elena. Valdemoro Madrid Spain
- Faculty of Medicine Universidad Francisco de Vitoria Madrid Spain
- Health Research Institute‐Fundación Jiménez Díaz University Hospital (IIS‐FJD) Madrid Spain
| | - Sandra Blanco
- Allergy Unit. Hospital Universitario Infanta Elena. Valdemoro Madrid Spain
- Faculty of Medicine Universidad Francisco de Vitoria Madrid Spain
- Health Research Institute‐Fundación Jiménez Díaz University Hospital (IIS‐FJD) Madrid Spain
| | - Marta Seoane‐Rodríguez
- Allergy Unit. Hospital Universitario Infanta Elena. Valdemoro Madrid Spain
- Faculty of Medicine Universidad Francisco de Vitoria Madrid Spain
- Health Research Institute‐Fundación Jiménez Díaz University Hospital (IIS‐FJD) Madrid Spain
| | - Ignacio Mahíllo
- Epidemiology Fundación Jiménez Díaz Madrid Spain
- Department of Medicine Universidad Autónoma de Madrid. CIBERES Instituto Carlos III Madrid Spain
| | - Jerónimo Carnés
- R&D Allergy & Immunology Unit Laboratorios LETI S.L.u Madrid Spain
| |
Collapse
|
12
|
Cudowska B, Kapingidza AB, Pawłowicz M, Pampuch A, Hyduke N, Pote S, Schlachter CR, Lebensztejn DM, Chruszcz M, Kowal K. Production and Use of Recombinant Profilins Amb a 8, Art v 4, Bet v 2, and Phl p 12 for Allergenic Sensitization Studies. Molecules 2020; 25:molecules25020369. [PMID: 31963206 PMCID: PMC7024262 DOI: 10.3390/molecules25020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
Four recombinant (r) allergens (rAmb a 8.0101, rArt v 4.0101, rBet v 2.0101, and rPhl p 12.0101) were successfully produced and used for sensitization studies. The allergens belong to the profilin family which is one of the most numerous allergen families. These four proteins represent allergens originating from pollen of weeds (rAmb a 8.0101 and rArt v 4.0101), tree (rBet v 2.0101) and grass (rPhl p 12.0101). The recombinant allergens were characterized using various biochemical and biophysical methods and tested for their ability to bind patient-derived antibodies. One hundred patients aged 2 to 50 years sensitized to pollen and plant-derived food allergens (IgE > 0.35 kU/L) were included. Sensitization to individual allergen sources and components of birch and timothy pollens was evaluated using multiparameter immunoblots. The presence of IgE to pollen-derived recombinant profilins rAmb a 8.0101, rArt v 4.0101, rBet v 2.0101, and rPhl p 12.0101 in serum was evaluated using ELISA method. The presence of IgE against pollen profilins was detected in 20 out of 100 studied patients. High correlation was seen between IgE ELISA results with individual pollen profilins. In summary, it was shown that the recombinant versions of the four allergenic profilins can be used for sensitization studies and for component-resolved allergy diagnostics.
Collapse
Affiliation(s)
- Beata Cudowska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-276 Bialystok, Poland; (B.C.); (M.P.); (D.M.L.)
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (N.H.); (S.P.); (C.R.S.)
| | - Magdalena Pawłowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-276 Bialystok, Poland; (B.C.); (M.P.); (D.M.L.)
| | - Agnieszka Pampuch
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Noah Hyduke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (N.H.); (S.P.); (C.R.S.)
| | - Swanandi Pote
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (N.H.); (S.P.); (C.R.S.)
| | - Caleb R. Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (N.H.); (S.P.); (C.R.S.)
| | - Dariusz M. Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-276 Bialystok, Poland; (B.C.); (M.P.); (D.M.L.)
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (N.H.); (S.P.); (C.R.S.)
- Correspondence: (M.C.); (K.K.); Tel.: +1-803-777-7399 (M.C.); +48-85-6865153 (K.K.)
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland;
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (M.C.); (K.K.); Tel.: +1-803-777-7399 (M.C.); +48-85-6865153 (K.K.)
| |
Collapse
|
13
|
Würtzen PA, Hoof I, Christensen LH, Váczy Z, Henmar H, Salamanca G, Lundegaard C, Lund L, Kráľova T, Brooks EG, Andersen PS. Diverse and highly cross-reactive T-cell responses in ragweed allergic patients independent of geographical region. Allergy 2020; 75:137-147. [PMID: 31325327 DOI: 10.1111/all.13992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Ragweed frequently causes seasonal allergies in North America and Europe. In the United States, several related ragweed species with diverse geographical distribution cause allergic symptoms. Cross-reactivity towards related ragweed species of IgE and treatment-induced IgG4 has been demonstrated previously. However, less is known about the underlying T-cell cross-reactivity. METHODS The allergen content of ragweed extracts was determined by mass spectrometry and related to T-cell epitopes of Amb a allergens (group 1, 3, 4, 5, 8 and 11) in 20 American ragweed allergic patients determined by FluoroSpot and proliferation assays. T-cell responses to 50 frequently recognized Amb a-derived T-cell epitopes and homologous peptides from western ragweed (Amb p), giant ragweed (Amb t) and mugwort (Art v) were investigated in an additional 11 American and 14 Slovakian ragweed allergic donors. RESULTS Ragweed extracts contained all known allergens and isoallergens thereof. Donor T-cell responses were diverse and directed against all Amb a 1 isoallergens and to most minor allergens investigated. Similar response patterns were seen in American and Slovakia donors. Several epitopes were cross-reactive between isoallergens and ragweed species, some even including mugwort. T-cell cross-reactivity generally correlated with allergen sequence homology. CONCLUSION T-cell epitopes of multiple allergens/isoallergens are involved in the diverse T-cell responses in ragweed allergic individuals. T-cell lines were highly cross-reactive to epitopes of related ragweed species without any apparent geographical response bias. These data support that different ragweed species can be considered an allergen homology group with Amb a as the representative species regarding diagnosis as well as allergy immunotherapy.
Collapse
Affiliation(s)
| | - Ilka Hoof
- Global Research ALK Hørsholm Denmark
| | | | - Zuzana Váczy
- Louis Pasteur University Hospital Košice Slovak Republic
| | | | | | | | - Lise Lund
- Global Research ALK Hørsholm Denmark
| | | | | | | |
Collapse
|
14
|
Eigenmann PA, Akdis C, Bousquet J, Grattan CE, Hoffmann-Sommergruber K, Jutel M. Food and drug allergy, and anaphylaxis in EAACI journals (2018). Pediatr Allergy Immunol 2019; 30:785-794. [PMID: 31539176 DOI: 10.1111/pai.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) supports three journals: "Allergy," "Pediatric Allergy and Immunology (PAI)," and "Clinical and Translational Allergy (CTA)." One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. This paper summarizes the achievements of 2018 in anaphylaxis, and food and drug allergy. Main topics that have been focused are anaphylaxis, mechanisms of food allergy (FA), epidemiology of FA, food allergens, diagnosis of FA, prevention and control of FA, FA immunotherapy, drug allergy, and political agenda.
Collapse
Affiliation(s)
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jean Bousquet
- MACVIA-France, Fondation partenariale FMC VIA-LR, Montpellier, France.,INSERM U 1168, VIMA: Ageing and Chronic Diseases - Epidemiological and Public Health Approaches, Villejuif, France.,UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium
| | | | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
15
|
Barber D, Villaseñor A, Escribese MM. Metabolomics strategies to discover new biomarkers associated to severe allergic phenotypes. Asia Pac Allergy 2019; 9:e37. [PMID: 31720248 PMCID: PMC6826109 DOI: 10.5415/apallergy.2019.9.e37] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/11/2023] Open
Abstract
In the last decades have emerged new technological platforms that allow evaluation of genes, transcripts, proteins, or metabolites of a living being, so-called omics sciences. More importantly, new technics for their integration have provided access to a complete set of information of the current conditions and features of a specific biological sample in a precise moment. Thus, omic sciences are now considered an essential tool for patient stratification in base to their severity, to understand disease progression and to identify new biomarkers. Severe patients, that are out of control, provide an excellent model to understand disease evolution and to identify new intervention and biomarkers strategies. Here we discuss the use of metabolomics to understand severity in allergic diseases in a strategy that opens new insights as well as identify new biological systems relevant for allergy progression. Metabolomics strategies are based in parallel evaluation of different allergy severity models by mean of untargeted analysis that allows the identification of potential biomarkers. Overlapping of different biomarkers in multiple models, provides information of general as well as specific biological systems involved in each model. Later a selected panel of biomarkers will be used in a target method to explore the diagnosis potential to stratify allergic patients.
Collapse
Affiliation(s)
- Domingo Barber
- IMMA, Instituto de Medicina Molecular Aplicada, Facultad de Medicina, Universidad San Pablo CEU, Madrid, Spain
| | - Alma Villaseñor
- IMMA, Instituto de Medicina Molecular Aplicada, Facultad de Medicina, Universidad San Pablo CEU, Madrid, Spain
| | - Maria M Escribese
- IMMA, Instituto de Medicina Molecular Aplicada, Facultad de Medicina, Universidad San Pablo CEU, Madrid, Spain.,Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
16
|
Obeso D, Mera-Berriatua L, Rodríguez-Coira J, Rosace D, Fernández P, Martín-Antoniano IA, Santaolalla M, Marco Martín G, Chivato T, Fernández-Rivas M, Ramos T, Blanco C, Alvarado MI, Domínguez C, Angulo S, Barbas C, Barber D, Villaseñor A, Escribese MM. Multi-omics analysis points to altered platelet functions in severe food-associated respiratory allergy. Allergy 2018; 73:2137-2149. [PMID: 30028518 DOI: 10.1111/all.13563] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to study the progression of allergic inflammation. Our aim was to identify the underlying mechanisms and the associated biomarkers of this progression, focusing on severe phenotypes, using transcriptomics and metabolomics. METHODS Twenty-five subjects were included in the study. Plasma samples were analyzed using gas and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively). Individuals were classified in four groups-"nonallergic," "mild," "moderate," and "severe"-based on their clinical history, their response to an oral challenge test with profilin, and after a refinement using a mathematical metabolomic model. PBMCs were used for microarray analysis. RESULTS We found a set of transcripts and metabolites that were specific for the "severe" phenotype. By metabolomics, a decrease in carbohydrates and pyruvate and an increase in lactate were detected, suggesting aerobic glycolysis. Other metabolites were incremented in "severe" group: lysophospholipids, sphingosine-1-phosphate, sphinganine-1-phosphate, and lauric, myristic, palmitic, and oleic fatty acids. On the other hand, carnitines were decreased along severity. Significant transcripts in the "severe" group were found to be downregulated and were associated with platelet functions, protein synthesis, histone modification, and fatty acid metabolism. CONCLUSION We have found evidence that points to the association of severe allergic inflammation with platelet functions alteration, together with reduced protein synthesis, and switch of immune cells to aerobic glycolysis.
Collapse
Affiliation(s)
- David Obeso
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Leticia Mera-Berriatua
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Juan Rodríguez-Coira
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Domenico Rosace
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Paloma Fernández
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Isabel Adoración Martín-Antoniano
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Clínicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | | | | | - Tomás Chivato
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Clínicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | | | - Tania Ramos
- Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid España
| | - Carlos Blanco
- Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid España
| | | | | | - Santiago Angulo
- Departamento de Matemática Aplicada y Estadística; Universidad San Pablo CEU; Madrid España
| | - Coral Barbas
- CEMBIO; Centro de Excelencia en Metabolómica y Bioanálisis; Facultad de Farmacia; Universidad San Pablo CEU; Madrid España
| | - Domingo Barber
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - Alma Villaseñor
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| | - María M. Escribese
- IMMA; Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
- Departamento de Ciencias Médicas Básicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid España
| |
Collapse
|
17
|
Rosace D, Gomez-Casado C, Fernandez P, Perez-Gordo M, Dominguez MDC, Vega A, Belver MT, Ramos T, Vega F, Marco G, de Pedro M, Sanchez L, Arnas MDLM, Santaolalla M, Saez MÁ, Benedé S, Fernandez-Rivas M, Blanco C, Alvarado MI, Escribese MM, Barber D. Profilin-mediated food-induced allergic reactions are associated with oral epithelial remodeling. J Allergy Clin Immunol 2018; 143:681-690.e1. [PMID: 29705246 DOI: 10.1016/j.jaci.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND In areas of high exposure to grass pollen, allergic patients are frequently sensitized to profilin, and some experience severe profilin-mediated food-induced reactions. This specific population of patients is ideal to study the relationship between respiratory and food allergies. OBJECTIVE We sought to determine the role of oral mucosal epithelial barrier integrity in profilin-mediated allergic reactions. METHODS Thirty-eight patients with profilin allergy stratified into mild or severe according to their clinical history and response to a profilin challenge test and 6 nonallergic subjects were recruited. Oral mucosal biopsies were used for measurement of CD11c, CD3, CD4, tryptase, claudin-1, occludin, E-cadherin, and vascular endothelial growth factor A levels; Masson trichrome staining; and POSTN, IL33, TPSAB, TPSB, and CMA gene expression analysis by using quantitative RT-PCR. Blood samples were used for basophil activation tests. RESULTS Distinct features of the group with severe allergy included the following: (1) impaired epithelial integrity with reduced expression of claudin-1, occludin, and E-cadherin and decreased numbers of epithelial cells, which is indicative of acanthosis, higher collagen deposition, and angiogenesis; (2) inflammatory immune response in the mucosa, with an increased number of CD11c+ and CD4+ infiltrates and increased expression of the cytokine genes POSTN and IL33; and (3) a 10-fold increased sensitivity of basophils to profilin. CONCLUSIONS Patients with profilin allergy present with significant damage to the oral mucosal epithelial barrier, which might allow profilin penetration into the oral mucosa and induction of local inflammation. Additionally, severely allergic patients presented with increased sensitivity of effector cells.
Collapse
Affiliation(s)
- Domenico Rosace
- Instituto de Medicina Molecular Aplicada, Grupo Hospital de Madrid, Universidad San Pablo-CEU, Madrid, Spain
| | - Cristina Gomez-Casado
- Instituto de Medicina Molecular Aplicada, Grupo Hospital de Madrid, Universidad San Pablo-CEU, Madrid, Spain
| | - Paloma Fernandez
- Instituto de Medicina Molecular Aplicada, Grupo Hospital de Madrid, Universidad San Pablo-CEU, Madrid, Spain
| | - Marina Perez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Angel Vega
- Hospital Virgen del Puerto, Plasencia, Cáceres, Spain
| | - María Teresa Belver
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Tania Ramos
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Francisco Vega
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | | | | | | | | | | - Sara Benedé
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Carlos Blanco
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | - María M Escribese
- Instituto de Medicina Molecular Aplicada, Grupo Hospital de Madrid, Universidad San Pablo-CEU, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain.
| | - Domingo Barber
- Instituto de Medicina Molecular Aplicada, Grupo Hospital de Madrid, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|