1
|
Zhang Y, Ji X, Chang K, Yin H, Zhao M, Zhao L. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Gut Microbes 2025; 17:2442051. [PMID: 39694919 DOI: 10.1080/19490976.2024.2442051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
Collapse
Affiliation(s)
- Yayu Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao Yin
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
2
|
Zlotnikov ID, Kudryashova EV. Polymeric Infrared and Fluorescent Probes to Assess Macrophage Diversity in Bronchoalveolar Lavage Fluid of Asthma and Other Pulmonary Disease Patients. Polymers (Basel) 2024; 16:3427. [PMID: 39684172 DOI: 10.3390/polym16233427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bronchial asthma remains a serious medical problem, as approximately 10% of patients fail to achieve adequate symptom control with available treatment options. Macrophages play a pivotal role in the pathophysiology of asthma, as well as in some other respiratory disorders. Typically, they are classified into two major classes, M1 and M2; however, recent findings have indicated that in fact there is a whole range of macrophage polarization and functional diversity beyond this bimodal division. The isolation of individual cell sub-populations and the identification of their role and diagnostic/therapeutic significance is still a challenge. Here, we have attempted to assess the differences between patient-derived macrophage populations from bronchoalveolar lavage fluid (BALF) samples in different pulmonary disease conditions, based on their capability to interact with a range of specific and relatively non-specific carbohydrate-based ligands (containing galactose (linear or cyclic form), mannose, trimannose, etc.). Obviously, the main target of these ligands was CD206; however, other minor receptors, able to bind carbohydrates, have also been reported for macrophages. Trimannose binds most specifically to CD206 macrophage receptors, while monomannose has intermediate affinity, and galactose has low affinity and may involve binding to other receptors. This clearly indicates the ligands were chosen based on their predicted binding strength and specificity for CD206, providing the rationale for the study. In some cases, the activated macrophage affinity to galactose base ligands was higher than that to mannose, indicating that complexes of CD206 or other carbohydrate-binding receptors may contribute substantially to macrophage functional features. In addition, variations in receptor clustering and distribution may substantially affect affinity to the same ligand. Interestingly, with a panel of 6-10 different carbohydrate-based ligands with FTIR or fluorescent marker, we were able not only to distinguish between healthy and disease states but also between closely related diseases such as purulent endobronchitis, obstructive bronchitis, pneumonia, and bronchial asthma. For further investigation, specific sub-populations of macrophages, seen as hallmarks to specific diseases, can be isolated and studied separately, likely giving new insights with diagnostic and therapeutic significance for hard-to-treat patients. The group of patients with resistant disease can also be identified with this approach as a fingerprint method to find a more targeted therapeutic strategy, improving their clinical outcomes. As expected, this will provide a large additional array of data for analysis, compared to the work going on in the world. The dataset used by other researchers mainly for known "antibody" ligands is semi-quantitative and insufficient for the purposes of typing as yet unknown and uncomplicated sub-populations. The analysis of the presented data in combination with personalized information from patients' medical records will be carried out using both traditional methods and machine learning methods.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zlotnikov ID, Ezhov AA, Belogurova NG, Kudryashova EV. pH-Sensitive Fluorescent Probe in Nanogel Particles as Theragnostic Agent for Imaging and Elimination of Latent Bacterial Cells Residing Inside Macrophages. Gels 2024; 10:567. [PMID: 39330169 PMCID: PMC11431188 DOI: 10.3390/gels10090567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Rhodamine 6G (R6G) and 4-nitro-2,1,3-benzoxadiazole (NBD) linked through a spacer molecule spermidine (spd), R6G-spd-NBD, produces a fluorescent probe with pH-sensitive FRET (Förster (fluorescence) resonance energy transfer) effect that can be useful in a variety of diagnostic applications. Specifically, cancer cells can be spotted due to a local decrease in pH (Warburg effect). In this research, we applied this approach to intracellular infectious diseases-namely, leishmaniasis, brucellosis, and tuberculosis, difficult to treat because of their localization inside macrophages. R6G-spd-NBD offers an opportunity to detect such bacteria and potentially deliver therapeutic targets to treat them. The nanogel formulation of the R6G-spd-NBD probe (nanoparticles based on chitosan or heparin grafted with lipoic acid residues, Chit-LA and Hep-LA) was obtained to improve the pH sensitivity in the desired pH range (5.5-7.5), providing selective visualization and targeting of bacterial cells, thereby enhancing the capabilities of CLSM (confocal laser scanning microscopy) imaging. According to AFM (atomic force microscopy) data, nanogel particles containing R6G-spd-NBD of compact structure and spherical shape are formed, with a diameter of 70-100 nm. The nanogel formulation of the R6G-spd-NBD further improves absorption and penetration into bacteria, including those located inside macrophages. Due to the negative charge of the bacteria surface, the absorption of positively charged R6G-spd-NBD, and even more so in the chitosan derivatives' nanogel particles, is pronounced. Additionally, with a pH-sensitive R6G-spd-NBD fluorescent probe, the macrophages' lysosomes can be easily distinguished due to their acidic pH environment. CLSM was used to visualize samples of macrophage cells containing absorbed bacteria. The created nanoparticles showed a significant selectivity to model E. coli vs. Lactobacillus bacterial cells, and the R6G-spd-NBD agent, being a mild bactericide, cleared over 50% E.coli in conditions where Lactobacillus remained almost unaffected. Taken together, our data indicate that R6G-spd-NBD, as well as similar compounds, can have value not only for diagnostic, but also for theranostic applications.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
4
|
Zimbru RI, Zimbru EL, Ordodi VL, Bojin FM, Crîsnic D, Grijincu M, Mirica SN, Tănasie G, Georgescu M, Huțu I, Haidar L, Păunescu V, Panaitescu C. The Impact of High-Fructose Diet and Co-Sensitization to House Dust Mites and Ragweed Pollen on the Modulation of Airway Reactivity and Serum Biomarkers in Rats. Int J Mol Sci 2024; 25:8868. [PMID: 39201554 PMCID: PMC11354849 DOI: 10.3390/ijms25168868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The topic of ragweed pollen (RW) versus house dust mites (HDMs) has often been deliberated, but the increasing incidence of co-sensitization between them has been scarcely addressed. Utilizing Sprague Dawley rats, we explored the effects of co-sensitization with the combination of HDMs and RW pollen extracts in correlation with high-fructose diet (HFrD) by in vitro tracheal reactivity analysis in isolated organ bath and biological explorations. Our findings unveiled interrelated connections between allergic asthma, dyslipidemia, and HFrD-induced obesity, shedding light on their compounding role through inflammation. The increased CRP values and airway hyperresponsiveness to the methacholine challenge suggest a synergistic effect of obesity on amplifying the existing inflammation induced by asthma. One of the major outcomes is that the co-sensitization to HDMs and RW pollen led to the development of a severe allergic asthma phenotype in rats, especially in those with HFrD. Therefore, the co-sensitization to these allergens as well as the HFrD may play a crucial role in the modulation of systemic inflammation, obesity, and airway reactivity.
Collapse
Affiliation(s)
- Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Valentin-Laurențiu Ordodi
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Daniela Crîsnic
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Silvia-Nicoleta Mirica
- Faculty of Sport and Physical Education, West University of Timisoara, 300223 Timisoara, Romania;
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Marius Georgescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I of Romania”, 300645 Timișoara, Romania;
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.); (E.-L.Z.); (V.-L.O.); (F.-M.B.); (D.C.); (G.T.); (M.G.); (V.P.); (C.P.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
6
|
Lei J, Shu Z, Zhu H, Zhao L. AMPK Regulates M1 Macrophage Polarization through the JAK2/STAT3 Signaling Pathway to Attenuate Airway Inflammation in Obesity-Related Asthma. Inflammation 2024:10.1007/s10753-024-02070-x. [PMID: 38886294 DOI: 10.1007/s10753-024-02070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Abstract-Obesity-related asthma is primarily characterized by nonallergic inflammation, with pathogenesis involving oxidative stress, metabolic imbalance, and immunoinflammatory mechanisms. M1 macrophages, which predominantly secrete pro-inflammatory factors, mediate insulin resistance and systemic metabolic inflammation in obese individuals. Concurrently, adenosine monophosphate-activated protein kinase (AMPK) serves as a critical regulator of intracellular energy metabolism and is closely associated with macrophage activation. However, their specific roles and associated mechanisms in obesity-related asthma remain to be explored. In this study, we investigated the macrophage polarization status and potential interventional mechanisms through obesity-related asthmatic models and lipopolysaccharide (LPS) -treated RAW264.7 cell with a comprehensive series of evaluations, including HE, PAS and Masson staining of lung histopathology, immunohistochemical staining, immunofluorescence technology, qRT-PCR, Western Blot, and ELISA inflammatory factor analysis. The results revealed M1 macrophage polarization in obesity-related asthmatic lung tissue alongside downregulation of AMPK expression. Under LPS stimulation, exogenous AMPK activation attenuated M1 macrophage polarization via the Janus kinase 2/ signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Additionally, in obesity-related asthmatic mice, AMPK activation was found to alleviate airway inflammation by regulating M1 macrophage polarization, the mechanism closely associated with the JAK2/STAT3 pathway. These findings not only advance our understanding of macrophage polarization in obesity-related asthma, but also provide new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jiahui Lei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Zhenhui Shu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - He Zhu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.
- To whom correspondence should be addressed at Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
7
|
Fan C, Wang W, Yu Z, Wang J, Xu W, Ji Z, He W, Hua D, Wang W, Yao L, Deng Y, Geng D, Wu X, Mao H. M1 macrophage-derived exosomes promote intervertebral disc degeneration by enhancing nucleus pulposus cell senescence through LCN2/NF-κB signaling axis. J Nanobiotechnology 2024; 22:301. [PMID: 38816771 PMCID: PMC11140985 DOI: 10.1186/s12951-024-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-β-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-β-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Di Hua
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Linye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yongkang Deng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Xiao H, Fang LT, Tang AZ, Chen HL, Xu ML, Wei XS, Pang GD, Li CQ. Mycobacterium vaccae alleviates allergic airway inflammation and airway hyper-responsiveness in asthmatic mice by altering intestinal microbiota. Immunology 2024; 171:595-608. [PMID: 38205925 DOI: 10.1111/imm.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Ting Fang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong-Liu Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei-Li Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Shua Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Dong Pang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Zhu W, Bai D, Ji W, Gao J. TRP channels associated with macrophages as targets for the treatment of obese asthma. Lipids Health Dis 2024; 23:49. [PMID: 38365763 PMCID: PMC10874053 DOI: 10.1186/s12944-024-02016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
Globally, obesity and asthma pose significant health challenges, with obesity being a key factor influencing asthma. Despite this, effective treatments for obese asthma, a distinct phenotype, remain elusive. Since the discovery of transient receptor potential (TRP) channels in 1969, their value as therapeutic targets for various diseases has been acknowledged. TRP channels, present in adipose tissue cells, influence fat cell heat production and the secretion of adipokines and cytokines, which are closely associated with asthma and obesity. This paper aims to investigate the mechanisms by which obesity exacerbates asthma-related inflammation and suggests that targeting TRP channels in adipose tissue could potentially suppress obese asthma and offer novel insights into its treatment.
Collapse
Affiliation(s)
- Wenzhao Zhu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Dinxi Bai
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Wenting Ji
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Jing Gao
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Brollo M, Salvator H, Grassin-Delyle S, Glorion M, Descamps D, Buenestado A, Naline E, Tenor H, Tiotiu A, Devillier P. The IL-4/13-induced production of M2 chemokines by human lung macrophages is enhanced by adenosine and PGE 2. Int Immunopharmacol 2024; 128:111557. [PMID: 38266451 DOI: 10.1016/j.intimp.2024.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND PURPOSE Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.
Collapse
Affiliation(s)
- Marion Brollo
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France
| | - Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France
| | - Stanislas Grassin-Delyle
- Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France; Department of Airway Diseases, Thoracic surgery, Foch Hospital, Suresnes, France
| | - Mathieu Glorion
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; INSERM U1173, Infection & Inflammation, Département de Biotechnologie de la Santé, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Delphyne Descamps
- VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, Jouy-en-Josas, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France
| | | | - Angelica Tiotiu
- Department of Pulmonary Medicine, University Hospital Saint-Luc, Institut of Experimental and Clinical Research (IREC), University of Louvain, Brussels, Belgium
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology, Faculté des Sciences de la Vie Simone Veil, VIM, UMR-0892, INRAE, UVSQ, Université Paris-Saclay, France; Department of Airway Diseases, Respiratory Pharmacology Unit, Foch Hospital, Suresnes, France.
| |
Collapse
|
11
|
Peng W, Song Y, Zhu G, Zeng Y, Cai H, Lu C, Abuduxukuer Z, Song X, Gao X, Ye L, Wang J, Jin M. FGF10 attenuates allergic airway inflammation in asthma by inhibiting PI3K/AKT/NF-κB pathway. Cell Signal 2024; 113:110964. [PMID: 37956773 DOI: 10.1016/j.cellsig.2023.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guiping Zhu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingying Zeng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chong Lu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zilinuer Abuduxukuer
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixi Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Lyu X, Liu J, Liu Z, Wu Y, Zhu P, Liu C. Anti-inflammatory effects of reticuline on the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathway in a mouse model of obesity-associated asthma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13729. [PMID: 38286741 PMCID: PMC10799233 DOI: 10.1111/crj.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Asthma associated with obesity is a chronic disease characterized by earlier airway remodeling, severe wheezing, and increased insensitivity to hormone therapy. Reticuline, a bioactive compound of Magnoliae Flos, exerts anti-inflammatory activity and can inhibit neutrophil recruitment. Thus, this study investigated the role of reticuline in obesity-related asthma. METHODS The BALB/c mice fed a low-fat diet (LFD) and high-fat diet (HFD) were intranasally challenged with house dust mites (HDMs) or ovalbumin (OVA). Reticuline (0.25 mg/kg) was administrated into mice by intragastrical gavage. Airway hyper-responsiveness was examined after the final challenge. Body weight was measured, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. The number of inflammatory cells in BALF was estimated. Histological changes were assessed by performing hematoxylin-eosin staining, and production of proinflammatory cytokines and IgE was examined by ELISA kits. Related pathways were studied with western blotting. RESULTS Reticuline suppressed airway resistance and inflammatory infiltration in lung tissue and reduced inflammatory cell recruitment in BALF in obesity mice with asthma. Additionally, the levels of IL-17A, IL-1β, IL-5, macrophage inflammatory protein 2, and regulated on activation, normal T cell expressed and secreted in the lung were reduced by reticuline. Mechanistically, reticuline inactivated the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathways in obesity-related asthma. CONCLUSION Reticuline alleviates airway inflammation in obesity-related asthma by inactivating the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaojiang Lyu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Jiaojiao Liu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Zengrong Liu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Ying Wu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Ping Zhu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Chonghai Liu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
13
|
Lin X, Zhang Y, Zhou X, Lai C, Dong Y, Zhang W. Inhibition of soluble epoxide hydrolase relieves adipose inflammation via modulating M1/M2 macrophage polarization to alleviate airway inflammation and hyperresponsiveness in obese asthma. Biochem Pharmacol 2024; 219:115948. [PMID: 38042452 DOI: 10.1016/j.bcp.2023.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Obesityincreasestheriskofasthma and tends to enhance the asthma severity, however, its mechanism is not fully elucidated. The expansion of adipose tissue in obesity is accompanied by the accumulation of adiposetissue macrophages (ATMs) that could contribute to alow-gradeinflammationstate. In this study, we researched the regulatory role of soluble epoxide hydrolase (sEH) on ATMs-mediated inflammation in obese asthma. A mouse model of obese asthma that induced by high-fat diet (HFD) feeding and Ovalbumin (OVA) sensitization was employed to investigate the effects of AUDA, a sEH inhibitor (sEHi), on airway inflammation, airway hyperresponsivenesss (AHR) and pulmonary pathological changes. In addition to alleviating the key features of asthma in obese mice, we confirmed that AUDA reduced the expression of pro-inflammatory factor, such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumornecrosisfactor-α (TNF-α) in adipose tissue and serum. Moreover, AUDA could remarkedly reduce Lipopolysaccharide (LPS)-elevated IL-1β, IL-6 and TNF-α in RAW264.7 macrophage cells. Mechanistically, AUDA effectively reduced inflammation in adipose tissue, resulting in reduced systemic inflammation, by inhibiting M1-type macrophage polarization and promoting M2-type macrophage polarization. These processes were found to act through ERK1/2 signaling pathway. Herein, we proved that inhibition of sEH expression helped to mitigate multiple parameters of obese asthma by regulating the balance of M1/M2 macrophage polarization in adipose tissue.
Collapse
Affiliation(s)
- Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Zhou
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuqiao Lai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Ishibashi O, Muljo SA, Islam Z. Regulation of Macrophage Polarization in Allergy by Noncoding RNAs. Noncoding RNA 2023; 9:75. [PMID: 38133209 PMCID: PMC10745746 DOI: 10.3390/ncrna9060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Allergy is a type 2 immune reaction triggered by antigens known as allergens, including food and environmental substances such as peanuts, plant pollen, fungal spores, and the feces and debris of mites and insects. Macrophages are myeloid immune cells with phagocytic abilities that process exogenous and endogenous antigens. Upon activation, they can produce effector molecules such as cytokines as well as anti-inflammatory molecules. The dysregulation of macrophage function can lead to excessive type 1 inflammation as well as type 2 inflammation, which includes allergic reactions. Thus, it is important to better understand how macrophages are regulated in the pathogenesis of allergies. Emerging evidence highlights the role of noncoding RNAs (ncRNAs) in macrophage polarization, which in turn can modify the pathogenesis of various immune-mediated diseases, including allergies. This review summarizes the current knowledge regarding this topic and considers three classes of ncRNAs: microRNAs, long ncRNAs, and circular ncRNAs. Understanding the roles of these ncRNAs in macrophage polarization will provide new insights into the pathogenesis of allergies and identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Hu M, Zhao X, Liu Y, Zhou H, You Y, Xue Z. Complex interplay of gut microbiota between obesity and asthma in children. Front Microbiol 2023; 14:1264356. [PMID: 38029078 PMCID: PMC10655108 DOI: 10.3389/fmicb.2023.1264356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is an important risk factor and common comorbidity of childhood asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype, has attracted significant attention owing to its association with more severe clinical manifestations, poorer disease control, and reduced quality of life. The establishment of the gut microbiota during early life is essential for maintaining metabolic balance and fostering the development of the immune system in children. Microbial dysbiosis influences host lipid metabolism, triggers chronic low-grade inflammation, and affects immune responses. It is intimately linked to the susceptibility to childhood obesity and asthma and plays a potentially crucial transitional role in the progression of obesity-related asthma. This review article summarizes the latest research on the interplay between asthma and obesity, with a particular focus on the mediating role of gut microbiota in the pathogenesis of obesity-related asthma. This study aims to provide valuable insight to enhance our understanding of this condition and offer preliminary evidence to support the development of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Vámos E, Kálmán N, Sturm EM, Nayak BB, Teppan J, Vántus VB, Kovács D, Makszin L, Loránd T, Gallyas F, Radnai B. Highly Selective MIF Ketonase Inhibitor KRP-6 Diminishes M1 Macrophage Polarization and Metabolic Reprogramming. Antioxidants (Basel) 2023; 12:1790. [PMID: 37891870 PMCID: PMC10604361 DOI: 10.3390/antiox12101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophage polarization is highly involved in autoimmunity. M1 polarized macrophages drive inflammation and undergo metabolic reprogramming, involving downregulation of mitochondrial energy production and acceleration of glycolysis. Macrophage migration inhibitory factor (MIF), an enigmatic tautomerase (ketonase and enolase), was discovered to regulate M1 polarization. Here, we reveal that KRP-6, a potent and highly selective MIF ketonase inhibitor, reduces MIF-induced human blood eosinophil and neutrophil migration similarly to ISO-1, the most investigated tautomerase inhibitor. We equally discovered that KRP-6 prevents M1 macrophage polarization and reduces ROS production in IFN-γ-treated cells. During metabolic reprogramming, KRP-6 improved mitochondrial bioenergetics by ameliorating basal respiration, ATP production, coupling efficiency and maximal respiration in LPS+IFN-γ-treated cells. KRP-6 also reduced glycolytic flux in M1 macrophages. Moreover, the selective MIF ketonase inhibitor attenuated LPS+IFN-γ-induced downregulation of PARP-1 and PARP-2 mRNA expression. We conclude that KRP-6 represents a promising novel therapeutic compound for autoimmune diseases, which strongly involves M1 macrophage polarization.
Collapse
Affiliation(s)
- Eszter Vámos
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Eva Maria Sturm
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Barsha Baisakhi Nayak
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Julia Teppan
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary;
| | - Tamás Loránd
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| |
Collapse
|
17
|
Zhang L, Wang T, Wang Z, Li H, Wu Y, Guo S, Li W, You J, Chao C. Analysis of risk factors affecting olfactory dysfunction in patients with chronic rhinosinusitis: Highlighting the role of metabolic syndrome. Laryngoscope Investig Otolaryngol 2023; 8:615-620. [PMID: 37342102 PMCID: PMC10278107 DOI: 10.1002/lio2.1061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Objective This study aims to evaluate the relationship between chronic sinusitis (CRS) and metabolic syndrome (MS) in a Chinese population and to explore the risk factors for olfactory dysfunction in patients with CRS. Methods A total of 387 CRS patients were enrolled. Olfactory function was assessed by the Sniffin' Sticks 12-item test and MS was diagnosed according to the guidelines. Logistic regression analysis was performed on CRS patients to screen independent risk factors of olfactory dysfunction, adjusted for confounding factors. Results Among 387 patients, average age of visit and duration of onset were 48.7 years and 1.8 years, respectively. The prevalence of MS was 15.0%. CRS patients with MS were more likely to be older (51.2 vs. 46.8, p = .004), predominantly male (p < .001) and have a higher proportion of olfactory dysfunction (62.1% vs. 44.1%, p = .018) than those without MS. In multivariate logistic regression analysis, MS was associated with olfactory dysfunction in CRS patients (OR: 2.06, 95% CI: 1.14-3.72, p = .016). This association remained significant after controlling for confounding factors. In addition, nasal polyps (OR: 13.41, 95% CI: 8.11-22.17, p < .001) and allergic rhinitis (OR: 3.16, 95% CI: 1.67-5.99, p < .001) were also risk factors for olfactory dysfunction after adjusting for confounding factors. Conclusions MS is associated with olfactory dysfunction in patients with CRS. MS, nasal polyps, and allergic rhinitis are risk factors for olfactory dysfunction in CRS patients. Level of evidence IV.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Tao Wang
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Zhu Wang
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Haifeng Li
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Yang Wu
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Siquan Guo
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Wenjing Li
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Jianqiang You
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| | - Changjiang Chao
- Department of Otorhinolaryngology, The First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow University, Soochow UniversityChangzhouChina
| |
Collapse
|
18
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
19
|
Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023; 246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages are a diverse population of phagocytic immune cells involved in the host defense mechanisms and regulation of homeostasis. Usually, macrophages maintain healthy functioning at the cellular level, but external perturbation in their balanced functions can lead to acute and chronic disease conditions. By sensing the cues from the tissue microenvironment, these phagocytes adopt a plethora of phenotypes, such as inflammatory or M1 to anti-inflammatory (immunosuppressive) or M2 subtypes, to fulfill their spectral range of functions. The existing evidence in the literature supports that in macrophages, regulation of metabolic switches and metabolic adaptations are associated with their functional behaviors under various physiological and pathological conditions. Since these macrophages play a crucial role in many disorders, therefore it is necessary to understand their heterogeneity and metabolic reprogramming. Consequently, these macrophages have also emerged as a promising target for diseases in which their role is crucial in driving the disease pathology and outcome (e.g., Cancers). In this review, we discuss the recent findings that link many metabolites with macrophage functions and highlight how this metabolic reprogramming can improve our understanding of cellular malfunction in the macrophages during inflammatory disorders. A systematic analysis of the interconnecting crosstalk between metabolic pathways with macrophages should inform the selection of immunomodulatory therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
20
|
Liu H, Nie H, Lai W, Shi Y, Liu X, Li K, Tian L, Xi Z, Lin B. Different exposure modes of PM 2.5 induces bronchial asthma and fibrosis in male rats through macrophage activation and immune imbalance induced by TIPE2 methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114200. [PMID: 36274320 DOI: 10.1016/j.ecoenv.2022.114200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 can aggravate the occurrence and development of bronchial asthma and fibrosis. Here, we investigated the differences in bronchial injury caused by different exposure modes of PM2.5 (high concentration intermittent exposure and low concentration continuous exposure), and the mechanism of macrophage activation and respiratory immune imbalance induced by PM2.5, leading to bronchial asthma and airway fibrosis using animal and cell models. A "PM2.5 real-time online concentrated animal whole-body exposure system" was used to conduct PM2.5 respiratory exposure of Wistar rats for 12 weeks, which can enhance oxidative stress in rat bronchus, activate epithelial cells and macrophages, release chemokines, recruit inflammatory cells, release inflammatory factors and extracellular matrix, promote bronchial mucus hypersecretion, inhibit the expression of epithelial cytoskeletal proteins, destroy airway barrier, and induce asthma. Furthermore, PM2.5 induced M2 polarization in lung bronchial macrophages through JAK/STAT and PI3K/Akt signaling pathways, and compared with low concentration continuous exposure, high concentration intermittent exposure of PM2.5 could regulate significantly higher expression of TIPE2 protein through promoter methylation of TIPE2 DNA, thereby activating PI3K/Akt signaling pathway and more effectively inducing M2 polarization of macrophages. Additionally, activated macrophages release IL-23, and activated epithelial cells and macrophages released TGF-β1, which promoted the differentiation of Th17 cells, triggered the Th17 dominant immune response, and activated the TGF-β1/Smad2 signaling pathway, finally causing bronchial fibrosis. Moreover, when the total amount of PM2.5 exposure was equal, high concentration-intermittent exposure was more serious than low concentration-continuous exposure. In vitro experiments, the co-culture models of PM2.5 with BEAS-2B, WL-38 and rat primary alveolar macrophages further confirmed that PM2.5 could induce the macrophage activation through oxidative stress and TIPE2 DNA methylation, and activate the TGF-β1/Smad2 signaling pathway, leading to the occurrence of bronchial fibrosis.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
21
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
22
|
Zhang Z, Wu X, Han G, Shao B, Lin L, Jiang S. Altered M1/M2 polarization of alveolar macrophages is involved in the pathological responses of acute silicosis in rats in vivo. Toxicol Ind Health 2022; 38:810-818. [DOI: 10.1177/07482337221136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alveolar macrophages play a vital role in the development of acute silicosis, but the dynamic changes of M1 and/or M2 phenotypes have not been elucidated. In this study, acute silicosis models of rat were established by a one-time dusting method, and the rats were sacrificed after 1, 3, 7, 14, and 28 days. The polarity states of macrophages were assessed by measuring the M1/M2 marker genes of alveolar macrophages and the M1/M2 marker proteins in bronchoalveolar lavage fluid. The pathological changes of lung tissues were examined with hematoxylin and Eosin and Masson’s trichrome staining. Our results showed that in the early stages, alveolar macrophages were mainly polarized into M1; with time, the polarization of M2 gradually became dominant. Microscopic sections showed significant pathological responses of inflammation and fibrosis. This work suggested that the alteration of alveolar macrophage polarization was involved in the lung pathologic responses to acute silicosis.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Public Health, Jining Medical University, Jining, China
| | - Xiao Wu
- Department of Public Health, Jining Medical University, Jining, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jining, China
| | - Bo Shao
- Department of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- Department of Public Health, Jining Medical University, Jining, China
| | - Shunli Jiang
- Department of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
23
|
Kong J, Yang F, Bai M, Zong Y, Li Z, Meng X, Zhao X, Wang J. Airway immune response in the mouse models of obesity-related asthma. Front Physiol 2022; 13:909209. [PMID: 36051916 PMCID: PMC9424553 DOI: 10.3389/fphys.2022.909209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Minghua Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| |
Collapse
|
24
|
Wang Z, Li S, Huang B. Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduct Target Ther 2022; 7:242. [PMID: 35853858 PMCID: PMC9295089 DOI: 10.1038/s41392-022-01106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused more than 6.3 million deaths to date. Despite great efforts to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines and neutralizing antibodies are in the gloom due to persistent viral mutations and antiviral compounds face challenges of specificity and safety. In addition, vaccines are unable to treat already-infected individuals, and antiviral drugs cannot be used prophylactically. Therefore, exploration of unconventional strategies to curb the current pandemic is highly urgent. Alveolar macrophages (AMs) residing on the surface of alveoli are the first immune cells that dispose of alveoli-invading viruses. Our findings demonstrate that M1 AMs have an acidic endosomal pH, thus favoring SARS-CoV-2 to leave endosomes and release into the cytosol where the virus initiates replication; in contrast, M2 AMs have an increased endosomal pH, which dampens the viral escape and facilitates delivery of the virus for lysosomal degradation. In this review, we propose that AMs are the Achilles’ heel of SARS-CoV-2 infection and that modulation of the endosomal pH of AMs has the potential to eliminate invaded SARS-CoV-2; the same strategy might also be suitable for other lethal respiratory viruses.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China
| | - Shunshun Li
- Department of Immunology, Basic Medicine College, China Medical University, 110122, Shenyang, Liaoning, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, 430030, Wuhan, China.
| |
Collapse
|
25
|
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy 2022; 15:673-689. [PMID: 35611328 PMCID: PMC9124473 DOI: 10.2147/jaa.s285738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
The rates of asthma and obesity are increasing concurrently in the United States. Epidemiologic studies demonstrate that the incidence of asthma increases with obesity. Furthermore, obese individuals have asthma that is more severe, harder to control, and resistant to standard medications. In fact, specific asthma-obesity phenotypes have been identified. Various pathophysiologic mechanisms, including mechanical, inflammatory, metabolic and microbiome-associated, are at play in promulgating the obese-asthma phenotypes. While standard asthma medications, such as inhaled corticosteroids and biologics, are currently used to treat obese asthmatics, they may have limited effectiveness. Targeting the underlying aberrant processes, such as addressing steroid resistance, microbiome, metabolic and weight loss approaches, may be helpful.
Collapse
Affiliation(s)
- Sherry Farzan
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Correspondence: Sherry Farzan, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, 865 Northern Blvd, Suite 101, Great Neck, NY, 11021, USA, Tel +1 516-622-5070, Fax +1 516-622-5060, Email
| | - Tyrone Coyle
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Gina Coscia
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Andre Rebaza
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| | - Maria Santiago
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| |
Collapse
|
26
|
Sex Plays a Multifaceted Role in Asthma Pathogenesis. Biomolecules 2022; 12:biom12050650. [PMID: 35625578 PMCID: PMC9138801 DOI: 10.3390/biom12050650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sex is considered an important risk factor for asthma onset and exacerbation. The prevalence of asthma is higher in boys than in girls during childhood, which shows a reverse trend after puberty—it becomes higher in adult females than in adult males. In addition, asthma severity, characterized by the rate of hospitalization and relapse after discharge from the emergency department, is higher in female patients. Basic research indicates that female sex hormones enhance type 2 adaptive immune responses, and male sex hormones negatively regulate type 2 innate immune responses. However, whether hormone replacement therapy in postmenopausal women increases the risk of current asthma and asthma onset remains controversial in clinical settings. Recently, sex has also been shown to influence the pathophysiology of asthma in its relationship with genetic or other environmental factors, which modulate asthmatic immune responses in the airway mucosa. In this narrative review, we highlight the role of sex in the continuity of the asthmatic immune response from sensing allergens to Th2 cell activation based on our own data. In addition, we elucidate the interactive role of sex with genetic or environmental factors in asthma exacerbation in women.
Collapse
|
27
|
Shang Q, Zhu L, Shang W, Zeng J, Qi Y. Dioscin exhibits protective effects on in vivo and in vitro asthma models via suppressing TGF-β1/Smad2/3 and AKT pathways. J Biochem Mol Toxicol 2022; 36:e23084. [PMID: 35481609 DOI: 10.1002/jbt.23084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Dioscin is a natural product that possesses protective effects on multiple chronic injuries, but its effects on asthma are not fully understood. Herein, we evaluated its effects on asthmatic mice established by ovalbumin (OVA) sensitization and challenges and further explored the mechanism. Inflammatory cells in bronchoalveolar lavage fluids (BALFs) were analyzed using Diff-Quik staining. OVA-specific immunoglobulin E (IgE)/IgG1 in serum and inflammatory cytokines (interleukin 4[IL-4], IL-5, IL-13, and tumor necrosis factor-α) in BALFs and lung tissues were measured using Enzyme-Linked Immunosorbent Assay Kits. Hematoxylin and eosin, periodic acid-Schiff, and immunohistochemistry staining showed histopathological changes in lung tissues. Epithelial-mesenchymal transition (EMT) in human bronchial epithelial (16HBE) cells was assessed by immunofluorescence staining. Hydroxyproline content was used to evaluate collagen deposition. Polymerase chain reaction and Western blot were performed to measure messenger RNA and protein expression. We found that dioscin treatment (particularly at the dose of 80 mg/kg) significantly inhibited pulmonary inflammation in asthmatic mice, as evidenced by the decreased serum OVA-specific IgE/IgG1 and the reduced inflammatory cells and cytokines in BALFs and lung tissues. Moreover, dioscin effectively ameliorated the goblet cell hyperplasia, mucus hypersecretion, collagen deposition, and smooth muscle hyperplasia in the airways of asthmatic mice. Mechanistically, dioscin restrained the activated TGF-β1/Smad2/3 and protein kinase B (AKT) signal pathways in lung tissues and potently reversed the TGF-β1-induced EMT and phosphorylation of Smad2/3 and AKT in 16HBE cells. Collectively, dioscin displayed protective effects on OVA-induced asthmatic mice via adjusting TGF-β1/Smad2/3 and AKT signal pathways, supporting the fact that dioscin could be a candidate for chronic asthma prevention in the future.
Collapse
Affiliation(s)
- Qian Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weina Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Zeng
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
29
|
LncTRPM2-AS inhibits TRIM21-mediated TRPM2 ubiquitination and prevents autophagy-induced apoptosis of macrophages in asthma. Cell Death Dis 2021; 12:1153. [PMID: 34903714 PMCID: PMC8668916 DOI: 10.1038/s41419-021-04437-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in macrophage development but little is known about their role in asthma. Here, we investigated the role of lncRNA lncTRPM2-AS in asthma and found that lncTRPM2-AS participates in the promotion of macrophage inflammation. Downregulation of lncTRPM2-AS promoted apoptosis and inhibited proliferation and production of cytokines including IL-1β, IL-4, IL-6, IL-10, TNF-α, and TGF-β. RNA-immunoprecipitation and mass spectrometry indicated that the protein TRPM2 interacted with both lncTRPM2-AS and the E3 ubiquitin ligase TRIM21. LncTRPM2-AS silencing enhanced the interaction between TRIM21 and TRPM2, resulting in elevated levels of ubiquitin-related degradation of TRPM2. Mutation analysis indicated that TRPM2 K1218 is a key site for TRIM21-dependent ubiquitination. Downregulation of lncTRPM2-AS significantly decreased intracellular calcium levels by restraining TRPM2 protein expression, which in turn decreased ROS levels and increased autophagy to promote macrophage apoptosis and reduce cytokine production, together inhibiting macrophage inflammation. Taken together, our findings demonstrate that lncTRPM2-AS blocks the ubiquitination of TRPM2 via TRIM21 and inhibits autophagy-induced apoptosis which may contribute to macrophage inflammation in asthma.
Collapse
|
30
|
Nikolskii AA, Shilovskiy IP, Barvinskaia ED, Korneev AV, Sundukova MS, Khaitov MR. Role of STAT3 Transcription Factor in Pathogenesis of Bronchial Asthma. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1489-1501. [PMID: 34906042 DOI: 10.1134/s0006297921110122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.
Collapse
Affiliation(s)
- Aleksandr A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia.
| | - Ekaterina D Barvinskaia
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Artem V Korneev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Maria S Sundukova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| |
Collapse
|
31
|
Pathak MP, Patowary P, Goyary D, Das A, Chattopadhyay P. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153610. [PMID: 34175589 DOI: 10.1016/j.phymed.2021.153610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obesity worsens airway hyperresponsiveness (AHR) in asthmatic subjects by up-regulating macrophage polarization that leads to excessive secretion of pro-inflammatory adipokines from white adipose tissue followed by generation of oxidative stress in the respiratory system. Treatment through conventional signaling pathways proved to be inadequate in obese asthmatics, so a therapeutical approach through a non-conventional pathway may prove to be effective. PURPOSE This study aimed to investigate the efficacy of a FDA-approved food additive, β-caryophyllene (BCP) in obesity-associated AHR. METHOD A repertoire of protein expression, cytokine and adiponectin estimation, oxidative stress assays, histopathology, and fluorescence immune-histochemistry were performed to assess the efficacy of BCP in C57BL/6 mice model of obesity-associated AHR. Additionally, human adipocyte was utilized to study the effect of BCP on macrophage polarization in Boyden chamber cell culture inserts. RESULTS Obesity-associated AHR is ameliorated by administration of BCP by inhibition of the macrophage polarization by activation of AMPKα, Nrf2/HO-1 and AdipoR1 and AdipoR2 signaling pathway, up-regulation of adiponectin, GLP-1, IFN-γ, SOD, catalase and down-regulation of NF-κB, leptin, IL-4, TNF, and IL-1β. Browning of eWAT by induction of thermogenesis and activation of melanocortin pathway also contributed to the amelioration of obesity-associated AHR. We conclude that BCP ameliorated the obesity-associated AHR via inhibition of macrophage polarization, activation of AMPKα, Nrf2/HO-1, and up-regulation of AdipoR1 and AdipoR2 expression and down-regulation of NFκB expression in lung of animal. CONCLUSION Being an FDA-approved food additive, BCP may prove to be a safe and potential agent against obesity-associated AHR.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | | |
Collapse
|
32
|
Su X, Wei J, Qi H, Jin M, Zhang Q, Zhang Y, Zhang C, Yang R. LRRC19 Promotes Permeability of the Gut Epithelial Barrier Through Degrading PKC-ζ and PKCι/λ to Reduce Expression of ZO1, ZO3, and Occludin. Inflamm Bowel Dis 2021; 27:1302-1315. [PMID: 33501933 DOI: 10.1093/ibd/izaa354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A dysfunctional gut epithelial barrier allows the augmented permeation of endotoxins, luminal antigens, and bacteria into the bloodstream, causing disease. The maintenance of gut epithelial barrier integrity may be regulated by multiple factors. Herein we analyze the role of leucine-rich repeat-containing protein 19 (LRRC19) in regulating the permeability of the gut epithelial barrier. METHODS We utilized Lrrc19 knockout (KO) mice and clinical samples through transmission electron, intestinal permeability assay, Western blot, and immunofluorescence staining to characterize the role of LRRC19 in the permeability of the gut epithelial barrier. RESULTS We found that LRRC19, which is expressed in gut epithelial cells, impairs gut barrier function. Transmission electron micrographs revealed a tighter junction and narrower gaps in the colon epithelium cells in LRRC19 KO mice. There were lower levels of serum lipopolysaccharide and 4 kDa-fluorescein isothiocyanate-dextran after gavage in LRRC19 KO mice than in wild-type mice. We found that LRRC19 could reduce the expression of zonula occludens (ZO)-1, ZO-3, and occludin in the colonic epithelial cells. The decreased expression of ZO-1, ZO-3, and occludin was dependent on degrading protein kinase C (PKC) ζ and PKCι/λ through K48 ubiquitination by LRRC19. The expression of LRRC19 was also negatively correlated with ZO-1, ZO-3, occludin, PKCζ, and PKCι/λ in human colorectal cancers. CONCLUSIONS The protein LRRC19 can promote the permeability of the gut epithelial barrier through degrading PKC ζ and PKCι/λ to reduce the expression of ZO-1, ZO-3, and occludin.
Collapse
Affiliation(s)
- Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jianmei Wei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
33
|
De I, Maklakova V, Litscher S, Boyd MM, Klemm LC, Wang Z, Kendziorski C, Collier LS. Microglial responses to CSF1 overexpression do not promote the expansion of other glial lineages. J Neuroinflammation 2021; 18:162. [PMID: 34281564 PMCID: PMC8290555 DOI: 10.1186/s12974-021-02212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1+ microglia without promoting the expression of M2 polarization markers. METHODS Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice. RESULTS As CSF1 overexpressing mice age, IBA1+ cell numbers are constrained by a decline in proliferation rate. Compared to controls, there were no differences in expression of the M2 markers ARG1 and MRC1 (CD206) in CSF1 overexpressing mice of any age, indicating that even prolonged exposure to increased CSF1 does not impact M2 polarization status in vivo. Moreover, RNA-sequencing confirmed the lack of increased expression of markers of M2 polarization in microglia exposed to CSF1 overexpression but did reveal changes in expression of other immune-related genes. Although treatment with inhibitors of the CSF1 receptor, CSF1R, has been shown to impact other glia, no increased expression of oligodendrocyte lineage or astrocyte markers was observed in CSF1 overexpressing mice. CONCLUSIONS Our study indicates that microglia are the primary glial lineage impacted by CSF1 overexpression in the CNS and that microglia ultimately adapt to the presence of the CSF1 mitogenic signal.
Collapse
Affiliation(s)
- Ishani De
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, Madison, USA
| | - Vilena Maklakova
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, USA
| | - Suzanne Litscher
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, USA
| | - Michelle M Boyd
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, USA
| | - Lucas C Klemm
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, Madison, USA
| | - Ziyue Wang
- Department of Statistics, University of Wisconsin, Madison, USA
| | - Christina Kendziorski
- Department of BiostatisticsUniversity of Wisconsin, Madison, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, USA
| | - Lara S Collier
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin, Madison, USA.
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, USA.
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, USA.
| |
Collapse
|
34
|
Kaul K, Misri S, Ramaswamy B, Ganju RK. Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Lett 2021; 509:115-120. [PMID: 33798632 DOI: 10.1016/j.canlet.2021.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
The growing burden of obesity and incidence of the aggressive triple negative breast cancer (TNBC) is a challenge, especially amongst vulnerable populations with unmet medical needs and higher mortality from breast cancer. While some mechanisms linking obesity and TNBC have been identified, the complex nature of pathogenesis, in both obesity as well as TNBC poses a real challenge in establishing a causative role of obesity in risk of TNBC. In this review article, we discuss pathological mechanisms identified in the tumor microenvironment (TME) as well as the obese microenvironment (OME), such as inflammation, insulin resistance and survival pathways that contribute to the development and progression of TNBC. Insights into the cross-talk between TME and OME, and their contribution to TNBC development and progression, may pave the way for personalized therapies against TNBC progression, relapse and metastasis.
Collapse
Affiliation(s)
- Kirti Kaul
- Comprehensive Cancer Center, USA; Department of Pathology, USA
| | | | | | - Ramesh K Ganju
- Comprehensive Cancer Center, USA; Department of Pathology, USA.
| |
Collapse
|
35
|
Leija-Martínez JJ, Del-Río-Navarro BE, Sanchéz-Muñoz F, Muñoz-Hernández O, Hong E, Giacoman-Martínez A, Romero-Nava R, Patricio-Román KL, Hall-Mondragon MS, Espinosa-Velazquez D, Villafaña S, Huang F. Associations of TNFA, IL17A, and RORC mRNA expression levels in peripheral blood leukocytes with obesity-related asthma in adolescents. Clin Immunol 2021; 229:108715. [PMID: 33771687 DOI: 10.1016/j.clim.2021.108715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 01/10/2023]
Abstract
Obesity is associated with a unique non-T2 asthma phenotype, characterised by a Th17 immune response. Retinoid-related orphan receptor C (RORC) is the master transcription factor for Th17 polarisation. We investigated the association of TNFA, IL17A, and RORC mRNA expression levels with the non-T2 phenotype. We conducted a cross-sectional study in adolescents, subdivided as follows: healthy (HA), allergic asthma without obesity (AA), obesity without asthma (OB), and non-allergic asthma with obesity (NAO). TNFA, IL17A, and RORC mRNA expression in peripheral blood leukocytes were assessed by RT-PCR. NAO exhibited higher TNFA mRNA expression levels than HA or OB, as well as the highest IL17A and RORC mRNA expression levels among the four groups. The best biomarker for discriminating non-allergic asthma among obese adolescents was RORC mRNA expression levels (area under the curve: 0.95). RORC mRNA expression levels were associated with the non-T2 asthma phenotype, hinting at a therapeutic target in obesity-related asthma.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Enrique Hong
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Mexico City, Calz. de Los Tenorios 235, Col. Granjas Coapa, 14330, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Karla L Patricio-Román
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Margareth S Hall-Mondragon
- Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico; Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social. IMSS, Mexico
| | - Dario Espinosa-Velazquez
- Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| |
Collapse
|
36
|
Kalidhindi RSR, Ambhore NS, Balraj P, Schmidt T, Khan MN, Sathish V. Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L803-L818. [PMID: 33719566 DOI: 10.1152/ajplung.00441.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies demonstrate an apparent sex-based difference in the prevalence of asthma, with a higher risk in boys than girls, which is reversed postpuberty, where women become more prone to asthma than men, suggesting a plausible beneficial role for male hormones, especially androgens as a regulator of pathophysiology in asthmatic lungs. Using a murine model of asthma developed with mixed allergen (MA) challenge, we report a significant change in airway hyperresponsiveness (AHR), as demonstrated by increased thickness of epithelial and airway smooth muscle layers and collagen deposition, as well as Th2/Th17-biased inflammation in the airways of non-gonadectomized (non-GDX) and gonadectomized (GDX) male mice. Here, compared with non-GDX mice, MA-induced AHR and inflammatory changes were more prominent in GDX mice. Activation of androgen receptor (AR) using 5α-dihydrotestosterone (5α-DHT, AR agonist) resulted in decreased Th2/Th17 inflammation and remodeling-associated changes, resulting in improved lung function compared with MA alone challenged mice, especially in GDX mice. These changes were not observed with Flutamide (Flut, AR antagonist). Overall, we show that AR exerts a significant and beneficial role in asthma by regulating AHR and inflammation.
Collapse
Affiliation(s)
- Rama Satyanarayana Raju Kalidhindi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Taylor Schmidt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
37
|
Cevhertas L, Ogulur I, Maurer DJ, Burla D, Ding M, Jansen K, Koch J, Liu C, Ma S, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Satitsuksanoa P, Globinska A, Veen W, Sokolowska M, Baerenfaller K, Gao Y, Agache I, Akdis M, Akdis CA. Advances and recent developments in asthma in 2020. Allergy 2020; 75:3124-3146. [PMID: 32997808 DOI: 10.1111/all.14607] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
In this review, we discuss recent publications on asthma and review the studies that have reported on the different aspects of the prevalence, risk factors and prevention, mechanisms, diagnosis, and treatment of asthma. Many risk and protective factors and molecular mechanisms are involved in the development of asthma. Emerging concepts and challenges in implementing the exposome paradigm and its application in allergic diseases and asthma are reviewed, including genetic and epigenetic factors, microbial dysbiosis, and environmental exposure, particularly to indoor and outdoor substances. The most relevant experimental studies further advancing the understanding of molecular and immune mechanisms with potential new targets for the development of therapeutics are discussed. A reliable diagnosis of asthma, disease endotyping, and monitoring its severity are of great importance in the management of asthma. Correct evaluation and management of asthma comorbidity/multimorbidity, including interaction with asthma phenotypes and its value for the precision medicine approach and validation of predictive biomarkers, are further detailed. Novel approaches and strategies in asthma treatment linked to mechanisms and endotypes of asthma, particularly biologicals, are critically appraised. Finally, due to the recent pandemics and its impact on patient management, we discuss the challenges, relationships, and molecular mechanisms between asthma, allergies, SARS-CoV-2, and COVID-19.
Collapse
Affiliation(s)
- Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Medical Immunology Institute of Health Sciences, Bursa Uludag University Bursa Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Marmara University Istanbul Turkey
| | - Debbie J. Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Daniel Burla
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Institute for Bioinformatics (SIB) Davos Switzerland
| | - Chengyao Liu
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Otorhinolaryngology HospitalThe First Affiliated HospitalSun Yat‐sen University Guangzhou China
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystok Poland
| | - Arturo O. Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Institute for Bioinformatics (SIB) Davos Switzerland
| | - Ya‐dong Gao
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
38
|
CTRP9 induces macrophages polarization into M1 phenotype through activating JNK pathway and enhances VSMCs apoptosis in macrophages and VSMCs co-culture system. Exp Cell Res 2020; 395:112194. [PMID: 32712018 DOI: 10.1016/j.yexcr.2020.112194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Inflammation plays a critical role in the development of atherosclerosis (AS), which has been identified as a major predisposing factor for stroke. Macrophages and VSMCs are associated with plaque formation and progression. Macrophages can dynamically change into two main functional phenotypes, namely M1 and M2, they can produce either pro-inflammatory or anti-inflammatory factors which may affect the outcome of inflammation. As a member of CTRPs family, CTRP9 has been reported play important protective roles in the cardiovascular system. However, whether CTRP9 can regulate macrophage activation status in inflammatory responses and have effect on VSMCs behaviors in co-culture system have not been fully investigated. In the present study, using peritoneal macrophages treated with CTRP9, we found that CTRP9 facilitated macrophages towards M1 phenotype, promoted TNF-α secretion and MMPs expression. CTRP9 showed synergistic effect with LPS in inducing M1 macrophages. In macrophages-VSMCs co-culture system, apoptosis and down-regulated proliferation of VSMCs were accelerated with CTRP9-treated macrophages. Then we attempted to explore the underlying molecular mechanisms of CTRP9 resulting in M1 activation. The c-Jun NH2-terminal kinases (JNK) are members of the mitogen activated protein kinases (MAPK) family, plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival. We found JNK expression was upregulated following CTRP9 stimulation, and inhibiting JNK phosphorylation level was associated with decreased expression of M1 markers and TNF-α concentration. Moreover, VSMCs apoptosis were ameliorated after inhibition of JNK. These results suggested that CTRP9 may promote macrophage towards M1 activation status through JNK signaling pathway activation.
Collapse
|
39
|
Ambhore NS, Kalidhindi RSR, Loganathan J, Sathish V. Role of Differential Estrogen Receptor Activation in Airway Hyperreactivity and Remodeling in a Murine Model of Asthma. Am J Respir Cell Mol Biol 2020; 61:469-480. [PMID: 30958966 DOI: 10.1165/rcmb.2018-0321oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that airway hyperresponsiveness (AHR) is a characteristic feature of asthma. Epidemiological studies have confirmed that the severity of asthma is greater in women, suggesting a critical role of female sex steroid hormones (especially estrogen). Very few in vivo studies have examined the role of sex steroid hormones in asthma, and the sequence of events that occur through differential activation of estrogen receptors (ERs) remains to be determined in asthmatic airways. Our recent in vitro findings indicated that ERβ had increased expression in asthmatic airway smooth muscle (ASM), and that its activation by an ERβ-specific agonist downregulated airway remodeling. In this study, we translated the in vitro findings to a murine asthma model and examined the differential role of ER activation in modulating lung mechanics. C57BL/6J male, female, and ovariectomized mice were exposed to mixed allergen (MA) and subcutaneously implanted with sustained-release pellets of placebo, an ERα agonist (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [PPT]), and/or an ERβ agonist (WAY-200070). We then evaluated the effects of these treatments on airway mechanics, biochemical, molecular, and histological parameters. Mice exposed to MA showed a significant increase in airway resistance, elastance, and tissue damping, and a decrease in compliance; pronounced effects were observed in females. Compared with PPT, WAY treatment significantly reversed the MA-induced changes. The increased mRNA/protein expression of ERα, ERβ, and remodeling genes observed in MA-treated mice was significantly reversed in WAY-treated mice. This novel study indicates that activation of ERβ signaling downregulates AHR and airway remodeling, and is a promising target in the development of treatments for asthma.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | | | - Jagadish Loganathan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and.,Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204. [PMID: 32292784 PMCID: PMC7118214 DOI: 10.3389/fcell.2020.00204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Collapse
Affiliation(s)
- Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sanna Katriina Toppila-Salmi
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Luukkainen
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland
| | - Robert Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
41
|
Lipid mediators and asthma: Scope of therapeutics. Biochem Pharmacol 2020; 179:113925. [PMID: 32217103 DOI: 10.1016/j.bcp.2020.113925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Lipids and their mediators are known to play a pro-inflammatory role in several human diseases including asthma. The influence of leukotrienes and prostaglandins through arachidonate metabolism in asthma pathophysiology is well established and hence, prompted the way for therapeutic strategies targeting lipid metabolites. In addition, various types of fatty acids have been reported to play a diverse role in asthma. For instance, CD4+ T-lymphocytes differentiation towards T-effector (Teff) or T-regulatory (Tregs) cells seems to be controlled reciprocally by fatty acid metabolic pathways. Further, the dysregulated lipid status in obesity complicates the asthma manifestations suggesting the role of lipid metabolites particularly ω-6 fatty acids in the process. On the other hand, clinical and pre-clinical studies suggests the role of short chain fatty acids in curbing asthma through upregulation of T-regulatory cells or clearance of inflammatory cells through promoting apoptosis. Accordingly, the present review compiles various studies for comprehensive analysis of different types of lipid based metabolites in asthma manifestation. Finally, we have proposed certain strategies which may enhance the usefulness of lipid mediators for balanced immune response during asthma.
Collapse
|
42
|
Chu CC, Pinney JJ, Whitehead HE, Rivera-Escalera F, VanDerMeid KR, Zent CS, Elliott MR. High-resolution quantification of discrete phagocytic events by live cell time-lapse high-content microscopy imaging. J Cell Sci 2020; 133:jcs237883. [PMID: 32005699 PMCID: PMC7075070 DOI: 10.1242/jcs.237883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Phagocytosis is a dynamic process central to immunity and tissue homeostasis. Current methods for quantification of phagocytosis largely rely on indirect or static measurements, such as target clearance or dye uptake, and thus provide limited information about engulfment rates or target processing. Improved kinetic measurements of phagocytosis could provide useful, basic insights in many areas. We present a live-cell, time-lapse and high-content microscopy imaging method based on the detection and quantification of fluorescent dye 'voids' within phagocytes that result from target internalization to quantify phagocytic events with high temporal resolution. Using this method, we measure target cell densities and antibody concentrations needed for optimal antibody-dependent cellular phagocytosis. We compare void formation and dye uptake methods for phagocytosis detection, and examine the connection between target cell engulfment and phagolysosomal processing. We demonstrate how this approach can be used to measure distinct forms of phagocytosis, and changes in macrophage morphology during phagocytosis related to both engulfment and target degradation. Our results provide a high-resolution method for quantifying phagocytosis that provides opportunities to better understand the cellular and molecular regulation of this fundamental biological process.
Collapse
Affiliation(s)
- Charles C Chu
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan J Pinney
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah E Whitehead
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatima Rivera-Escalera
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Karl R VanDerMeid
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Clive S Zent
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R Elliott
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Wang J, Cui M, Sun F, Zhou K, Fan B, Qiu JH, Chen FQ. HDAC inhibitor sodium butyrate prevents allergic rhinitis and alters lncRNA and mRNA expression profiles in the nasal mucosa of mice. Int J Mol Med 2020; 45:1150-1162. [PMID: 32124940 PMCID: PMC7053856 DOI: 10.3892/ijmm.2020.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Our previous study demonstrated that intranasal administration of histone deacetylase inhibitor sodium butyrate (NaB) exhibits therapeutic effects on a mouse model of allergic rhinitis (AR). However, whether NaB is effective on AR when administered orally and prophylactically, as well as its potential effects on gene expression, remained unknown. The present study aimed to investigate the preventive effect of NaB on AR when added to the diet of newly weaned mice and to evaluate the changes in long non-coding (lnc)RNA and mRNA expression profiles in the nasal mucosa. Mice were randomly divided into three groups as follows: i) Control (C) group, (no treatment); ii) AR group [treated with ovalbumin (OVA)]; and iii) NaB + AR group (treated with OVA and NaB). The NaB + AR group was administered NaB in their feed (30 g/kg chow), whereas the other two groups were fed normal feed between 3 and 6 weeks of age. At 7 weeks of age, OVA administration was initiated to induce AR in the AR and NaB + AR groups. Following model establishment, behavioral assessments, western blotting and gene expression analysis were performed. NaB exhibited a preventive effect in the murine AR model, diminished the increases in histone deacetylase 1 (HDAC1) and HDAC8 expression and increased OVA-induced acetylation of histone H3 at lysine 9. In addition, NaB increased the AR-associated low expression of interleukin 2 (IL-2), interferon γ and IL-17 and decreased the expression of IL-4, IL-5 and transforming growth factor β1. Gene Ontology and pathway analyses revealed the top 10 pathways among the groups. Octamer-binding transcription factor 1, ecotropic viral integration site 1 and paired box 4 were predicted to be target genes of lncRNA (NONMMUT057309). Thus, NaB may exhibit a preventive effect on AR. Additionally, the lncRNA and mRNA expression profiles in the nasal mucosa of mice with AR differed significantly following NaB treatment. These results may provide insights into the pathogenesis of AR and suggest new treatment targets.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mu Cui
- School of Nursing, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Fei Sun
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ke Zhou
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bei Fan
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Hua Qiu
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Quan Chen
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
44
|
Shim J, Lee H, Park D, Won Lee J, Bae B, Chang Y, Kim J, Kim HY, Kang H. Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11c intermediate macrophages. Allergy 2020; 75:381-391. [PMID: 31402462 DOI: 10.1111/all.14017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chlorine is widely used in daily life as disinfectant. However, chronic exposure to chlorine products aggravates allergic TH 2 inflammation and airway hyperresponsiveness (AHR). Innate lymphoid cells (ILCs) in airways contribute to the inception of asthma in association with virus infection, pollution, and excess of nutrient, but it is not known whether chronic chlorine exposure can activate innate immune cells. The aim of this study was to evaluate the impact of chlorine inhalation on the innate immunity such as ILCs and macrophages in relation with the development of asthma by using murine ovalbumin (OVA) sensitization/challenge model. METHODS Six-week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low-dose chlorine exposure by inhalation of naturally vaporized gas of 5% sodium hypochlorite solution. AHR, airway inflammatory cells, from BALF and the population of ILCs and macrophages in the lung were evaluated. RESULTS The mice exposed to chlorine with OVA (Cl + OVA group) showed enhanced AHR and eosinophilic inflammation compared to OVA-treated mice (OVA group). The population of TH 2 cells, ILC2s, and ILC3s increased in Cl + OVA group compared with OVA group. CD11cint macrophages also remarkably increased in Cl + OVA group compared with OVA group. The deletion of macrophages by clodronate resulted in reduction of ILC2s and ILC3s population which was restored by adoptive transfer of CD11cint macrophages. CONCLUSIONS Chronic chlorine inhalation contributes to the exacerbation of airway inflammation in asthmatic airway by mobilizing pro-inflammatory macrophage into the lung as well as stimulating group 2 and 3 ILCs.
Collapse
Affiliation(s)
- Ji‐Su Shim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
- Department of Internal Medicine Ewha Womans University College of Medicine Seoul Korea
| | - Hyun‐Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Da‐Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Ji Won Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Yuna Chang
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Hye‐Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
45
|
Excessive Body Weight and Immunological Response in Children with Allergic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1211:77-87. [PMID: 31456043 DOI: 10.1007/5584_2019_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prevalence of allergy and obesity is sharply on the rise in children. However, the nature of a mutual relation of the two conditions remains unclear. The aim of the study was to assess the impact of excessive body weight on the immune response in children with allergies. There were 56 children with allergies, aged 4-15 years, included into the study (41 with asthma and 15 with atopic dermatitis). Based on the body mass index, children were divided into two groups: normal weight (body mass index (BMI) <85th percentile) and excessive weight (BMI ≥ 85th percentile). The immunological parameters were evaluated by flow cytometry. We found that children with excessive body weight had a significantly lower percentage of CD4+ lymphocytes and a higher percentage of natural killer T cells (NKT) and CD16/56+ lymphocytes than those with normal weight. In the group with allergy, a significant positive association was noticed between BMI and the percentage of human leukocyte antigen (HLA)-DR-specific CD3. Further analysis was done after dividing the allergy group into the children with normal and excessive weight. There were an adverse association between BMI and the percentage of CD8+ lymphocytes in those with normal weight and a positive one between BMI and the percentage of CD4+ in those with excessive weight. We conclude that excessive body weight plays a major role in mediating the immunological response in children with allergy.
Collapse
|
46
|
Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol 2019; 46:101333. [PMID: 31703832 DOI: 10.1016/j.smim.2019.101333] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Asthma is a chronic airway disease, which affects more than 300 million people. The pathogenesis of asthma exhibits marked heterogeneity with many phenotypes defining visible characteristics and endotypes defining molecular mechanisms. With the evolution of novel biological therapies, patients, who do not-respond to conventional asthma therapy require novel biologic medications, such as anti-IgE, anti-IL-5 and anti-IL4/IL13 to control asthma symptoms. It is increasingly important for physicians to understand immunopathology of asthma and to characterize asthma phenotypes. Asthma is associated with immune system activation, airway hyperresponsiveness (AHR), epithelial cell activation, mucus overproduction and airway remodeling. Both innate and adaptive immunity play roles in immunologic mechanisms of asthma. Type 2 asthma with eosinophilia is a common phenotype in asthma. It occurs with and without visible allergy. The type 2 endotype comprises; T helper type 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), IgE-secreting B cells and eosinophils. Eosinophilic nonallergic asthma is ILC2 predominated, which produces IL-5 to recruit eosinophil into the mucosal airway. The second major subgroup of asthma is non-type 2 asthma, which contains heterogeneous group of endoypes and phenotypes, such as exercise-induced asthma, obesity induced asthma, etc. Neutrophilic asthma is not induced by allergens but can be induced by infections, cigarette smoke and pollution. IL-17 which is produced by Th17 cells and type 3 ILCs, can stimulate neutrophilic airway inflammation. Macrophages, dendritic cells and NKT cells are all capable of producing cytokines that are known to contribute in allergic and nonallergic asthma. Bronchial epithelial cell activation and release of cytokines, such as IL-33, IL-25 and TSLP play a major role in asthma. Especially, allergens or environmental exposure to toxic agents, such as pollutants, diesel exhaust, detergents may affect the epithelial barrier leading to asthma development. In this review, we focus on the immunologic mechanism of heterogenous asthma phenotypes.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Zeynep Celebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Ankara University School of Medicine, Department of Chest Diseases Division of Clinical Immunology and Allergic Diseases, Ankara, Turkey
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
47
|
Li X, Yao X, Zhu Y, Zhang H, Wang H, Ma Q, Yan F, Yang Y, Zhang J, Shi H, Ning Z, Dai J, Li Z, Li C, Su F, Xue Y, Meng X, Dong G, Xiong H. The Caspase Inhibitor Z-VAD-FMK Alleviates Endotoxic Shock via Inducing Macrophages Necroptosis and Promoting MDSCs-Mediated Inhibition of Macrophages Activation. Front Immunol 2019; 10:1824. [PMID: 31428103 PMCID: PMC6687755 DOI: 10.3389/fimmu.2019.01824] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a critical role in the pathogenesis of endotoxin shock by producing excessive amounts of pro-inflammatory cytokines. A pan-caspase inhibitor, zVAD, can be used to induce necroptosis under certain stimuli. The role of zVAD in both regulating the survival and activation of macrophages, and the pathogenesis of endotoxin shock remains not entirely clear. Here, we found that treatment of mice with zVAD could significantly reduce mortality and alleviate disease after lipopolysaccharide (LPS) challenge. Notably, in LPS-challenged mice, treatment with zVAD could also reduce the percentage of peritoneal macrophages by promoting necroptosis and inhibiting pro-inflammatory responses in macrophages. In vitro studies showed that pretreatment with zVAD promoted LPS-induced nitric oxide-mediated necroptosis of bone marrow-derived macrophages (BMDMs), leading to reduced pro-inflammatory cytokine secretion. Interestingly, zVAD treatment promoted the accumulation of myeloid-derived suppressor cells (MDSCs) in a mouse model of endotoxin shock, and this process inhibited LPS-induced pro-inflammatory responses in macrophages. Based on these findings, we conclude that treatment with zVAD alleviates LPS-induced endotoxic shock by inducing macrophage necroptosis and promoting MDSC-mediated inhibition of macrophage activation. Thus, this study provides insights into the effects of zVAD treatment in inflammatory diseases, especially endotoxic shock.
Collapse
Affiliation(s)
- Xuehui Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yonghong Yang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Xue
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Precision Immunology Institute, New York, NY, United States
| |
Collapse
|
48
|
Activation of mast cells mediates inflammatory response in psoriasis: Potential new therapeutic approach with IL‐37. Dermatol Ther 2019; 32:e12943. [DOI: 10.1111/dth.12943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
|
49
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019; 10:321-330. [PMID: 30753258 PMCID: PMC6416106 DOI: 10.1093/advances/nmy084] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a nutritional disorder resulting from a chronic imbalance between energy intake and expenditure. This disease is characterized by inflammation in multiple cell types, including macrophages. M1 macrophage responses are correlated with the progression of obesity or diabetes; therefore, strategies that induce repolarization of macrophages from an M1 to an M2 phenotype may be promising for the prevention of obesity- or diabetes-associated pathology. Glutamine (the most abundant amino acid in the plasma of humans and many other mammals including rats) is effective in inducing polarization of M2 macrophages through the glutamine-UDP-N-acetylglucosamine pathway and α-ketoglutarate produced via glutaminolysis, whereas succinate synthesized via glutamine-dependent anerplerosis or the γ-aminobutyric acid shunt promotes polarization of M1 macrophages. Interestingly, patients with obesity or diabetes show altered glutamine metabolism, including decreases in glutamine and α-ketoglutarate concentrations in serum but increases in succinate concentrations. Thus, manipulation of macrophage polarization through glutamine metabolism may provide a potential target for prevention of obesity- or diabetes-associated pathology.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
50
|
Gao S, Zhang W, Zhao Q, Zhou J, Wu Y, Liu Y, Yuan Z, Wang L. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:129-135. [PMID: 30599892 DOI: 10.1016/j.phymed.2018.09.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Allergic asthma and atherosclerosis represent different directions of inflammatory responses of CD4+ T cells, and allergic asthma accelerates atherosclerosis formation. Curcumin could ameliorate the progression of both atherosclerosis and allergic asthma. PURPOSE We aimed to investigate the roles of curcumin in asthma-accelerated atherosclerosis plaque formation, and the change of CD4+ T-cell subsets in this process. METHODS Six to eight-week-old apolipoprotein E-/- (apoE-/-) mice were sensitized and challenged by ovalbumin (OVA) to establish an allergic asthma model, and then received curcumin or vehicle treatment for 8 weeks. RESULTS The accelerated atherosclerosis was induced by allergic asthma accompanied by increased T helper cell (Th)2 and Th17 cells and decreased regulatory T cells (Tregs) in the spleen. After the 8-week treatment with curcumin, the lesion areas in the aortic root in asthmatic mice significantly improved, and the elevated Th2 and Th17 cells significantly decreased, but Tregs markedly increased. Although curcumin treatment markedly reduced the interleukin (IL)-4 and IL-13 in serum and spleen, the elevated IL-17A did not decrease. Moreover, Th1 cells showed no significant change between different groups. The mRNA expression levels of M1 macrophage-related inflammatory factors IL-6, iNOS and IL-1β were markedly elevated in the spleens of asthmatic mice, but significantly decreased after the 8-week treatment with curcumin. CONCLUSION Curcumin ameliorated the aggravation of atherosclerotic lesions and stabilised plaque by modulating the balance of Th2/Tregs in asthmatic apoE-/- mice.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weiping Zhang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Qiang Zhao
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Juan Zhou
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China
| | - Yue Wu
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China
| | - Yan Liu
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Environment and Genes Related to Diseases, (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China; Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lijun Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China.
| |
Collapse
|